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Abstract: Microbial contamination of medical devices and treatment rooms leads to several detrimen-
tal hospital and device-associated infections. Antimicrobial copper coatings are a new approach to
control healthcare-associated infections (HAI’s). This review paper focuses on the efficient methods
for depositing highly adherent copper-based antimicrobial coatings onto a variety of metal surfaces.
Antimicrobial properties of the copper coatings produced by various deposition methods including
thermal spray technique, electrodeposition, electroless plating, chemical vapor deposition (CVD),
physical vapor deposition (PVD), and sputtering techniques are compared. The coating produced
using different processes did not produce similar properties. Also, process parameters often could
be varied for any given coating process to impart a change in structure, topography, wettability,
hardness, surface roughness, and adhesion strength. In turn, all of them affect antimicrobial activity.
Fundamental concepts of the coating process are described in detail by highlighting the influence
of process parameters to increase antimicrobial activity. The strategies for developing antimicrobial
surfaces could help in understanding the mechanism of killing the microbes.

Keywords: nanocrystallites; copper coatings; coating methods; mechanical characterization;
antimicrobial properties

1. Introduction

Today, in the 21st century, despite being in the era of advanced healthcare technology,
hospital-acquired infections (HAIs) are becoming a severe problem in the healthcare field.
Hospital-associated infections are causing severe health issues in patients, caretakers, and
hospital staff. This has become a major concern of global public health. Over 7.6% of the
mixed patient population in developed countries are affected by HAIs . The European
Centre for Disease Prevention and Control estimated that in Europe, every year about
4.1 million patients are affected by HAIs. As a result, an estimate of 16 million days of
stay at the hospital, 37 thousand deaths, and an annual financial loss of up to 7 billion
Euros occur every year. Whereas in the USA, the estimated HAIs incidence rate is 4.5%
in 2002 (1.7 million patients). This results in approximately 99,000 deaths as well as an
economic impact of 35 to 45 billion dollars per year. The data collected from 173 intensive
care units (ICUs) from Africa, Asia, Europe, and Latin America shows that the crude
mortality rate is as high as 18.5%, 23.6%, and 29.3% for healthcare-associated urinary
tract infections, healthcare-associated bloodstream infections, and ventilator-associated
infections, respectively. Studies showed that an additional 5 to 29.5 days of hospital stay
for the patients affected with HAIs [1,2]. These details show that HAIs are a serious matter
requiring serious attention. About 20–40% of HAIs are due to direct contact with the
contaminated surfaces or the affected patients via health workers in the hospital [3].

A recent survey depicts that the patients admitted to hospital wards earlier occupied
by carriers of vancomycin-resistant Enterococcus or methicillin-resistant Staphylococcus au-
reus (MRSA) have increased risk of acquiring the identical pathogen by environmental
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contamination [4]. Because of these complications, as far as controlling the infection is
focused, incorporation of features to existing surfaces with current design practices offers a
new ray of hope that will lead to economically better outcomes [5]. Copper-based antimi-
crobial surfaces are facilitating a renaissance in combating the epidemiology of HAIs and it
is now of great research interest. Due to recent advances in biotechnology and material
science methodologies, several mechanisms are present to design and modify surfaces with
better antimicrobial properties.

The first recorded use of copper in the medical field as an antimicrobial material is
mentioned in the Smith papyrus, one of the oldest books known [6]. From the days of
human civilization, earlier to 5th millennia B.C, copper and copper compounds have been
treated for burns, headaches, ear infections, intestinal worms, sterilize chest wounds and
drinking water, and for hygiene management in general. Today, the spread of infection
through microbial activity is ever-present in healthcare, nursing homes, animal breeding
facilities, and food processing plants. This has motivated the necessity for different ap-
proaches for making active pathogenic microorganisms inactive. One such alternative is
the use of copper surfaces in hygiene-sensitive zones [6,7]. Soft metals, like copper, are
functionally defined by their polarizability, which allows them to associate closely with
sulfhydryl groups. Copper has a significant attraction for protein thiols, and they are toxic
to bacteria. Toxicity is coarsely in proportion to their affinities to sulfur.

Pure copper, copper oxides, and cuprous compounds like Cu2S, CuI, and CuCl have
high levels of biocidal efficiency. But, compared to cupric compounds, cuprous compounds
are showing higher antimicrobial activity [8]. Copper gained more significance due to its
environmental friendliness and the continuous killing power for pathogens [9]. In addition
to that, copper is the only solid metal touch surface that can be used in hospitals approved
by the Environmental Protection Agency (EPA). Compared to other antimicrobial materials,
copper can offer an antimicrobial activity 24/7 [8]. The antimicrobial efficacy of copper
is scientifically far more effective than silver-containing coatings. Moreover, copper has
advantages like safe to use and not wearing out [10]. Copper remains effective even after
repeated wet and dry abrasion and recontamination conditions. Natural oxidation does
not impair the efficacy of copper. Copper has excellent mechanical properties as well as
complete recyclability [11]. Copper and silver coatings have been applied too frequently to
touch surfaces in the hospital to destroy nosocomial disease [12]. Copper-coated stainless
steel can offer reduced grain size and better surface area [13], and improved mechanical
properties [14] compared to bulk copper.

Touch surfaces in hospitals made of copper are effective in preventing the growth and
survival of microorganisms [15–17]. Copper is oxidized when exposed to dry air; however,
this does not affect its antimicrobial properties, which make it suitable for prolonged
exposures under those conditions [18]. Copper in its pure form can kill 99.9% of bacteria
after an hour, but 60% pure Cu takes two hours for similar antimicrobial efficacy [19].
The purity of the copper and composition of the copper alloy play a key role in reducing
bacterial contamination [20]. Despite, the intense interest in copper-based antimicrobial
coatings, there is still study needed to be focused on factors affecting antimicrobial efficacy.
The copper coating is a well-established technology to reduce antimicrobial activity and
may be an appropriate technique to substitute or modify the current stainless steel and
aluminum surfaces in healthcare and hospital environments. Very few coating technologies
are focused on the development of copper-coated antimicrobial active surfaces [21].

Copper’s antimicrobial properties have been recognized for thousands of years and
coated copper (nanoparticles) surfaces offer excellent antibacterial activity. Copper coat-
ings failed commercially in the past due to their complex multi-step preparations [22].
However, developments in the instrumentation and understanding of the process have
made the coating process simple. The ease of the process and economy would allow us to
commercialize these coatings as an adaptable coating technique for clinics, the food and
pharmaceutical industry, tourism (airports, rail, and bus terminals), and even in domestic
applications. This article focuses on copper-based antimicrobial surfaces developed by
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thermal spray technique, electrodeposition, electroless plating, chemical vapor deposition
(CVD), physical vapor deposition (PVD), and sputtering techniques covering property
modifications to reduce microbial activity on the surfaces, particularly healthcare settings
to reduce hospital-acquired infections (HAI’s).

Most of the attention was focused on the copper coatings deposited on a metal sub-
strate like stainless steel and aluminum, which are commonly used in hospital elements like
doors, knobs, handles, rails, hospital furniture’s, medical equipments like scissors, knife,
sterilizers, small autoclaves, medical refrigerators, and freezers. Considerable commercial
investment and academic research groups do largely believe that surface modification in
clinical settings can reduce microbial species numbers [23]. This review firstly concen-
trates on major strategies for designing antibacterial coatings—which are divided into
three categories: (a) Antibacterial agent release (such as silver and copper ion release),
(b) contact killing (adhered bacteria are killed by disruption of their cell membrane), and
(c) anti-adhesion/bacteria-repelling (bacteria repel due to the superhydrophobic nature of
surface) [24].

Microbes are the main source of infections. Microbes causing infections are generally
referred to as pathogens. Hence, common pathogens used to test the antimicrobial surfaces
are briefed. The development of a variety of coating technology has been central to the
evaluation of antimicrobial coatings. It allows optimized development of new methods to
deposit the copper on different substrates. This review presents an overview of common
coating technologies used in the fabrication of copper coatings with a brief description of
their working principles and their functional properties of the coatings.

1.1. Methods to Reduce the Growth of the Microbes

In practice, the growth of the microbes can be reduced in two ways: (a) Conventional
(intervention), this involves a regular cleaning by using disinfectants. The problem with
the intervention approach is the use of disinfectants has a deficiency in residual effect.
Disinfectants like detergents, organosilanes, and light-activated photosynthesizer like TiO2
belongs to this group. This is economic and convenient. But many questions decide
its efficiency in real life. The second type is (b) novel one, modification of surfaces to
prevent contamination and microbial growth [25]. Another approach is the use of air
ionizers to control the spread of infections in hospital environments. The physical effect
of ions in the air is that they charge medical equipment negatively and then they repel
airborne microbes [26]. Nanocomposite thin film formulations are loaded with the cell
wall damaging enzymes called antimicrobial enzymes. A particular study explored that
reusable antimicrobial film containing carbon nanotube-lysostaphin combination could kill
99% of MRSA in 2 h. These enzymes are released slowly and they minimize the growth of
microbes [27]. The harmful extremophile bacteria are recently tested on copper to remove
contaminated surfaces using biological machining with a significant removal rate [28]. E.
Diaz-Tena et al. have studied simultaneous culture and biomachining of copper using Acid
thiobacillus ferrooxidans and Sulfobacillus thermosulfidooxidans culture medium [29]. Copper
surfaces are cleaned by metal etching via microorganisms [30].

1.2. Mechanism of Microbe Killing

Since from olden times, metals like copper, silver, mercury, arsenic, and antimony are
effective materials to inhibit surface infection due to contact killing. Hence, these metals
are referred to as antimicrobial metals [31]. Copper is one among other antimicrobial
metals widely used due to its extremely high toxicity and biocidal nature (biocidal means
biochemical that can kill life by poisoning) which kills the microbes at a faster rate. Unlike
other antimicrobial metals, use of the copper as an antimicrobial metal has the following
advantages [32].

• Copper is a stable metal and it can be used in different forms, such as particles, ions
absorbed or exchanged, in carrier salts, hybrid structures, composites, and alloys.
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• Copper can encapsulate nanoparticles as a thin sheath on a variety of metals as a
coating. These copper nanostructures or alloys can be easily prepared and handled.

Copper has a long history as antimicrobial metal. Today, more than 30 types of
copper-based proteins are existing in living organisms [33]. Though the use of copper and
copper-based alloys as an antimicrobial agent is for long period, the mechanism of the
effect of copper or copper ion to kill the bacteria is not fully understood to date. But it
is well agreed that the copper atoms or copper ions (exist in Cu+ or Cu2+) are the cause
for injury of a microbial membrane (stage I in contact killing) [31]. Copper can employ
toxic effects towards bacteria by different means: (a) By binding or blocking functional
groups in microbes. (b) by introducing essential copper ions or atoms in enzymes (c) by
involving chemical reactions that are toxic and harmful. The effect of these action/s leads to
damage of biological membranes and protein DNA, complications in the enzyme functions,
oxidative stresses, and cellular processes. One property of Cu is that it has a maximum
affinity for biological molecules, and hence it can dislocate other ions (atoms) from the
biological molecules. Cu occurs in either oxidized Cu2+ or reduced Cu+ state. Cu+ has an
attraction for thiols and thioether groups and Cu2+ attributes to preferred coordination to
imidazole or oxygen groups. These Cu2+ ions can contribute to a wide range of interactions
with proteins causing various biochemical reactions [34]. By considering the strength of
the copper ions as Lewis acids, one can easily understand the metal toxicity towards the
microbes [31].

Another approach for metal toxicity is oxidative stress. Here, metal damages the cell
by cellular oxidative stress damage. This means damage of microbes caused by plenty
of oxidants like oxygen ions, reactive oxygen species (ROS), and free radicals. Peroxide
groups are examples of ROS species. A certain amount of ROS is necessary for living
activity [35]. ROS are highly active and they involve in oxidation reactions with organic
molecules. Metals like copper, chromium, and iron are called redox-active metals. From
Fenton-like reactions kinetics [36], redox-active metals produce hydroxyl groups (OH*),
hydrogen peroxide (H2O2), and superoxide (O2

−) [33].
Fenton-like reactions are as below:

Cu2+ + H2O2 ↔ Cu· · ·OOH+ + H+

Cu· · ·OOH+ → HO2
. + Cu+

Cu+ + H2O2 → OH. + OH− + Cu2+

OH. + RH→ R. + H2O

Many works of literature state that contact killing is initiated by a very high local
concentration of Cu ions from the copper surface, causing high toxicity towards microbes
which leads to rupture of the cell membrane [33]. At the interface, copper-mediated ROS
generation occurs largely in the periplasm of Enterococcus Coli, subsequently, more ROS
generation and then cell destruction and degradation of plasmid and DNA chromosomes
occurs [37]. Copper ions can easily accept or donate electrons that lead to the chemical
reactions; hence, microbes are killed due to oxidation damage [38]. Copper ions cause
damage to the outer or/and an inner membrane that can lead to the outflow of intracellular
components like glutamate which affects cell apoptosis and potassium content [39]. Most of
the studies agree that the primary attack of copper is the cell membrane in bacteria [16,40].
The microbial membranes contain polymers with electronegative chemical groups that
serve as spots for the absorption of metal cations [41].

2. Strategies for Designing Antimicrobial Coatings
2.1. Antimicrobial Agent Release Coatings

Copper ions that are released from the copper coatings are treated as antimicrobial
agents. Using an energy-dependent mechanism, Cu compounds or copper ions released
from the surface are transported through the cell that kills both adhered and adjacent
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bacteria. The cell membrane becomes progressively porous due to the outflow of essential
cell content such as potassium, amino acids, nucleotides [41,42]. The antimicrobial activity
has been mostly recognized as the liberation of Cu ions from its surface. The release rate of
ions depends on the chemistry of Cu surfaces [43]. Literature reports that the ion release
is the driving force for the antimicrobial properties of the antimicrobial nanoparticles.
Copper ions released from the surface induce the production of the ROS that causes further
cell damage (see Figure 1) [33]. The release of ions affects the integrity of the bacterial
membrane, develops intracellular oxidative stress, which is nontoxic, resulting in the death
of the microorganisms [44]. There is an improvement in the antimicrobial activity by
the Cu oxide surface due to the significant release of Cu ions from the Cu oxide surface.
It’s reported that copper ions released by copper nanocoatings may attack the negatively
charged bacteria cell wall, causing rupture. Consequently, protein denaturation and cell
death follow [45–47].
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Figure 1. Event of the release of copper ion for coated copper surface during bacteria interaction.

2.2. Contact Killing

Copper can kill undesirable viruses and bacteria by doing physical contact with them
(see Figure 2a). Most of the studies agree that the primary target of attack of copper is the
cell wall in the bacteria [16,40]. This is attributed to the presence of polymers with highly
electronegative chemical groups (e.g., peptidoglycan, phospholipid, teichoic or teichuronic
acids, and lipoteichoic acid groups) on the bacterial membrane that serves as sites for
absorption of metal cations. The antimicrobial activity of the Cu ions is due to a positive
charge developing electrostatic attraction between the negatively charged cell membrane
of microbes with surfaces [41]. Microbes are killed on the copper within hours. Higher
copper concentration [48], higher room temperature [49], and higher relative humidity [50]
increase the efficiency of contact killing. Bacteria are sensitive to contact killing and various
mechanisms for microbe killing by copper and silver have been reported [33,51] Oxidation
Behavior of the copper makes more toxicity to bacteria in the contact killing mechanism.
The electrochemical phenomenon is well-studied for the copper surfaces [52]. The cell
membrane becomes progressively porous due to the outflow of essential cell content such
as potassium, amino acids, nucleotides as shown in Figure 2b. ROS are catalyzed by Cu
(II) complexes, which cause permanent cell damages by a variety of mechanisms such as
oxidative damage, lipid peroxidation, and inhibition of respiration (see Figure 2c) [53]. Cu
species leads to rapid DNA destruction and cell death (see Figure 2d) [54]. It appears that
there is a variation with respect to the key toxic principle that depends upon the system,
experimental conditions, and the bacteria under consideration [52]. A key activity in the
contact killing process seems to be the Cu ion release from the copper surfaces.
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Figure 2. Illustration on the events in contact killing (a) Breaking of the inner and outer membrane
(b) Damage by oxidation caused by the ROS (c) Deactivation of the essential enzymes (d) Destruction
of the deoxyribonucleic acid (DNA).

2.3. Anti-Adhesion/Bacterial Repelling

The adhesion and spread of bacteria on the surfaces of the materials and succeeding
biofilm growth creates challenges in healthcare settings (see Figure 3). Anti-adhesion coat-
ings benefit to prevent biofilm development using non-cytotoxic mechanisms. Mechanism
of microbial adhesion model can be described in two stages:
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Stage I: In this initial stage, the reactions are rapid and reversible that is governed by
non-specific physical and chemical interactions.

Stage II: Secondary “looking” stage involves species-specific physicochemical interac-
tions [55].

The design of antimicrobial coatings has been a long-lasting effort and several ap-
proaches have been undertaken to limit colonization of bacteria on the coated surfaces.
The development of superhydrophobicity surfaces can decrease the adhesion force be-
tween microbe and coated surfaces. Due to this, the bacteria will be easily removed before
the surface develops a thick biofilm [56]. Surface patterns observed in nature have been
the motivation source to generate artificial superhydrophobic (Repelling action) surfaces.
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Superhydrophobic surfaces inspired by the lotus leaf are attributed to the hierarchical mi-
cro/nanostructures leading to an anti-adhesive microbial surface [57]. Nie et al. proposed
that superhydrophobic surfaces increase the biocidal activity of copper coatings [58]. Zohra
et al. proposed a possible scheme for the bacterial biofilm development on the surfaces of
dental and bone repair devices and its treatment and prevention [59]. Important strategies
proposed for the development of antimicrobial surfaces presented in Table 1.

Table 1. Important strategies proposed for the development of antimicrobial surfaces.

Antibacterial Functionality Tested Examples Reference

Antibacterial agent
release Nanoparticles [33]

Copper oxides [45]

Contact killing

Inorganic

Zinc ion [60]
Copper ion [61]

Selenium ion [62]
Titanium dioxide [63]

Silver nanoparticles [64]

Organic

Enzymes [65]
Cytokine [66]

Signaling, inhibiting, and antimicrobial peptides [67]
Chitosan derivatives [68]

Coated or covalently linked antibiotics [69]
Other Non-antibiotic bactericidal substances [70]

Combined
Multilayer coatings [71]

Synergy material intensification [72]
Positively charged polymers [73]

Anti-adhesion/Bacterial
Repelling Anti-adhesive polymers [74]

Superhydrophobic surfaces [75]
Nanopatterned surfaces [76]

Hydrogels [77]
Smart Coatings Passive Nanostructured “smart” material [78]

Active Concept: Sensors conjoined to Nano containers [79]

3. Copper Coatings as Antimicrobial Surfaces

A surface that makes contact in real-time applications should be composed of Cu or
its alloys. The use of pure solid copper is expensive. Hence, Cu coatings are preferred
over bulk because of cost and the ability to manipulate the properties of the surface. The
properties of thin-film copper coatings mainly depend on four facets: (1) Use of correct
copper source, (2) transport of copper species, (3) condensation of the copper species
on the substrate, and (4) correct type of substrate. The nature of the coating is strongly
affected by the copper source (purity, shapes, etc.) and the substrate used (development of
residual stress, texture, etc.) [80]. There are multiple techniques available for the coating of
copper. Amongst them, Chemical vapor deposition (copper source is copper salt), Physical
vapor deposition (evaporation and condensation of the copper species), Electrodeposition,
Electroless (copper salt in aqueous medium) deposition, Sputtering, and Thermal spray
techniques (pure copper as copper source) are widely used methods for depositing the
copper. Not only an optimum deposition method is identified, but also, it is important to
develop a Cu coating with increased physicochemical and high antimicrobial properties.
Ideally, the copper-coated surfaces should be permanent (i.e., not peeling), not wearing
out, and work under hospital conditions. Functional properties of the coating depend on
parameters, like deposition temperature, rate of deposition, deposition environment, the
distance between the source and the substrate. In this review, a study on the influence of
process parameters affecting antimicrobial performance is also presented. The advantages
and disadvantages of different coating routes for copper deposition which could affect the
antimicrobial activity are represented in Table 2.
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Table 2. Advantages and disadvantages of different coating routes for copper deposition which
could affect the antimicrobial activity.

Technique Advantages Inconveniences

Thermal Spraying
Low cost

High deposition rates
Excellent adhesion strength

High temperature induces
decomposition, oxidation of Cu

could affect the antimicrobial
activity.

The line of sight technique leads to
nonuniformity

Amorphous coatings due to rapid
cooling

Interface separation and spalling of
coating between the coating and

substrate

Electrodeposition

Uniform distribution of coating
Simple technique

Can easily tune the coating
morphologies

Can operate at low temperature
The coating is possible for highly

complex objects
Controlled nanoporous coatings

Low tear strength
Poor adhesion

Surface pretreatment required to
deposit Cu on metal substrates
Alkaline and acidic baths suffer
environmental disposal issues

Electroless
deposition

Simple process
Low temperature

Coats highly irregular objects

Coating pure Cu is difficult
Limited salts for Cu plating

Physical vapor
deposition

Less prone to crack formation
Thin layers

More adherent than thermal spray

Expensive method
Difficulty producing nanoporous

coatings

Chemical vapor
deposition

Can easily control precursor
concentrations to fabricate

functionally graded coatings

Expensive method
The use of volatile gases cause the
formation of contamination on Cu
surfaces that could reduce the rate

of bacteria-killing
Limited coating composition

Sputtering

Homogenous coating
Uniform coating on flat substrates

High adhesion
Dense deposits

Expensive technique and
time-consuming

Line of sight issues
Amorphous coatings

3.1. Thermal Spray Techniques

Traditionally, thermal spray coatings are widely used as protective coatings. However,
antimicrobial coatings include deposited coatings which have an active, integrated, and
new functionality beyond the traditional coatings. Antimicrobial coatings are developed to
attend to its functionality, for instance, its capability to kill bacteria or prevent infections on
the touch surface applications. Tremendous efforts are carried out to control the infections
from hospital touch surfaces, both towards the elimination of bacterial activity as well
as preventing their colonization. Thermal spray techniques are a convenient practice for
obtaining copper coatings, which involves the development of the thick copper coatings
(approximate thickness range 20 µm to several mm) with good corrosion and high adhesion
and minimum wear with low cost [81]. The metallic and non-metallic materials in the
form of wire, powder, and rod are heated up to their molten or semi-molten state and then
a high jet is used to impart kinetic energy to the molten particles. The resulting molten
droplets or particles are accelerated towards the prepared substrate. Those molten particles
flow into thin lamellar particles adhering to the substrate surface and rapidly cool down
to form a solid splat. They form adhesive bonds with the substrate and cohesive with
each other. Many process parameters need to be optimized to produce proper coatings
for antimicrobial applications. They are shown in Figure 4. [82]. The most commonly
used thermal spray techniques are: (a) Plasma spraying, (b) Wire arc spraying, (c) Flame
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spraying, and (d) Kinetic or cold spraying. The microstructure of thermally sprayed
copper coatings depends on several factors such as the initial particle size, the individual
impact velocity, impingement angle, and the Cu powder microstructure [83]. A typical
microstructure of the thermal sprayed coating is as shown in Figure 5.
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The plasma spray technique uses direct current arc or radio frequency discharge as
a thermal source required for the deposition process. The elevated temperature at the jet
core (~14,000 K) produces high proportions of particles melted and it gives rise to excellent
deposition characteristics like coating density, bond strength, and less porosity compared
to other thermal spraying techniques [84]. Vacuum plasma spray (VPS) coatings (<100 Pa)
are developed to reduce the detrimental effects like oxidation and undesired contamination
in the coatings [85]. Vacuum spray coatings offer better columnar structure and increased
deposition rate compared to the conventional PVD.

In wire arc spraying, two consumable conductive wires are fed automatically between
which a direct electric current arc is established at the wire tip in an atomizing gas stream.
Immediately, the material gets molten and the molten metal is accelerated towards the
substrate surface by the stream of atomizing gas. The type of spray gas (such as compressed
air or nitrogen) used as atomizing gas describes the oxide content and also influences the
hardness of the coatings [86]. The adhesion strength to the substrate is the essential criterion
deciding the quality of thermally sprayed coatings. Two criteria required to achieve good
bond strength between the coatings and the substrate are:

(a) The particles must be in a fully molten state.
(b) They should possess sufficient velocity [87,88].

Potential benefits of the twin wire arc method are (i) less expensive thermal spraying
process and (ii) capability to produce dense coatings with excellent deposition rate. The
cold spray technique involves the transmission of high kinetic energy into the feedstock
particles, which results in strong bonding upon impingement at the target surface. This
technique utilizes pressurized gases with helium and nitrogen [89]. Cold sprayed coatings
exhibit better metallographic features, show dense coating with the absence of pores and
oxides. The cold sprayed technique has low thermal influence and this method can use feed
materials, like nanocrystalline materials, oxidation sensitive, and metastable materials [83].
A comparative study has been carried out for the copper coatings developed by wire arc
spray (moderate speed, molten/heat-softened), cold spray (high speed, kinetically de-
posited solid-state powder particles), and plasma spray for antimicrobial applications [90].
Powder spray techniques exhibited the significance of the deposited structure. The cold
spray technique demonstrated greater antimicrobial potential as compared to wire arc spray
and plasma spray due to high dislocation density and enhanced ionic copper diffusivity
offered by the higher impact velocity of the sprayed particles (see Figure 6) [90]. The dense
microstructure, greater thickness, and low porosity coatings developed by using the cold
gas spray technique presented the improved antimicrobial efficacy against Staphylococcus
aureus with complete mortality of the bacteria after a time interval of 10 min [91]. Copper
coatings on carbon steels showed excellent corrosion resistance when immersed in chloride
solution for 1100 h [92]. The characteristics of the twin wire arc sprayed Cu coatings (such
as increased surface roughness, enhanced surface free energy, minimal contact angle, and
materials characteristics such as chemical composition and ultrafine grain microstructure,
lattice defects, and specific oxygen species) determine the efficiency of antimicrobial activity
of the surfaces against ATCC 25922 Escherichia coli and ATCC 292133 Staphylococcus aureus
pathogens. In spray techniques, the microstructure growth of the deposit will be influenced
by the solidification behavior [93]. A study of antimicrobial activity of copper, copper
alloy (CuNi35, CuSn10) and copper composite (CuTiO210) coatings on the stainless steel
formed by plasma spray technique confirm that the satin finishing of the coated surfaces
developed for protective applications has a beneficial effect of antibacterial activity [94].
A comparative study on microstructure, adhesion strength, microhardness, and elastic
and plastic response of the copper and the copper alloy (Cu4%Sn, Cu17%Al 1%Fe1 and
Cu17%Ni 9.6Zn) coatings on the 316 stainless steel substrates developed by wire arc spray
technique has been carried out [95]. Rough and cold sprayed surfaces are having more
noticeable antimicrobial activity than that of the plasma/wire-arc sprayed Cu surfaces [96].
Copper coatings deposited on the stainless steel (Type 316) by wire arc spray method
revealed excellent antimicrobial behavior (97% after 6 h) which is attributed to the presence
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of ultrafine grains, micropores, and crystallographic defects [97]. Nanosized particles
exhibit better biological and chemical activity, hardness, electrical conductivity and possess
enhanced active surface area in comparison with micrometer-sized particles. The microbial
effectiveness of the Cu nanoparticles is related to their size and high surface-to-volume
ratio. CuO nanoparticles produced by using thermal plasma technology were efficacious
in enhancing antimicrobial activity [45].

In the case of the flame spray technique, combustion of fuel gases or liquid fuel in the
presence of oxygen is used to melt the spray coating material. The combustion produces
expanding gas flow at a pressure close to 1 MPa and passes through a converging and
diverging nozzle. It creates the required jet to accelerate the material towards the targeted
surface. The typical operating temperature for the flame spray technique is around 3000 K
and the jet velocity at the entrance of the barrel is up to 100 m/s. The feedstock material
in the form of powder is injected into the gas stream. However, based on the variations
in the requirement of the coatings, several variations are developed. Different techniques
are detonation Gun (D-Gun) spraying, high-velocity oxy-fuel spraying (HVOF), high-
velocity air fuel spraying (HVAF), suspension/solution high-velocity oxy-fuel spraying
(SHVOF). Wire high-velocity oxy-fuel (W-HVOF) technique is employed to produce copper
coatings on low carbon steels with thickness below 40 microns through wire feedstock
rather than using an expensive powder. A systematic structural and microstructural study
was carried out using SEM and XRD to understand the surface and cross-section of the
coatings. Optimization of process parameters concerning mechanical properties of the
copper coatings is well briefed [98]. However, in context to antimicrobial applications, the
copper deposits produced from thermal spray techniques are not explored much.
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3.2. Electrodeposition Techniques

The electrodeposition of copper and copper-based alloys is over 176 years old; the
first activities being stated in 1842 (Faraday’s Laws of Electrolysis in 1834). Copper is
the commonly electrodeposited metal for use in different applications. As a process,
electrodeposition uses electric current as the source of energy and the current passes
through a closed electrochemical circuit. As a result, deposition of the anodic species (metal
ions to be deposited) occurs on to the cathodic metal substrate. The copper plate used as
sacrificial anode helps in supplying constant metallic ion density in the electrolytic solution



Metals 2021, 11, 711 12 of 27

and the component to be coated is connected as the cathode. Electro dissolution takes place
at the anode, whereas electrodeposition takes place at the cathode (see Figure 7a).

The electrolytic bath contains the metal ion source as the copper salt in the electrolyte.
Grain refiners, hardeners, brighteners, buffering agents, and leveling agents are other
additives. By varying the process parameters such as pH, current density, bath composition,
bath temperature, and deposition time, properties of the coating namely, morphology,
composition, crystal size, crystal orientation, residual stress, etc. may be controlled. Most
of the literature reported that the copper coatings could be electroplated from different
standard baths. These baths could be cyanide or non-cyanide in nature. Non-cyanide baths
include sulfate bath, phosphate bath, and chloride bath. Recently, electrodeposited copper
coatings have proved their antimicrobial functionality [99].

Advantages of the electrodeposition technique are easy control of the coating thickness,
ability to deposit on the complexes shapes, economics, and feasibility of alloy deposition,
low operating temperature, and deposition of the non-equilibrium materials. Recent
investigation has highlighted electroplating as an attractive approach for the preparation
of nanostructured coatings due to its cost-effective and less equipment-intensive method.
The copper nanoparticles were successfully electroplated on the stainless steel substrate
using pure acidic copper sulfate solution. Cyclic voltammetry and chronoamperometry
methods revealed information on the nucleation and growth kinetics of the copper coatings
on the stainless steel. The density of copper nuclei, particle size, and surface area is
highly influenced by the deposition time [18]. Augustin et al. investigated the effect
of current density during copper electrodeposition on the aluminum metal substrate on
microstructure, hardness, and wettability of the textured copper coatings for antimicrobial
application.The formation of nanocrystals in copper coatings causes improvement in the
scratch resistance and the surface microhardness (see Figure 8a–d) [100].

Metals 2021, 11, x FOR PEER REVIEW 11 of 28 
 

 

In the case of the flame spray technique, combustion of fuel gases or liquid fuel in the 
presence of oxygen is used to melt the spray coating material. The combustion produces 
expanding gas flow at a pressure close to 1 MPa and passes through a converging and 
diverging nozzle. It creates the required jet to accelerate the material towards the targeted 
surface. The typical operating temperature for the flame spray technique is around 3000 
K and the jet velocity at the entrance of the barrel is up to 100 m/s. The feedstock material 
in the form of powder is injected into the gas stream. However, based on the variations in 
the requirement of the coatings, several variations are developed. Different techniques are 
detonation Gun (D-Gun) spraying, high-velocity oxy-fuel spraying (HVOF), high-velocity 
air fuel spraying (HVAF), suspension/solution high-velocity oxy-fuel spraying (SHVOF). 
Wire high-velocity oxy-fuel (W-HVOF) technique is employed to produce copper coatings 
on low carbon steels with thickness below 40 microns through wire feedstock rather than 
using an expensive powder. A systematic structural and microstructural study was car-
ried out using SEM and XRD to understand the surface and cross-section of the coatings. 
Optimization of process parameters concerning mechanical properties of the copper coat-
ings is well briefed [98]. However, in context to antimicrobial applications, the copper 
deposits produced from thermal spray techniques are not explored much. 

3.2. Electrodeposition Techniques 

The electrodeposition of copper and copper-based alloys is over 176 years old; the 
first activities being stated in 1842 (Faraday’s Laws of Electrolysis in 1834). Copper is the 
commonly electrodeposited metal for use in different applications. As a process, 
electrodeposition uses electric current as the source of energy and the current passes 
through a closed electrochemical circuit. As a result, deposition of the anodic species 
(metal ions to be deposited) occurs on to the cathodic metal substrate. The copper plate 
used as sacrificial anode helps in supplying constant metallic ion density in the electrolytic 
solution and the component to be coated is connected as the cathode. Electro dissolution 
takes place at the anode, whereas electrodeposition takes place at the cathode (see Figure 
7a). 

 
Figure 7. A schematic diagram for (a) the Electrolytic deposition process (b) the Electroless deposi-
tion process. Simplicity, economic and easy adaptability of both processes can attract many indus-
tries. 

The electrolytic bath contains the metal ion source as the copper salt in the electrolyte. 
Grain refiners, hardeners, brighteners, buffering agents, and leveling agents are other ad-
ditives. By varying the process parameters such as pH, current density, bath composition, 
bath temperature, and deposition time, properties of the coating namely, morphology, 

Figure 7. A schematic diagram for (a) the Electrolytic deposition process (b) the Electroless deposition
process. Simplicity, economic and easy adaptability of both processes can attract many industries.



Metals 2021, 11, 711 13 of 27

Metals 2021, 11, x FOR PEER REVIEW 12 of 28 
 

 

composition, crystal size, crystal orientation, residual stress, etc. may be controlled. Most 
of the literature reported that the copper coatings could be electroplated from different 
standard baths. These baths could be cyanide or non-cyanide in nature. Non-cyanide 
baths include sulfate bath, phosphate bath, and chloride bath. Recently, electrodeposited 
copper coatings have proved their antimicrobial functionality [99]. 

Advantages of the electrodeposition technique are easy control of the coating 
thickness, ability to deposit on the complexes shapes, economics, and feasibility of alloy 
deposition, low operating temperature, and deposition of the non-equilibrium materials. 
Recent investigation has highlighted electroplating as an attractive approach for the 
preparation of nanostructured coatings due to its cost-effective and less equipment-
intensive method. The copper nanoparticles were successfully electroplated on the 
stainless steel substrate using pure acidic copper sulfate solution. Cyclic voltammetry and 
chronoamperometry methods revealed information on the nucleation and growth kinetics 
of the copper coatings on the stainless steel. The density of copper nuclei, particle size, 
and surface area is highly influenced by the deposition time [18]. Augustin et al. 
investigated the effect of current density during copper electrodeposition on the 
aluminum metal substrate on microstructure, hardness, and wettability of the textured 
copper coatings for antimicrobial application.The formation of nanocrystals in copper 
coatings causes improvement in the scratch resistance and the surface microhardness (see 
Figure 8a–d) [100].  

 
Figure 8. (a) Bright-field TEM micrographs of copper nanocoatings deposited at j = 2 Adm−2 (b) crystallite distribution of 
features presented in Figure 8a, (c) Bright-field TEM micrographs of copper nanocoating are deposited at j = 10 Adm−2 (d) 

Figure 8. (a) Bright-field TEM micrographs of copper nanocoatings deposited at j = 2 Adm−2 (b) crystallite distribution of
features presented in Figure 8a, (c) Bright-field TEM micrographs of copper nanocoating are deposited at j = 10 Adm−2

(d) Crystallite distribution to Figure 8c. (Reproduced with permission from ref. [100] copyright 2016, Journal of the
Mechanical Behaviour of Biomedical Materials).

Extensive research work has been carried out on the effect of current density, the role
of the complexing agents, and the bath chemistry to understand morphology change and
grain refinement of the electrodeposited copper [101–107]. EDTA solution consisting of
0.01 M Cu2+ ions with a pH = 8 was used to deposit Cu on the stainless steel substrate at
−1.1 V vs. Ag/AgCl for 15 min. A high percentage of Cu, uniform coating, high surface
roughness, and nanosized structures in the coatings play a major role in the contact killing
of bacteria [108]. The reason for the poor adhesion of the copper coatings on the mild
steel substrate from acid and non-cyanide electrolytes is due to the contact exchange of the
copper ions-iron pair. In an acid electrolytic medium, the large value of current exchange
causes poor adhesion. In the case of non-cyanide electrolytes, iron is passivated. Hence,
adhesion between the substrate and the coating is insufficient because of the presence of
a separate passive film at the substrate [109]. Response surface methodology (RMS) is
utilized to predict and tune the process parameters to improve the adhesion strength of
the substrate made of austenitic stainless steel. The modeling approach is used to tune the
process parameters to obtain maximum adhesion strength of 10 N [110].
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Marco Zeiger et al. investigated the influence of electrodeposited Cu surface on the
performance of contact killing of E. coli. It was proved that the copper coatings prepared by
electrodeposition killed bacteria rapidly than the copper surfaces prepared by other coating
techniques. Electroplated copper surfaces enhanced the release of ionic copper compared
to the coatings prepared by using other methods. Copper ions released by the coupons
into the aqueous phase could be measured by using atomic absorption spectroscopy
(AAS) [111]. Higher current density attributes multiple layers of copper nodules having
enhanced amounts of defects, like dislocations, twins, and stacking faults. The structural
details of the electrodeposited copper coatings were studied by using TEM and nodules
have fine crystallites in the range of 60 nm [112]. If the substrate is changed, surface
properties such as resistivity, surface energy, corrosion-resistant behavior, and residual
stress of the electroplated Cu will also be modified.

Crystal shapes, structure, the energy of the electrodeposited copper coatings primar-
ily control the electrochemical, mechanical, and tribological characteristics. Nucleation
and growth mechanism of the electrodeposited pure Cu from the acidic CuSO4 bath is
reported [113] and to alter the topography, the microstructure and grain refinement, the
role of surfactants and ligands in acidic and non-cyanide baths have been studied [114].
The surface morphology of the electroplated copper varies with overpotential value irre-
spective of the chosen substrate. Lower overpotential favors growth in a layer-by-layer
fashion, whereas higher overpotential promotes potential dendritic growth followed by
multi-directional growth, similar to that of a cauliflower. Type of the substrate played a
key role in the deposited crystal shape [115].

Constant research being focused on the improvement of property of the electrode-
posited coatings for any given application. However, pulsed electrodeposition, periodic
reverse, and asymmetric alternating current plating techniques have promised their poten-
tial characteristics for functional coatings. In pulsed electrodeposition, a series of pulses of
either potential or current is alternated between different values. Pulses are equal in magni-
tude, duration, and polarity separated by zero current (see Figure 9) This favors nucleation
of fresh grains and also attributes an increase in the number of nuclei per unit surface area.
They give better properties of coatings compared to conventional electrodeposited coatings.
It is possible to control the thickness of the film in the atomic scale and composition of the
coating by controlling the pulse parameters [116].
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3.3. Electroless Plating

Electroless deposition is also known as autocatalytic or chemical plating. It is a non-
electrolytic method involving several parallel reactions in an aqueous plating solution
without using an electric potential. A simultaneous reducing and oxidizing reaction in
solution causes spontaneous deposition of films on conductive and/or non-conductive
substrates. Typical copper plating solution consists of metal ions (Cupric salts such as cop-
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per chloride, copper sulfate, and copper nitrate), a stabilizer, or additives like complexing
agents and reducing agents. Minimum necessary components of electroless deposition
bath are the source of metal ions and reducing agents. In general, electroless deposition of
copper is characterized by the reduction of Cu metal ions on the substrate immersed in a
bath of an aqueous solution of the copper metal ions. Commonly used reducing agents in
electroless copper deposition baths are formaldehyde, dimethylamine borane, borohydride,
hypophosphite, hydrazine, sugars (sucrose, glucose, etc.), and dithionite [77]. Formalde-
hyde is used in traditional electroless copper plating as the reducing agent due to its ability
to facilitate good quality of deposits. Though, formaldehyde results in a combination of cost
and effectively coated surfaces, it suffers from limitations like environmental and health
concerns. Electroless plating is slower and expensive process compared to electrolytic
deposition [117]. Alkaline amines (encouraging faster plating rate,≥2 µm/20 min), tartrate
salts (encouraging lower plating rate, ≥0.5 µm/20 min), ethylenediaminetetraacetic acid
(EDTA) (for controlled plating rate and grain structure) are commonly used complexing or
chelating agents for the copper electroless plating [117].

Half-cell reaction for electroless plating of copper (II):

Cu2+ + 2e− → Cu

HCOO− + 2H2 + 2e− → HCHO + 3OH−

The net reaction could be written as,

Cu2+ + 2HCHO + 4OH− → Cu + 2HCOO− + 2H2O +H2

The stability of the process fully depends on the substrate material. The actual re-
duction reaction of the metal takes place when an appropriate pre-treated surface is made
available. Surface properties of the electroless copper plated materials depend on the
plating bath composition/constituents, pH of the bath, deposition time, and deposition
temperature. Extensive research work has been completed on the role of additives in the
electroless deposition of copper [118]. Additives are used to improve the film morphology
by controlling the plating rate. Additives can enhance or diminish the deposition rate
resulting in simultaneous modification of physical properties [119,120]. Enhanced mechan-
ical bonding increases adhesion between the EL coating and the substrate. Microstructural
growth and bonding mechanism starts with the formation of globules in nano-size range
on certain preferred location (nucleation stage) and then develop laterally to cover the
whole surface along thickness direction with high uniformity (growth stage) [121]. The
microstructure developed by electroless deposition is columnar as shown in Figure 10 [112].
Also, multiple crystallites are existing within columnar grains. Deposition temperature and
pH of the plating solution affect the color of the coating and deposition rate. Increasing de-
position temperature results in an increase in deposition rate. Thus, improved morphology
is possible and crystal growth becomes stable with a decrease in internal stress. An increase
in plating bath temperature attributes better adhesion strength [122]. S. aureus exhibited
lower resistance compared to E. coli against copper nanoparticles prepared by electroless de-
position [123]. Compared to electrodeposition, the morphology of the electroless deposited
copper surfaces have a homogenous, dense, and bright appearance irrespective of the
bath parameters and the substrate [118]. Yet, the contact killing mechanism and microbial
activity phenomenon on the electroless Cu deposits are still not understood. The major
advantage of electroless and electroplating with the coating techniques for antimicrobial
touch surface applications is the existence of large-scale commercial plating outfits.

3.4. Chemical Vapor Deposition

Chemical vapor deposition (CVD) coatings have successively acquired broader scope
with importance on the deposition aspects for fabricating functional semiconducting and
antimicrobial coatings with enhanced surface properties. In chemical vapor deposition
(CVD), the heated substrate surface is exposed to gaseous molecules (used as volatile pre-
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cursors). It reacts chemically and decomposes on the substrate (wafer) surface to produce a
thin coating or stable solid layer in an activated environment (heat, light, plasma). At the
same time, volatile by-products are formed. They are removed by the flow of gas through
the reaction chamber (see Figure 11). There are two distinct varieties in CVD: (a) Heteroge-
neous CVD, where, the reaction takes place very near to the surface of the substrate and
reacting species is directly deposited on the substrate surface. (b) Homogeneous CVD,
involves a homogenous gas-phase reaction, where gaseous molecules will get transported
to the substrate surface and get deposited. The chemical reaction of the gas molecules takes
place in the presence of inert carrier gas and it helps in controlling the reaction rate.
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Figure 11. Schematic diagram of the chemical vapor deposition process.

The major factors that affect the morphology and surface properties of the coatings
are substrate temperature, presence of the carrier gas, the velocity of the gas flow, and type
of precursor used (see Figure 12). In CVD, coatings can be prepared in hot wall reactors or
cold wall reactors operating above atmospheric pressure, with or without carrier gasses and
temperature ranging from 200 ◦C to 1600 ◦C. Several reactions such as oxidation, reduction,
hydrolysis, pyrolysis and a combination of these can occur in a CVD process. Reasonably,
CVD allows uniform coating on any substrate surface at once, on both sides of the substrate
surface or substrate of large size and/or complex shape. In contrast, sputtering and PVD
can deposit the substrate surface which is directly placed in front of the PVD source due to
the nature of the line-of-sight deposition process [124].

Copper acetylacetonate and copper hexaflouroacetyleacctonate (Cu(hfac)) are com-
monly used precursors for copper deposition [125,126]. Accurate control and monitoring
are required on deposition process parameters to produce quality coatings. Coating-
substrate adhesion strength issues could be addressed by avoiding surface contamination,
the attack of corrosive unreacted precursors, and/or formation of by-products [127]. Mi-
crostructural growth of the CVD coatings depends on two mechanisms: (a) Surface kinetics
(b) mass transport. Usually, the CVD technique employing higher deposition temper-
atures and lower deposition rates imposes limitations on the kinetics of grain growth,
consequently yield coarser grain size with lattice distortion. The columanr-equiaxed,
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nodular, smooth and uniform morphology was obaserved in Cu coatings deposited by
CVD using Cu amidinate [128] and hexafluoroacetylacetonate (Cu(HFAc)2) precursors.
However, deposition temperature and concentration of reactive species (supersaturation)
affect the nucleation and growth kinetics. The concentration of reactive species is affected
by the partial pressure of the active gaseous species and total pressure in the reactor.
Larger grain sizes in CVD (compared to PVD) lead to coarser morphology as a function
of thickness [129]. Thin Cu-SiO2 films developed on the glass substrate by flame-assisted
chemical vapor deposition (FACVD) were evaluated against a variety of highly resistant
strains including Escherichia coli, Pseudomonas aeruginosa (d). Staphylococcus aureus and
Vancomycin-resistant Enterococcus fascism. SEM results exhibited nanostructured coatings
within the silica matrix, which enhances the antimicrobial activity. Cu-SiO2 coatings can
also be deposited on the substrates like metals and ceramics and demonstrate potential
applications in antibacterial environments [130]. The high antimicrobial effectiveness of
the Cu2O films than that of the pure Cu films was proved against Staphylococcus aureus (S.
aureus) and E. coli. The Cu2O and pure copper films were deposited via aerosol-assisted
CVD using Cu(NO3)2 as a precursor [131]. The development of superhydrophobic antibac-
terial Cu-coated polymer films via aerosol-assisted CVD showed a tremendous reduction
in bacterial cell adhesion as compared to the control [132].
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Figure 12. Sketch showing coating property correlation with chemical vapor deposition (CVD)
process parameters.

A commercial limitation of the CVD coatings for antimicrobial application is that the
complex and large-size components cannot be coated easily. Nevertheless, the high purity,
the robust films imparted by CVD have found applications in certain components such as
sanitary valves and food processing products which are non-regular in shape, are small,
and exhibit enhanced wear.

3.5. Physical Vapor Deposition

This involves thermal evaporation and condensation. Vaporized copper atoms (from
solid copper) are allowed to deposit over the substrate without colliding with the residual
gas molecules. Electric current as a source of energy is utilized (through filament) to
vaporize solid copper kept in a crucible made of refractory material. The copper evaporates
and vapor flux is directed outward and condenses on the sample kept in the line of sight.
Components are to be deposited are enclosed in the vacuum chamber. The pressure level
inside the vacuum chamber decides the vaporizing temperature.
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Simple and inexpensive PVD has a couple of serious limitations: First is physical
vapor deposition is a line of sight of the process and hence maximum coating thickness may
be reached at the line of symmetry and thickness is reduced rapidly as one would go away.
By modifying the geometry of the copper source, introducing a high vaporization rate by
promoting collision between vaporized copper atoms, and the use of proper shutter plates,
some of these limitations could be partially overcome. The second is due to differences
in the values of coefficient of thermal expansion, difficult to handle the evaporating Cu
sample in the crucible.

Physical vapor deposition is a line of process, if the substrate has a complex geom-
etry, there will be geometrical shadowing and some portion of the component would
be improperly covered (see Figure 13a,b) [133]. Deposition of the copper via thermal
evaporation is a cost-effective and fast method. In contrast, reported literature on PVD
(thermal evaporation and condensation) for copper deposition is relatively less due to
the process difficulties involved in melting and evaporating high conducting metal like
Cu. Arresting the dislocation motion is the key source of strengthening Cu thin films.
To enhance the mechanical strength to a larger extent, introducing defects in the form of
precipitates and grain boundaries has proven to be effective. Also, twin boundaries act
as barriers to the motion of dislocations. High-strength Cu films could be deposited by
tailoring twin boundaries [112,134]. The ratio of the substrate temperature to the melting
temperature of deposited metal significantly affects the microstructure and properties of
the coating. Nanocrystalline films could be produced from low substrate temperature using
vapor deposition [135]. The physical and chemical condition during the PVD reaction
can strongly affect the morphology, composition, residual stresses of the coatings [136].
During E-beam PVD, the substrate temperature and morphology of the film are two critical
problems impacting the behavior of the film [137].
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3.6. Sputtering Technique

Coated copper touch surfaces are getting a significant role in health care settings due
to their proven antimicrobial activity acquired during hospital-acquired infection. From an
economic point of view, the copper-coated element must be cheaper compared to the iden-
tical element made using bulk copper or any other antimicrobial material. The sputtering
technique is one important route for copper coating, offering considerably improved func-
tional properties than the thicker coatings fabricated using other techniques [138]. Sputter
deposition is a type of physical deposition process wherein, the copper (pure copper or
copper alloy) target (cathode) is bombarding with energetic Ar+ particles. Subsequently,
the neutral copper atoms, copper ions, cluster of atoms, free electrons are knocked out from
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the target material. This process is called sputtering. A widely used bombarding species is
argon ions. Those sputtered atoms are in turn deposited on the substrate (anode surface)
due to momentum. The coating material is allowed to reach the vapor phase, without
altering its chemical compositions (see Figure 14) [139].
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Sputtering uses high energy sources, like DC voltage, magnetic field (magnetron),
radio frequency (RF) to convert gas into plasma. The positive gas ions in the plasma get
accelerated towards the target and erupt the copper particles eventually on the substrate.
The most promising properties of the sputtered copper coatings like thickness, structure
and morphology, hardness, and texture could be controlled by varying important process
parameters like the pressure inside the chamber, voltage, distance between the substrate
and the target, deposition time, and target current. Different types of sputtering are (a)
magnetron sputtering, (b) RF sputtering, (c) ion-assisted deposition, and (d) pulsed laser
deposition. In real-time use, DC magnetron and/or RF magnetron combinations give good
deposition rates and high-quality deposits [140]. The durability of coatings is affected by
the lower value of the adhesion bond between the copper film and the substrate. This is due
to rich oxide layer formation on the substrate material when exposed to the environment
before coating. Efforts are made on improving the adhesion strength of DC magnetron
sputtered coatings. There is an improvement in the adhesion properties and structure of
the sputtered copper thin films deposited on the pre zinc layer [140]. The antibacterial
efficacy of copper-based TiN films deposited on stainless steel substrate processed using
dual magnetron sputtering was studied [141].

Nanostructured coatings exhibited enhanced hardness and thermal stability at the
nanolayers [142]. The improved bacterial killing rate has been reported for nanostructured
coatings. The sputtered copper layer thickness range of 35 nm to 150 nm was confirmed
from 4.6 min to 16.3 min of sputtering of copper on glass substrate below the 5 × 10−5 Torr
of partial pressure of the sputtering chamber [143]. The mechanical stability of alloy films
deposited from the sputtering technique needed to be addressed against Gram-positive and
Gram-negative strains [144]. Nanostructured copper coatings successfully deposited on
tantalum substrate for effective killing of Staphylococcus aureus and E. coli [145]. Magnetron
sputtering is becoming a rather established technique and is now applied at the industrial
level to produce hard coatings on the tools, functional coatings, and decorative treatment
of the surfaces. Comparision between thermal spray, electrodeposition, electroless plating,
CVD, PVD-sputtering and PVD- EB depostion is given in Table 3.
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Table 3. Comparison between thermal spray, electrodeposition, electroless plating, CVD, physical vapor deposition (PVD)—sputtering, EB-PVD deposition routes.

Deposition
Method

Ideal Process Parameters for Cu
Deposition

Substrate Heating (◦C)
and Substrate Preparation

Coating Rate and
Coating Thickness

Type of Adhesion Bonding
and Surface Roughness

Typical Microstructure
for Antimicrobial

Application

Thermal SprayTechnique
[90–98]

Plasma Arc: Temperature: 1500–2500 ◦C
Velocity: 100-400 m/s

Porosity: ~5%
Oxides: ~2%

Wire Arc: Temperature: 1500–2500 ◦C
Velocity: 50–100 m/s

Porosity: ~10%
Oxides: ~15%

Cold Spray: Temperature: 150–400 ◦C
Velocity: 500–100 m/s

Porosity: ~10%
Oxides: ~15%

Flame spray: Temperature: 1010–1175 ◦C
Porosity: ~1%
Oxides: ~15%

Copper particles size is less than 20 µm with
99% purity for thermally sprayed coatings.

Usually ~10% of Copper
melting temperature

Carbon steel, Stainless steel
widely used substrates for
antimicrobial applications.

>100 µm/min
Approximately

Coating thickness:
30 µm–300 µm

Mechanical
Interlocking and

Very rough coatings,
higher bacterial killing rate.

Good adhesion strength
between substrate and

coating due to high surface
roughness of the substrate.

Deformed lamella

Electro
deposition
[99,100,102–

106,108,109,112,115]

Current density range: 1 Adm−2 to
10 Adm−2

High current density will lead to formation
of defects like nanotwins and staking faults
regions which could improve the hardness

of the coatings.
pH range: For acidic bath: 1.5 to 4

for alkaline bath 12 to 14

Cannot heat substrate while
deposition.

Stainless steel, Aluminium,
mild steel are the good

substrates for Cu
electrodeposition.

<0.05 µm/min
(<3 µm/h)

Thickness in the range
of 1 µm to

few microns.

Mechanical interlocking.
Surface contamination, oxide

layer on the substrate
decreases the adhesion

Strength.
Surface roughness depends
on substrate pre-treatment

Cu coatings shows
Columnar structures

and Nanograined
structures good for

antimicrobial activity

Electroless Plating
[118,122]

Coating time: Few minutes to hours.
Additives are commonly used in the bath to
refine the film morphology and deposition

rate.
Optimum bath temperature: 50 ◦C–80 ◦C
Higher the pH coating quality degrades.

Cannot heat
substrate while deposition.

Suitable substrates:
Aluminium, glass,

polymers, mild steel, and
stainless steel.

<0.03 µm/min
(<2 µm/h)

30 min to one hour
plating time required to

achieve >1 µm to few
microns thickness of Cu

coating

Mechanical interlocking
Smooth, dense, bright Cu

coatings irrespective of
substrate type.

Columnar-equiaxed,
Nano grained, uniform

thickness



Metals 2021, 11, 711 21 of 27

Table 3. Cont.

Deposition
Method

Ideal Process Parameters for Cu
Deposition

Substrate Heating (◦C)
and Substrate Preparation

Coating Rate and
Coating Thickness

Type of Adhesion Bonding
and Surface Roughness

Typical Microstructure
for Antimicrobial

Application

Chemical Vapor
Deposition (CVD)

[124,125,128,130–132]

Type of precursor used for Cu deposition:
Copper (I) amidinate [Cu(i-Pr-Me-AMD)]2,

hexafluoroacetylacetonate (Cu (HFAc)2)
Carrier gas: N2 gas.
Deposition time: 1 h

200 ◦C–500 ◦C
Suitable substrates:

Stainless steel, silicon, SiO2,
borosilicate glass

<0.08 µm/min
(<5 µm/h)

Coating thickness:
80 nm to 270 nm

Coating thickness:
40 nm

(100% antimicrobial
activity under 2 h)

Diffusion bonding

Columnar-equiaxed
nodular and smooth,
uniform morphology.
Morphology can be
tuned by substrate

roughness
and substrate heating
Columnar structure is
good for antimicrobial

activity

Electron Beam
Deposition-PVD

[134–137]

Vacuum level: 1.5 × 10−5 mbar
Source and substrate distance: 10 cm

Coating time: 1 h

RT to 1200 ◦C
(flexible)

Suitable Substrates:
Titanium, Aluminium,

Stainless steel, low
carbon steel

Deposition rate: 1 Å/s Diffusion bonding

Columnar-equiaxed,
Nano sized grains

Increases the surface
area—more beneficial

for antimicrobial
activity.

Sputtering Technique
[141–146]

Base pressure:
5 × 10−5 Pa to 1.3 × 10−4 Pa

Working pressure range:
0.012 mbar to 0.04 mbar
Mass flow rate of Ar gas:

Substrate rotation speed: Low speed
(100 rpm)

<600 ◦C
(flexible)

Suitable Substrates:
Titanium, Aluminium,

Stainless steel, low
carbon steel.

<0.08 µm/min
(<5 µm/h) Diffusion bonding

Columnar, uniform,
adherent coating

observed in the range of
50 W to 150 W
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4. Concluding Remarks and Future Perspectives

Recently, the antimicrobial coatings market has got increased demand in health care
applications. Copper coatings are being considered as materials with the highest likelihood
of success for antimicrobial activity. Many researchers have investigated the effectiveness
of copper and copper alloys as antimicrobial materials. Terms like deposition technique
and structural design are involved in the development of the coating process to obtain
cost-efficient functional products making them commercially available and attainable to
all types of market. The development of coatings and surfaces that can actively kill the
microbes is an important component of maintaining hygiene in the hospital environment
and various coating routes have proved the antimicrobial activity of copper surfaces. In
view of the excellent antimicrobial property of copper coatings, purity of copper, high
surface roughness, defects like nanotwins, stacking fault regions have increased the copper
ion release, beneficial for killing the microbes and improved hardness. There is strong
evidence that nanostructured copper coatings exhibited the highest toxicity to the bac-
terial membrane. Copper coatings developed by thermal spray, electroless deposition,
electrodeposition, PVD, CVD, and sputtering were effective in killing the range of microbes
involved in HAIs. Furthermore, the surface texture, nanostructure, and wettability na-
ture of coatings helped to understand the mechanism of antimicrobial activity. Typically,
columnar growth is found in copper coatings that could increase the rate of killing the
microbes. The homogenous, dense coatings showed improved antimicrobial activity than
the coatings with high porosity and non-uniformity. The limitation with copper deposition
by various coating methods is excessive copper is highly dangerous, the adhesion strength
of the coating to the substrate and in case electrodeposition and electroless deposition,
use of cyanide bath have waste management and water pollution issues. The influence
of metallurgical properties of the copper coatings on antimicrobial activity has not been
investigated. Industries and the research community can bring more research into retaining
the aesthetic nature of copper coatings without compromising the antimicrobial function-
ality. The life of the coating is most important. Long term performance of antimicrobial
coatings is not addressed in the laboratory studies. However, a big step has to be taken to
transform the experimental studies into the real market. More studies to be carried out on
the influence of process parameters increasing the efficacy of antimicrobial activity from
various deposition techniques and its commercial models. Also, antibacterial products
must be performed as a necessary upturn in human health. Designers should always think
about prospects to upgrade the surfaces to antimicrobial surfaces. These surfaces must not
be waxed, painted, lacquered, or varnished.
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