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Abstract: This work presents a non-destructive method for quantitative essessment of fatigue dam-
age of materials with linear elastic properties using nonlinear ultrasonic techniques. A nonlinear
study was conducted on these materials with fatigue and shot peening processing using a nonlinear
ultrasonic technique. A numerical method based on the semi-analytical finite element (SAFE) tech-
nique, was used to obtain the phase-matching modes of the specimens. Experiments confirm that
the nonlinearity for shot peening and samples with a certain level of fatigue shows a tendency to
increase with levels of fatigue.

Keywords: nonlinear guided wave; SAFE; materials with linear elastic properties; phase matching
mode; fatigue; shot peening

1. Introduction

Driving Safety is seriously affected by malfunction or damage of materials with
linear elastic properties, such as tension rods, ton-shoulders, and springs used in vehicles.
Research on the safety of the structure and research on the optimization and weight
reduction of parts are becoming more important. Therefore, research on these materials is
of a great concern.

In general, the life evaluation of materials with linear elastic properties is performed
through the Nakamura fatigue test, which is one of the destructive evaluation techniques.
However, this technique consumes considerable time and cost. In addition to life evaluation,
to improve the durability, life, and performance of a spring, a cold working process called
shot peening is performed on these materials. Shot peening leads to plastic deformation
on the surface and changes the mechanical properties of the material. Surface cracks do
not propagate well in materials subjected to compressive stress, so the propagation of
micro-cracks on the surface of the material can be prevented through shot peening.

In addition, the plastic deformation caused by shot peening results in residual com-
pressive stress on the surface and can impart resistance to metal fatigue and some forms of
stress corrosion. However, if residual stress is generated while impurities are contained
within the material, it may break along grain boundaries that are weakened by impurities.
Currently, preventing the accidents induced by damaged springs becomes a significant
issue, and the soundness of spring coils has a great influence on vehicle performance and
reliability. Therefore, it is necessary to strictly apply safety management of a structure
before an accident occurs, and to improve the life evaluation by detecting micro-cracks or
defects in an early stage by a non-destructive method.
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For life evaluation and safety management, a nonlinear guided wave technique can
be used. It has been explored for many years as a promising tool that can diagnose micro-
defects or microscopic structural changes in micro-and nano-units through the selection of
various guided wave modes [1,2]. Buck et al. [3] conducted a study on stress and changes in
the second harmonic function. Later, Jacobs and colleagues [4] studied the plasticization of
materials using nonlinear ultrasonic guided waves [5–13]. They investigated the nonlinear
shear horizontal wave and the cumulative second harmonic.

Guided waves were applied to efficiently inspect slender samples such as wire
rods [14,15]. Gazis performed basic ultrasonic guided wave analysis on cylindrical struc-
tures [16]. Other related research was mainly studied by Rose and Cowley [17,18]. Recently,
Cho et al. conducted an inspection by using a PVDF sensor to detect localized fatigue
damage on an aluminum plate [19]. Guan and Su compared the differences in fatigue crack
detection using nonlinear guided ultrasound between plate and pipe structures [20]. Li et al.
conducted a nonlinear guided ultrasonic assessment of laminated composites subjected
to low-speed impact and improved the signal-to-noise ratio (S/N ratio) by using a phase
inversion method to measure the second harmonic [21]. Recently, many researchers have
conducted research on the relationship between nonlinearity and linear elastic materials
such as pipes using advanced technology [22–24].

This study presents an experimental approach to assess the local micro-grain structure
change of materials with linear elastic properties based on the nonlinear features corre-
sponding to the damage. In linear elasticity, there is a proportional constant representing
the slope of a straight line relating with load and deformation. For example, in the case of a
simple unidirectional tensile test, the slope between the axial stress and the corresponding
axial strain is expressed as Young’s modulus E, and this is one of the linear elastic moduli.
It is a well-known fact that when a material is subjected to microdamage, such as grain
structure change, the slope tends to show a tiny nonlinearity. The nonlinearity can be
linked to the higher harmonic amplitude of ultrasound, providing a specific feature of
the corresponding microdamage. NDE was performed for a wire rod specimen subjected
to shot peening using the nonlinear guided ultrasonic method in the comparison of the
Nakamura fatigue test. In this study, the second harmonic of the longitudinal wave was
generated, and the reliability of the experimental result was confrimed by controlling the
fatigue variables.

2. Theoretical Background
2.1. Nonlinear Wave Theory

When the higher-order elastic constants of solid materials increase, the relationship of
stress and strain is nonlinear rather than linear. With linear ultrasonic theory, it is difficult
to describe the behavior of a material that does not follow the plastic region or elastic
motion of the stress-strain curve, but applying nonlinear supersonic theory allows for more
accurate behavior [25]. In the nonlinearity measurement method, ultrasonic waves of a
single frequency are incident on the sample and propagate for a certain distance. The
signal is distorted due to the third-order modulus of elasticity of the material, which is
considered to be the second harmonic. The second harmonic occurs when there is a change
in micro-structure [26], such as plastic deformation and corrosion, and it is relatively small
compared to the first harmonic.

The nonlinear factor indicates the relationship between the microstructural changes of
these materials and the denominator and is defined by Equation (1):

βl = −(3 +
C111

ρc2
l
) =

A2

A2
1

8
k2x

(1)

where C111 is the cubic elastic modulus, cl is the velocity of the longitudinal wave, ρ is
the density of the material, and A1 and A2 are the amplitude of the primary and second
harmonic, respectively. k is the wave number, and x is distance of the propagation. Under
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certain conditions, the parameter β is measured for a fixed wavenumber and propagation
distance:

β′ =
A2

A2
1

∝ β (2)

2.2. General Solution of Nonlinear Wave Equation in a Solid Cylindrical Rod

To obtain a general solution for a nonlinear wave equation in a solid cylindrical
rod, elastic waveguides with an arbitrary cross-section area are theoretically studied.
The harmonic generation of ultrasonic guided wave propagation in cylindrical rods was
reported by de Lima et al. [12]. Practically, in tube-like structures, the guided wave
propagation provides a more efficient approach to detect material nonlinearity due to its
lower energy diffusion [27].

In Lagrangian coordinates, the nonlinear wave equation is expressed as in Equation (3):

(λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) + f = ρ0
∂2u
∂t2 (3)

where u is the particle displacement, λ and µ are the Lamé constants, ρ0 is the initial density
of the material, and f (u) is the nonlinear term. The perturbation method is used to solve
the nonlinear wave equation, and the solution is taken from Equation (4):

u = u1 + u2 (4)

where u1 is the primary wave, u2 is the second harmonic (double frequency component),
and u2 is assumed to be much smaller than u1. The primary wave with frequencyω and
the wavenumber k is written as in Equation (5):

u1 = u(r)ei(kz−ωt) (5)

Constructing the second-order solution using model expansion [21], the total second-
harmonic field can be written as Equation (6):

u2 = 1
2

∞
∑

m=1
Am(z)u(2,m)(r)e−i2ωt

v2 = 1
2

∞
∑

m=1
Am(z)v(2,m)(r)e−i2ωt

s2 = 1
2

∞
∑

m=1
Am(z)s(2,m)(r)e−i2ωt

(6)

where u(2,m) is the displacement field function. v = du
dt and v(2,m) are the particle velocity,

and s(2,m) is the stress tensor for the mth double frequency components. r is the thickness
of the waveguide. Am(z) is the modal amplitude:

Am = Am(z)ei2kz − Am(0)eik∗nz (7)

Am(z) is the solution of the following ordinary differential Equation (8) with the
condition u2 = 0 at z = 0:

4pmn(
d
dz
− ik∗n)Am(z) = ( f surf

n + f vol
n )ei2kz (8)

where:
pmn = − 1

4

∫
Ω (v∗n · sm + vm · s∗n) · nzdΩ

f surf
n (z) =

∫
Γ v∗n · s2ω · nzdΓ

f vol
n (z) =

∫
Ω v∗n · f 2ωdΩ

(9)
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In Equation (9), Ω is the waveguide cross-sectional area and Γ is the curve enclosing
Ω. The terms f surf

n and f vol
n are respectively defined as the complex external power due

to the surface traction s2ω and the volume force f 2ω. kn is the wavenumber of the mode
identified by index n, which is not orthogonal (pmn 6= 0) to the mode with wave number km.

This analysis is applied to a cross-sectional area of any shape. For the cylindrical rod
shown in Figure 1, the expressions of pmn, f surf

n , and f vol
n are [12]:

pmn = − 1
16

∫ 2π
0

∫ b
0 [v∗m(r, θ) · sn(r, θ) + vn(r, θ) · s∗m

(r, θ)] · nzrdrdθ

f surf
n (z) = − b

2

∫ 2π
0 v∗n(b, θ) · s2ω(b, θ) · ndθ

f vol
n (z) = 1

2

∫ b
0

∫ 2π
0 v∗m(r, θ) · f 2ω(r, θ)rdrdθ

(10)
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The assumed primary wavefield of particle displacement components is [26]:

ur
1 = ur(r) cos(nθ)ei(kz−ωt)

uθ1 = uθ(r) sin(nθ)ei(kz−ωt)

uz
1 = uz(r) cos(nθ)ei(kz−ωt)

(11)

where the circumferential order is n = 0, 1, 2, · · · . For axis-symmetric modes, n = 0 and
n ≥ 1 for the flexural modes. Generally, the terms ur

1, uθ1 , and uz
1 depend on the type of

waveguide and family of modes.
In practice, second harmonic generation with an accumulative effect is of great interest.

The reason is that the cumulative effect of the second harmonic amplitude has a great
advantage for detection in experimental work to measure the nonlinear effect with a
sufficient signal-to-noise ratio. From the analysis, specific conditions must be satisfied for
second harmonic generation with accumulative effect [3,14,28].

1. Nonzero power flux from the primary to the secondary wave: f surf
n + f vol

n 6= 0;
2. Matching phase and group velocities require equal phase and group velocities of the

primary and the secondary waves when k∗n = 2k (synchronism).

2.3. Phase Matching Mode

Due to the dispersion and multi-mode characteristics of guided ultrasound, it is
difficult to efficiently generate the second harmonic. Therefore, one of the numerical
analysis methods, the SAFE technique, was used to induce the phase-matching mode of
the longitudinal wave mode of the specimen. Figure 2 shows a SAFE model of a rod.

u =
[

uθ ur uz
]T

σ =
[
σθ σr σz τrz τzθ τθr

]T

ε =
[
εθ εr εz γrz γzθ γθr

]T
= Lu

(12)
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In Equation (12), T is the transpose of the matrix, and the differential operator L in the
cylindrical coordinate system is:

L =


1
r ∂θ 0 0 0 ∂z ∂r− 1

r
1
r ∂r 0 ∂z 0 1

r ∂θ

0 0 ∂z ∂r 1
r ∂θ 0

 (13)

The relationship between strain and displacement is expressed as Equation (14):

ε = b1uz + b2ur + b3
1
r

uθ + b4
1
r

u (14)

where b1, b2, b3, and b4 are:

b1 =



0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

, b2 =



0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 0 1

,

b3 =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

, b4 =



0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
−1 0 0



(15)

Figure 3 shows a method of performing discretization along the radial direction using
a one-dimensional three-node element. The shape function is an interpolation function
defined as Equation (16):

N1 =
ξ2 − ξ

2
, N2 = 1− ξ2, N3 =

ξ2 + ξ

2
(16)

The displacement field of each discrete element is described as a shape function matrix
and a node displacement vector after finite element discretization.

U(e) = Nq(e)ei(kz+mθ−ωt) (17)

In Equation (17), m is the circumferential order. The shape function is:

N =

 N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

 (18)
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Since each node has 3 degrees of freedom (DOFs) in different directions, the vector q(e)

is denoted as Equation (19):

q(e) =
[

Uθ1 Ur1 Uz1 Uθ2 Ur2 Uz2 Uθ3 Ur3 Uz3
]T (19)

Therefore, the strain can be expressed as Equations (20) and (21):

ε = b1N(ξ)∂zq(e)ei(kz+mθ−ωt) + 1
rξ

b2∂ξN(ξ)q(e)ei(kz+mθ−ωt) + b3
1
r N(ξ)q(e)ei(kz+mθ−ωt) + b4

im
r N(ξ)q(e)ei(kz+mθ−ωt) (20)

ε(e) = (B1 + ikB2)q(e)ei(kz+mθ−ωt) (21)

Here, the geometric matrix B1 is:

B1 = 1
rξ

b2Nξ + b3
1
r N + b4

im
r N,

B2 = b1N
(22)

N is the derivative term of the shape function matrix for the e-direction in the local
coordinate system. By applying the traction-free boundary condition for the SAFE model,
the guided ultrasound equation for the wave motion of each element can be obtained based
on Hamilton’s principle [29,30]:

(k(e)1 + iξk(e)2 + ξ2k(e)3 −ω
2m(e))U(e) = 0 (23)

where:
k(e)1 =

∫
Ωe

BT
1 C̃eB1dΩe, k(e)2 =

∫
Ωe

(BT
1 C̃eB2 − BT

2 C̃eB1)dΩe,

k(e)3 =
∫

Ωe

BT
2 C̃eB2dΩe, m(e) =

∫
Ωe

NTρeNdΩe

(24)

A standard finite element assembly for all elements can be simplified to a common
eigenvalue problem in the global coordinate system as in Equation (25):

(k1 + iξk2 + ξ
2k3 −ω2m)MU = 0 (25)

It can also be marked as a first-order native system as in Equation (26):

[A− kB]2MQ = 0 (26)
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where:

A =

[
0 k1 −ω2M

k1 −ω2M k̂2

]
, B =

[
k1 −ω2M 0

0 −k3

]
,

Q =

[
Û
kÛ

] (27)

Given the frequency values of the wave model, a series of wavenumbers can be
calculated by solving this typical eigenvalue problem. The dispersion relationship can be
derived later.

3. Experiment Setup
3.1. Material Properties

The material properties of the specimen are shown in Tables 1 and 2 [31]. The phase
and group velocity dispersion curves of the longitudinal mode are shown in Figure 4. This
information can be obtained directly by replacing this information with the SAFE code.
Single-frequency and double-frequency dispersion diagrams are indicated by solid and
dotted lines, respectively.

Table 1. Material properties of the SWO-V specimen.

Items Values

Poisson’s ratio 0.35

Elastic modulus (GPa) 205

Density (Kg/m3) 7850

Diameter (mm) 3.1

Table 2. Chemical composition and material property of the SWO-V specimen.

The Chemical Compositions of Rod Material: SWO-V (Mass %)

C Mn Si P S Cu

0.60–0.75 0.60–0.90 0.12–0.32 Under 0.025 Under 0.025 Under 0.02

3.2. Experimental Design

In Figure 4, it can be seen that the same values of the phase and group velocity
appeared in the red region. Therefore, 1.4 MHz in mode L (0,2) and 2.8 MHz in L (0,3) were
selected. Figure 5 shows a diagram of the experimental setup. The tone burst ultrasonic
device was a RITEC PRP-4000, which was used to generate and receive ultrasonic waves.
The transducer and the acrylic wedge generated longitudinally induced ultrasonic waves,
and the angle of incidence was derived by Snell’s law [32]:

θ = sin−1 cacrylic

cp
(28)

In this equation, cacrylic = 2670 m/s is the propagation velocity of ultrasonic waves
in acrylic, cp = 6500 m/s is the phase velocity in L (0,2) mode at 1.4 MHz, and theta is
the incident angle. The diameter of the specimen is 3.1 mm, and it was cut to a length of
946 mm. Shot peening was performed for 40 min with a 0.6 mm diameter shot ball made
of SWRH82A and then shot peening was performed again with a 0.3 mm shot ball.
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3.3. Experimental Set Up

As seen in Figure 5, the signal was generated at a distance of 460 mm from the end
of the sample and received at intervals of 20 mm from a distance of 60 mm. A total of
7 sections were inspected, including the center of the specimen. Each section was measured
5 times. The total length of the flaw was 180 mm, and the area where the maximum fatigue
stress occurred was inspected. The signal was measured to investigate the correlation of
the nonlinearity according to the degree of fatigue. A signal in longitudinal mode was
generated for the specimen using the RITEC RPR-4000 tone burst ultrasonic device.
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As shown in Figure 6, a motor was installed at the left end of the rod, and a fatigue test
was conducted by supporting the other end of the rod [33]. While the test was being carried
out, the largest load was applied to the center of the specimen. A separate recording device
was connected to the device, and the number of rotations until the rod was damaged during
the experiment was recorded. In this study, to manufacture damaged specimens due to
fatigue load, fatigue tests were conducted by dividing the degree of fatigue into 4 types.
The number of revolutions per minute was 5000 rpm, and based on 100% being 10 million
cycles, 0% (0 cycle), 30% (3 million cycles), 60% (6 million cycles), 100% (10 million cycles),
130% (13 million cycles), and 160% (16 million cycles) were applied. Michihiko (1992) also
showed the result of the test with the number of cycles up to 107 for SWO-V during the
Nakamura fatigue test. Therefore, in this paper, 107 cycles were the 100% standard [34].
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4. Results

Figure 7 shows the typical waveform of the received signal, and Figure 8 shows its
spectrum. The received signal was processed in the frequency domain using a Fast Fourier
Transform (FFT) to obtain the spectrum. The nonlinear parameters were calculated by
taking values from the spectrum of the fundamental frequency (1.4 MHz) and the second
harmonic frequency.
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Figure 9 shows the nonlinear result of shot peening. For the two specimens, it was
confirmed that the nonlinearity increased with the distance, and the nonlinearity was
dominantly influenced by the overlapping effect. However, the nonlinearity of the shot
peening specimen marked with a red dotted line was higher by about 0.5 to 1 than that of
the general specimen marked with a solid black line. Although there is a slight difference in
nonlinearity, it could be seen that in shot peening and general specimens, the nonlinearity
tended to increase as the measurement distance increased.
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Figure 9. Nonlinearity with shot peening and without shot peening.

The results of the nonlinear experiment according to the degree of fatigue are shown
in Figure 10. For the specimen (0%) not subjected to the fatigue test, it was confirmed that
the nonlinearity increased as the measurement distance increased, and the overlapping
effect was dominantly affected. For specimens with a fatigue degree of 30% to 100%, the
nonlinear tendency was dominated by the superposition effect. The degree of fatigue
was a nonlinear result for 130% and 160% specimens. With a specimen with a degree of
fatigue exceeding 10 million times, and it can be seen that the nonlinear tendency gradually
decreased from around 120 mm, the point where the fatigue load was the largest.
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5. Conclusions

In this study, a SAFEM was used to calculate the dispersion curve of a guided ul-
trasonic wave. One of the NDT methods, the nonlinear guided ultrasonic flaw detection
method, was used to investigate the nonlinear tendency of a shot peening specimen ac-
cording to the surface change, and it was confirmed that the nonlinear tendency increase
when the sub surface grain structure changed due to the shot peening. For the specimens
subjected to the Nakamura fatigue test, in the case of 0% to 100%, the damping effect
was not large, so nonlinearity was dominant; however, when the fatigue cycle exceed the
fatigue limit, plastic deformation occurres relatively greater attenuation. In Figure 10, the
120 mm point was the point where the fatigue load was the largest of the length of the
specimen, and since the plastic deformation occurred the most, it was estimated that the
nonlinearity decreased in the experimental results of 130% and 160%. This was assumed to
be the result of plastic deformation in the microstructure due to fatigue.
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