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Abstract: This paper investigates the determination of secondary dendrite arm spacing (SDAS) using
convolutional neural networks (CNNs). The aim was to build a Deep Learning (DL) model for
SDAS prediction that has industrially acceptable prediction accuracy. The model was trained on
images of polished samples of high-pressure die-cast alloy EN AC 46000 AlSi9Cu3(Fe), the gravity
die cast alloy EN AC 51400 AlMg5(Si) and the alloy cast as ingots EN AC 42000 AlSi7Mg. Color
images were converted to grayscale to reduce the number of training parameters. It is shown that a
relatively simple CNN structure can predict various SDAS values with very high accuracy, with a R2

value of 91.5%. Additionally, the performance of the model is tested with materials not used during
training; gravity die-cast EN AC 42200 AlSi7Mg0.6 alloy and EN AC 43400 AlSi10Mg(Fe) and EN
AC 47100 Si12Cu1(Fe) high-pressure die-cast alloys. In this task, CNN performed slightly worse, but
still within industrially acceptable standards. Consequently, CNN models can be used to determine
SDAS values with industrially acceptable predictive accuracy.

Keywords: secondary dendrite arm spacing; convolutional neural network; casting microstructure
inspection; deep learning; aluminum alloys

1. Introduction

It is well known that the size of dendrites and the secondary dendrite arm spacing
(SDAS) strongly depend on the solidification rate of a given material [1,2]. In addition,
the chemical composition of the alloys has an additional influence on this structural
characteristic [3]. Moreover, some authors have shown a relationship between mechanical
properties and SDAS [1,4–8]. Properties of fracture mechanics will also depend on chemical
composition, casting defects such as porosity and oxide films [8], and the size and shape
of Si or Fe-rich brittle phases [9]. Most authors show a relationship between SDAS and
ultimate tensile strengths (UTS) and elongation (E), while many authors indicate that SDAS
has no significant effect on yield strength (YS). Moreover, another study indicates that the
hardness of the material depends on SDAS, but cannot be described well enough using
only this relationship [10]. Consequently, it is reasonable to assume that some material
properties can be determined directly from the value of SDAS. Thus, it could be useful to
know the SDAS value of the material. In this regard, an automatic method for determining
SDAS could be a significant advantage.

The scope of artificial intelligence (AI) is more significant in disciplines such as computer
science or electrical engineering than in materials science. However, in the last three decades,
many applications can be found in materials science as well. In general, neural networks, as
a core algorithm of AI, have been applied in materials science as early as 1998 [11]. Singh
et al. estimated the YS and UTS as a function of each of the 108 variables for the steel rolling
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process. An artificial neural network (ANN) with only two hidden units was used. In another
early paper, Hancheng et al. [12] developed a model to predict tensile strength based on
compositions and microstructure by using adaptive neuro-fuzzy inference method. Agrawal
et al. [13] determined the fatigue strength from steel processing parameters with R2 score of
over 97%. Liu et al. [14] determined the Young’s modulus, YS, and magnetostrictive strain
using machine learning techniques (ML). The ML approach reduces the computation time by
an average of 81.62% compared to standard optimization methods. Yang et al. [15] used ANN
with one layer and 8 neurons to predict UTS and E from the heat treatment parameters. Santos
et al. [16] predicted UTS of an automotive iron casting using ANN and K-Nearest Neighbor
method, which outperformed several other methods, with the highest accuracy reaching
85%. Liao et al. [17] constructed ML algorithms to predict macroshrinkage of aluminum
alloys based on their experimental dataset. Additionally, the interested reader is referred
to reference [18], which shows several applications of DL in the field of materials science.
Furthermore, in [18] and references therein, determination of material properties using DL
could be found as well. Herriott and Spear [19] investigate the ability of ML and DL models
to predict microstructure-sensitive mechanical properties in additive manufacturing of metals
(MAM). ML and DL methods accelerated the prediction of microstructure and mechanical
response for MAM.

Given that in recent decades our ability to generate data has far surpassed our ability
to make sense of it in virtually all scientific domains [13], the development of DL methods
could be of particular benefit in materials science. One process that involves a lot of input
data is quality control. Quality control is a fundamental part of many manufacturing
processes, especially casting or welding. Unfortunately, manual quality control procedures
are often time consuming and error prone [20]. Quality control, SDAS in particular, could
also be performed by Light Optical Microscopy (LOM) of polished samples, but SDAS
evaluation still relies on manual measurements. Although there exists research tackling
the problem of SDAS prediction using ANNs [21], SDAS is not predicted directly from
the microstructure image. Instead, the authors predicted SDAS based on processing
parameters: pouring temperature, insulation on the riser and chill specific heat, while the
dataset was based on numerical simulation results. To the best of the authors’ knowledge,
there is currently no literature that determines SDAS directly from the microstructure
image. Following the literature review, this research hypothesizes that SDAS could be
determined directly from the microstructure image data using DL methods.

2. Related Work

The algorithms available for implementing ML can be broadly categorized into the
following types: shallow learning (e.g., vector machine (SVM), decision tree (DT) and ANN)
and DL (e.g., CNN, recurrent neural network (RNN), deep belief network (DBN) and deep
coding network) [22]. Shallow learning algorithms cannot achieve the same accuracy
on different tasks as DL, although they could reduce the computational cost. As shown
in [19,23] CNN performs better than standard (2D) ML models such as Ridge, XGBoost
regression and the like. A transfer learning-based approach to use convolutional deep
networks in [24] is generally superior to all other reconstruction approaches (decision tree,
Gaussian random field, two-point correlation, physical descriptor) for most numerically
evaluated material systems. CNN has also been used for casting defects recognition in [25].
These authors used 640,000 images to train CNN and also Generative Adversarial Network
(GAN) was used to generate even more data. In the present study, image data were used
to predict SDAS using CNNs. It is reiterated that the task of determining SDAS is often
manual and subjective.

Data used in materials science can be obtained from the following sources: Material
properties from experiments and simulations, chemical reaction data, image data and
published data [22]. DeCost et al. [26] applied a deep CNN segmentation model to enable
novel automated microstructure segmentation applications for complex microstructures.
Ferguson et al. [20] proposed a casting defect detection system in X-ray images based
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on the Mask Region-based CNN architecture. The proposed defect detection system
outperforms the state-of-the-art performance for defect detection on GDXray Castings
dataset. Chowdhury et al. [27] created an image-driven machine learning approach to clas-
sify micrographs. In references therein, classification of precipitate shapes in a two-phase
microstructure, the classification of cast iron microstructures and the analysis of precipitate
shapes in nickel-based superalloys could also be found. Azimi et al. [23] use a segmentation-
based approach based on Fully Convolutional Neural Networks (FCNNs), which are an
extension of CNNs, accompanied by a max-voting scheme to classify microstructures.
Exl et al. [28] used an ML-approach to identify the importance of microstructure properties
in causing magnetization reversal in ideally structured large-grained Nd2Fe14B permanent
magnets. The embedded Stoner–Wohlfarth method is used as a reduced-order model to
determine local switching field maps that guide the data-driven learning procedure. They
used datasets consisting of 700 and 800 experiments. Yucel et al. [29] showed relationships
between optical micrographs and mechanical properties (YS, UTS and E) of cold-rolled
high-strength low-alloy steels (HSLA) measured in standardized tensile tests. However,
the models developed in the latter work are only applicable for a constant initial condition
before annealing treatment, i.e., constant composition, constant hot rolling and constant
cold rolling parameters. Li et al. [24] used a transfer learning approach for microstructure
reconstruction and structure-property prediction. Pokuri et al. [30] show a data-driven
approach for mapping microstructure to photovoltaic performance using CNNs. The VGG-
16 CNN-based architecture achieved a test accuracy of up to 96.61%. DeCost et al. [31]
trained an SVM to classify microstructures into one of seven groups with accuracy greater
than 80% with 5-fold cross-validation.

3. Materials and Models
3.1. Aluminum Alloy Samples

In the present study, samples for training were cut and polished from three dif-
ferent materials cast by three different methods: high-pressure die-cast EN AC 46000
AlSi9Cu3(Fe), gravity die-cast EN AC 51400 AlMg5(Si) and EN AC 42000 AlSi7Mg alloy
cast as ingots. The chemical composition of all the alloys used conformed to DIN EN
1706 [32]. The die-cast alloys were supplied in the form of commercial ingots. The ingots
were melted in the gas furnace, then degassed with argon and transferred to the holding
furnace at a temperature of 700 ± 10 ◦C. The melt was then automatically ladled into the
shot sleeve and injected into the die cavity in the case of the AlSi9Cu3(Fe) alloy. Cast
parts were produced using a cold chamber high pressure die casting machine (HPDC)
with an intensification pressure of 800 bar. In the case of AlMg5(Si) alloy, the melt was
ladled directly into the metal die and solidified under gravity conditions. Moreover, in the
case of AlSi7Mg alloy, the melt was poured directly into the ingot die while exact process
parameters and temperatures are not known. It should be noted that the AlMg(Si) and
AlSi9Cu3(Fe) samples were cut from medium sized components between 5 and 10 kg.

Additional samples were obtained to test the prediction accuracy. This dataset con-
sists of three materials with chemical composition according to the DIN EN 1706 [32]
standard: EN AC 42200 AlSi7Mg0.6, EN AC 43400 AlSi10Mg(Fe) and EN AC 47100
AlSi12Cu1(Fe). AlSi7Mg0.6 was cast by gravity die casting technique, while AlSi10Mg(Fe)
and AlSi12Cu1(Fe) alloys were cast by HPDC process. The exact process parameters and
casting history for these materials are not known. Polished samples for this group of
materials were cut from medium sized cast components between 5 and 10 kg.

All specimens were cut using a classic band saw and polished using standard tech-
niques. Images were taken using an Olympus BX51 optical microscope equipped with an
XC30 digital camera.

3.2. Dataset and Image Preprocessing

The dataset is created from a single polished cross section per material. The manually
measured values of SDAS for AlSi9Cu3(Fe), AlSi7Mg and AlMg5(Si) alloys were 6 · 10−3,
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29 · 10−3 and 32 · 10−3 mm, respectively. Manual SDAS measurements were performed
such that the distance between the centers of two secondary dendrite arms was measured
perpendicular to the primary arm, Figure 1. In other words, “Method E” from reference [33],
was adopted here for manual SDAS measurement. The automated technique proposed
here is based on the same SDAS measurement principle. These SDAS values were obtained
at 5× magnification. To obtain more SDAS values for training, additional SDAS values
were derived using different magnifications on the microscope. Thus, the equation for the
derived SDAS values could be obtained with the following expression:

SDAS = S · F, (1)

where SDAS is the physical SDAS value of the alloy, S is the scaled SDAS value used with
the ML algorithm, and F is the factor of magnification. Note that the S values were used
with the ML algorithm instead of the physical SDAS values. Only for magnification of 5×
when F = 1, S = SDAS. The magnification factor for all magnifications used in the present
research is given in Table 1. In addition, the values for the number of pixel per micrometer
at different magnifications and the factor F are given. The procedure is illustrated using
the example of the material AlSi7Mg in Figure 2. For this example, S values of 29 · 10−3

and 55 · 10−3 were obtained for training with the same polished cross-section sample with
relatively constant SDAS values. The S values used for training are shown in Table 2
and Figure 3. It should be noted that S was determined using average measurement
results on a polished cross section and not using Equation (1), i.e., 10 measurements were
taken for each magnification and the average result was selected. The deviations between
the measurements were less than 10% for each sample. It should be emphasized that
a polished cross-section with a relatively constant value of SDAS was chosen, but due
to the randomness of dendrite growth, some minor variations in S values are possible.
Additionally, for the purpose of training, polished cross sections were chosen that contained
defects. The defects could be roughly classified into five groups as shown in Figure 4:
(a), (b)—air and shrinkage porosity defects; (c), (d)—scratches; (e)—blurred image; (c), (f),
(g), (i)—different brightness and contrast of the image; (g), (h)—externally consolidated
crystals (ECS). The presence of defects is beneficial to build the model’s resistance to
industry working conditions, as such defects are often seen in samples. About 10% of the
dataset were images showing materials with some kind of defects. We should reiterate
that images with this type of defect should not be used for SDAS predictions and are for
training purposes only, as explained earlier. Finally, note that the Figures 3 and 4 contain
images as supplied to the neural network. This is the reason for a lower standard of quality
than usual in material science. However, the original higher quality images are available as
supplementary materials to this paper (Figures S1 and S2).

Figure 1. SDAS definition: the distance between two secondary dendrites.

The image dataset for training consists of 200 × 200 pixel images created from the
original 2080 × 1544 pixel images, as shown in Figure 5. The original image was first split
into 70 images with a pixel resolution of 208 × 211, which were then resized to 200 × 200
pixel. The S values and image count used for training, validation and testing are listed in
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Table 2. The training set, validation set and test set were split in the ratio 60:20:20. The data
instances were evenly distributed in terms of S values.

Figure 2. The procedure of deriving different S values using different magnifications on the mi-
croscope: (a) 5× magnification image; (b) 10× magnification image. The scale bar corresponds to
S value.

Figure 3. 200 × 200 pixel images used for training, their derived S values and alloy.

Table 1. Magnification factor F and appropriate pixel per micrometer value.

F Magnification Pixel/10−3 mm

1 5× 1.36
0.5 10× 2.72

0.25 20× 5.44
0.125 40× 10.88

0.1 50× 13.60
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Figure 4. Images of different types of defects used for the training: (a,b)—air and shrinkage porosity
defects; (c,d)—scratches; (e)—blurred image; (c,f,g,i)—different brightness and contrast of the image;
(g,h)—ECS (some images are purportedly of lower quality).

Table 2. Images count per different material and different magnification.

Alloy Magnification S F S-SDAS/F Images Count

AlSi9Cu3(Fe) 5× 6 ×10−3 mm 1 0 1076
AlSi9Cu3(Fe) 10× 13 ×10−3 mm 0.5 1 6820
AlSi9Cu3(Fe) 20× 26 ×10−3 mm 0.25 2 815
AlSi9Cu3(Fe) 40× 52 ×10−3 mm 0.125 4 1236
AlSi9Cu3(Fe) 50× 65 ×10−3 mm 0.1 5 1128

AlSi7Mg 5× 29 ×10−3 mm 1 0 1216
AlSi7Mg 10× 55 ×10−3 mm 0.5 3 1176

AlMg5(Si) 5× 32 ×10−3 mm 1 0 1032
AlMg5(Si) 10× 64 ×10−3 mm 0.5 0 1174
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Figure 5. Schematic representation of dataset generation: the original image was first split into
70 images with a pixel resolution of 208 × 211, which were then resized to 200 × 200 pixel.

In an earlier approach [34], the images were preprocessed by the morphological
transformation, Gaussian blur and Otsu’s threshold [35] to reduce the number of training
parameters. The color scale of the image was reduced from an eight-bit three-channel depth
(i.e., full RGB) to a one-bit color depth (e.g., black or white). Unfortunately, the approach
requires manual tuning of the hyperparameters for each SDAS value, making it impractical.
For the present study, grayscale images were used to achieve fully automatic detection
of SDAS using DL to avoid any manual operation. Nevertheless, the training parameters
were reduced by a factor of three by using only one color channel instead of three.

3.3. Overview of the CNN Model

Predictive model at hand is based on the CNN architecture. It is assumed that other
ML approaches would exhibit inferior behavior and therefore they were not considered.
In the present case, the CNN model is based on a basic feedforward (sequential) network.
The model consists of three 2D convolutional layer blocks. Each convolutional filter is
followed by a Rectified Linear Unit (ReLU) activation, batch normalization and a max-
pooling layer. Filter sizes used were (5, 5) × 32, (3, 3) × 32 and (2, 2) × 32 for the first,
second and third convolutional layers, respectively. Zero-padding was applied evenly
across both dimensions to compensate for edges. The convolutions were performed with
stride 1. Each max-pooling filter was of size (2, 2), and pooling was performed with stride
2. This resulted in the following intermediate activation maps: 200 × 200 × 1 (input),
100 × 100 × 32 (following the first convolutional block), 50 × 50 × 32 (following the second
convolutional block) and 25 × 25 × 32 (following the third convolutional block). Activation
of the final convolutional block was then flattened to create a meta-layer of 20,000 neurons,
which was then followed by a fully-connected layer consisting of 64 neurons, followed
by the ReLU activation function and batch normalization. Finally, this layer was then
fully connected to the output layer, which contained a single linear neuron—because of
the assumed regression operation. Thus, for a 2D input image of size 200 × 200 × 1, a
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single real value—S value is obtained. The Adam optimizer was used, using a learning
rate of 0.0005. The schematic CNN architecture is shown in Figure 6. The total number of
parameters was 1,294,977. It was trained with the Keras library on an Intel® Core™ I7-4970
CPU running at 3.60 GHz using 8 parallel processing units. Training was completed in 5
h—for 30 epochs total. A batch size of 32 was used for the training.

Figure 6. The CNN architecture used for estimating SDAS directly from microstructure image
patches.

4. Results and Discussion

The CNN model described in the previous section showed very good performance,
having the R2 score of 91.5% on the test set. We performed an additional experiment to
test the accuracy and practical usability of the model for possible industrial applications.
The input image of 2080 × 1544 pixel is taken as a reference and split into 70 images of
200 × 200 pixel using the same approach as shown in Figure 5. The average result of
70 predictions is then captured while the prediction deviation and prediction error were
also captured. We performed two mutually independent evaluation tests: one using
materials that were used during the training, and another using materials that were not
used during the training. It should be noted that individual images of both group of
materials that were used for this test were not involved in the training, i.e., disjoint test
subsets were used for both. The results are shown in Tables 3 and 4, while the images used
for the prediction task are shown in Figures 7 and 8. S values were obtained using the
same procedure as explained in the previous section.
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Figure 7. Images of materials used during the training: The images were split into 200 × 200 pixel
images following the procedure in Figure 5 and used for the prediction task.

Figure 8. Images of materials that were not used during the training: The images were split into
200 × 200 pixel images following the procedure in Figure 5 and used for the prediction task.
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Table 3. Results of prediction for materials used during training.

Material S Pred. S Pred. Dev. Pred. Err. Magnification
µm µm µm %

AlSi9Cu3(Fe) 6 4.8 1.2 20 5×
AlSi9Cu3(Fe) 13 13.6 0.6 4.6 10×
AlSi9Cu3(Fe) 27 27.7 0.7 2.6 20×
AlSi9Cu3(Fe) 52 52.9 0.9 1.7 40×
AlSi9Cu3(Fe) 65 64.9 0.1 0.15 50×

AlMg5(Si) 32 29.8 2.2 6.9 5×
AlMg5(Si) 64 62.6 1.4 2.2 10×
AlSi7Mg 29 23.0 6.0 20.7 5×
AlSi7Mg 55 55.9 0.9 1.6 10×

Average prediction deviation on 10× magnification: 0.76 µm
Average prediction error on 10× magnification: 2.15%

Table 4. Results of prediction for materials not used during training.

Material S Pred. S Pred. Dev. Pred. Err. Magnification
µm µm µm %

AlSi7Mg0.6 30 28.1 1.9 6.3 5×
AlSi7Mg0.6 60 58.1 1.9 3.1 10×

AlSi10Mg(Fe) 8 11.1 3.1 38.8 5×
AlSi10Mg(Fe) 15 23.9 8.9 59.3 10×
AlSi10Mg(Fe) 31 35.8 4.8 15.5 20×
AlSi10Mg(Fe) 62 52.7 9.3 15.0 40×
AlSi12Cu1(Fe) 5 13.9 8.9 178 5×
AlSi12Cu1(Fe) 19 26.1 7.1 37.4 20×
AlSi12Cu1(Fe) 40 41.4 1.4 3.5 40×

Average prediction deviation on max. mag.: 4.60 µm
Average prediction error on max. mag.: 7.2%

The predicted results are very accurate for the trained materials. Average prediction
deviation was evaluated for 10× magnification, giving only 0.97 · 10−3 mm. Moreover, the
maximum prediction deviation is 6 · 10−3 mm, while every other prediction deviation is less
than 2.2 · 10−3 mm. In Table 3, it can be observed that a higher prediction deviation as well
as a higher prediction error correlates with a smaller magnification. This could be directly
attributed to the resolution of the images. At higher magnification, a dendrite is described
with more pixels, so it is expected that the predicted results are more accurate. For example,
the highest magnification of 50× results in an error of only 0.1 µm. Hopefully, SDAS
smaller than 5 · 10−3 mm is rarely seen in industrial applications. However, even assuming
the highest deviation, such SDAS prediction model performances are quite acceptable for
industry. A model with such performance could even be used to determine the SDAS
distribution on a single microstructure image and/or polished cross-section sample.

The prediction error for the predicted results was also recorded. The average pre-
diction error for the trained materials at 10× magnification is very low −2.15% while the
highest is 20.7%. Again, the highest prediction errors were associated with the lowest
resolution for all alloys considered. Increasing the number of pixels that depicts SDAS
through higher magnification effectively eliminates the accuracy problem. At the highest
magnifications, the errors were in the range of 0.15–2.2%, as can be seen in Table 3. It is
therefore recommended to use a magnification of at least 10×.

In addition, prediction accuracy was also tested with materials that were not used
during training (Table 4). The physical SDAS values of AlSi10Mg(Fe), AlSi12Cu1(Fe) and
AlSi7Mg0.6 were 8 · 10−3 mm, 5 · 10−3 mm and 30 · 10−3 mm, respectively. The results
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shown in Table 4 indicate that the predictions are less accurate than for the trained materi-
als. The prediction error is also slightly higher, while the average prediction deviation is
4.60 · 10−3 mm for highest magnifications. For the AlSi10Mg(Fe) alloy, the highest error
of 15% was obtained for 40× magnification, while errors close to 3% were obtained for
the other alloys. Note that a very high error (178%) was obtained for AlSi12Cu1(Fe) at
low magnification, indicating that higher magnifications should again be preferred for the
application of the CNN trained on other materials. This allows the error to be reduced to
3.5% for the 40× magnification, which is in the same range as when the CNN is applied
to trained materials, cf. Table 3. For general analysis (e.g., to determine whether the
component was cast in sand or in permanent mold, or for general determination of solidifi-
cation rate), the model could be used successfully in the foundry industry, ensuring that
magnification greater than 10× is used. As an example, even the deviation of the different
measurement methods reported in [33] falls within the performance range of the model.
The highest prediction deviation of 9.3 · 10−3 mm was obtained for the alloy AlSi10Mg(Fe).

5. Conclusions

The present study confirms the hypothesis that SDAS can be determined directly
from microstructure image data by the DL methodology. The model shows excellent
performance on the materials used in the training, provided that the highest possible
magnification is used. On the other hand, the model performs slightly worse for the
materials not used in training. However, both variants could be used in any type of
industry depending on the model accuracy. A model for materials used during training
could even be used to determine the distribution of SDAS on a single microstructure image
and/or polished cross-section sample. Furthermore, the model could still be applied for
materials not used during training, although some caution should be exercised. Thus, from
the discussion shown, it appears that the technique based on DL can predict SDAS with a
high degree of certainty.

Since manual tuning of hyperparameter values is avoided in the present study, such
an approach could be fully automated. Furthermore, this approach now has a potential
application as part of Industry 4.0 for the automotive or other sector. Additionally, the
methods of DL could also have a potential application for automated prediction of mechan-
ical properties from an image of the microstructure. However, for this type of task, the link
between SDAS and material properties should be part of the analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/met11050756/s1, Figure S1: Images used for training (Figure 3, full resolution). Figure S2:
Images of different types of defects used for the training (Figure 4, full resolution).

Author Contributions: Conceptualization, methodology, software, validation, investigation, writing—
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