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Abstract: In this study, the acicular ferrite transformation behavior of a Ti–Ca deoxidized low carbon
steel was studied using a high-temperature laser scanning confocal microscopy (HT-LSCM). The in
situ observation of the transformation behavior on the sample surface with different cooling rates was
achieved by HT-LSCM. The microstructure between the surface and interior of the HT-LSCM sample
was compared. The results showed that Ti–Ca oxide particles were effective sites for acicular ferrite
(AF) nucleation. The start transformation temperature at grain boundaries and intragranular particles
decreased with an increase in cooling rate, but the AF nucleation rate increased and the surface
microstructure was more interlocked. The sample surface microstructure obtained at 3 ◦C/s was
dominated by ferrite side plates, while the ferrite nucleating sites transferred from grain boundaries
to intragranular particles when the cooling rate was 15 ◦C/s. Moreover, it was interesting that
the microstructure and microhardness of the sample surface and interior were different. The AF
dominating microstructure, obtained in the sample interior, was much finer than the sample surface,
and the microhardness of the sample surface was much lower than the sample interior. The combined
factors led to a coarse size of AF on the sample surface. AF formed at a higher temperature resulted
in the coarse size. The available particles for AF nucleation on the sample surface were quite limited,
such that hard impingement between AF plates was much weaker than that in the sample interior.
In addition, the transformation stress in austenite on the sample surface could be largely released,
which contributed to a coarser AF plate size. The coarse grain size, low dislocation concentration and
low carbon content led to lower hardness on the sample surface.

Keywords: low carbon steel; Ti–Ca deoxidation; transformation behavior; in situ observation; acicu-
lar ferrite

1. Introduction

The acicular ferrite formed in steel can be used in the technology called oxides metal-
lurgy, where the acicular ferrite can nucleate at the surface of oxide inclusion during the
transformation from austenite to ferrite. It is well known that the formation of acicular fer-
rite is strictly influenced by inclusion type, prior austenite grain size and cooling rate [1,2].
Intragranular acicular ferrite (AF) is known to provide an optimal combination of high
strength and good toughness, because of its refined structure with high-angle grain bound-
aries and high-density of dislocations [3,4]. Thus, the fine interlocking microstructure is
known to improve toughness in both the heat-affected zone (HAZ) or weld metal, and the
deoxidized high-strength low-alloy (HSLA) steel [3,5–7].

High-temperature laser scanning confocal microscopy (HT-LSCM) has been widely
used to study the phase transformation from austenite to ferrite and grain growth in
steels [8–11]. HT-LSCM is also an effective method to study inclusion-induced AF. Hana-
mura et al. [12] used this method to observe the nucleation of AF around inclusions and
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confirmed the thermodynamic calculation results by in situ observation in 1999. Thereafter,
Kikuchi et al. used HT-LSCM to investigate the microstructure refinement and deoxidation
inclusions in low-carbon high-manganese steels through Ti deoxidation [13–15]. Loder et al.
and Wen et al. reported in situ observations of AF formation in steels containing complex
oxides [9,16]. Zhang et al. explored the formation of intragranular AF in C–Mn steel with
different chemical compositions, austenite grain size and characteristics of inclusion using
HT-LSCM [17]. Wan and coworkers observed and investigated grain refinement of HAZ
in HSLA steels containing effective inclusion particles, [10,18]. Mu et al. discussed the
effects of the cooling rate, grain size, and inclusion composition on the ferrite fraction
and phase-transition temperature [8,19]. Wang et al. studied the nucleation and growth
of AF at different cooling rates in Ti-Ca-Zr deoxidized low-carbon steel [20]. Zou et al.
explored the nucleation and growth of ferrite laths in the HAZ of EH36-Mg shipbuilding
steel subjected to different heat inputs [21]. Moreover, intragranular ferrite growth kinetics
was systematically analyzed by in situ methodology [22].

HT-LSCM is an advantageous method for the direct study of AF transformation be-
havior. However, the results of HT-LSCM observations could only reflect the AF transition
on the surface of the HT-LSCM sample. The microstructure may be different between the
surface and interior of the HT-LSCM sample. So far, no such research has been carried out
according to the present literature. In order to clarify the difference between the in situ
observation of the sample surface and the phase transition in the sample interior, and to
better understand the AF phase transformation mechanism, the microstructure between the
surface and interior of the HT-LSCM sample, in a low C–Mn steel with effective inclusions
at different cooling rates, were characterized and analyzed.

2. Materials and Methods

Ti oxide showed distinct AF nucleating ability and received extensive research. In
addition, strong deoxidants such as Ca, Mg and Zr are usually added together with Ti to
achieve a dispersed distribution of fine-sized oxide. In the present research, low C–Mn steel
with Ti–Ca complex deoxidation was chosen for the inclusion-induced AF transformation
study. The experimental steel was melted in a 10 kg laboratory vacuum induction furnace.
Ti-Ca was added as FeTi30 and SiCa30 alloy into the steel liquid before casting. The
steel composition was shown in Table 1. Samples were taken from the cast ingot for
microstructure observation and inclusion analysis by a DM2500 M optical microscope (OM,
Leica Microsystems, Wetzlar, Germany) and an Ultra-55 scanning electron microscope
(SEM, Carl Zeiss, Jena, Germany).

Table 1. Chemical composition of the experimental steel, wt.%.

C Si Mn Ti Ca P S Fe

0.08 0.25 1.56 0.01 0.001 0.011 0.007 Bal.

The cast ingot was hot rolled into the steel plate and used for the subsequent experi-
ment. Round samples with a diameter of 6 mm and thickness of 3 mm were machined and
the top flat surface was mirror polished. The in situ observation was carried out on a LSM
510 Zeiss high-temperature laser scanning confocal microscope (LSCM, Carl Zeiss, Jena,
Germany). The samples were heated to 1300 ◦C and held for 1 min, then cooled to room
temperature with cooling rates of 3 ◦C/s, 6 ◦C/s and 15 ◦C/s, respectively. Transformation
behaviors on the top surface were recorded by the microscope. Afterwards, the sample
surface microstructures were observed before and after 4% nital etching. Furthermore,
the samples were cut in half as shown in Figure 1 and the matrix microstructures inside
the samples were also characterized by OM and electron backscattered diffraction (EBSD,
Hikari, EDAX-TSL, Draper, UT, USA). The characterization position was at the center as
circled in Figure 1. The macro Vickers hardness values for the top surface and inside the
sample were measured by a KB hardness testing machine (KB Prüftechnik, Hochdorf-



Metals 2021, 11, 699 3 of 14

Assenheim, Germany). The microhardness was tested by an FM-700 microhardness tester
(FUTURE-TECH CORP., Kawasaki, Japan). For comparison, the transformation-dilation
experiment was carried out on Formastor-FII full-automatic transformation equipment
(Fuji Electronic, Tokyo, Japan) using cylinder samples of dimensions Φ3 mm × 10 mm.
The thermal cycles were similar to that for LSCM.
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A sample was prepared from the upper part of the ingot and the optical microstructure 
was shown in Figure 2. The morphology was of an AF-dominating type. The prior aus-
tenite grain size was extremely large in the cast condition and the whole field of view in 
Figure 2 was even within one parent austenite grain. Coarse ferrite plates forming at 
higher temperatures extended to a long distance and divided the austenite grain into 
parts. Finer ferrite plates formed within the local regions during cooling. 
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anisms for inclusion-induced ferrite nucleation have been proposed including inert sub-
strate mechanism, thermal strain mechanism, element depletion mechanism and lattice 
matching mechanism [23,24]. For Ti-oxide, most research believed the Mn depletion zone 
(MDZ) mechanism was reasonable, which was formed by Mn absorption into Ti-oxide 
particles or MnS adhering precipitation [1]. The formation of MDZ caused a decrease in 
Mn content and an increase in transformation temperature, which promoted intragranu-
lar AF nucleation around the inclusion [25,26]. In addition, the driving force for ferrite 
formation, i.e., the Gibbs free energy change for γ→α, increased with a decrease in Mn 
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Figure 2. Optical microstructure of the as-cast steel.

The effective inclusion-inducing AF nucleation was characterized by SEM as shown
in Figure 3. The Ti-Ca oxide inclusion also contained Al-Ca-Mn-S elements. Several
mechanisms for inclusion-induced ferrite nucleation have been proposed including inert
substrate mechanism, thermal strain mechanism, element depletion mechanism and lattice
matching mechanism [23,24]. For Ti-oxide, most research believed the Mn depletion zone
(MDZ) mechanism was reasonable, which was formed by Mn absorption into Ti-oxide
particles or MnS adhering precipitation [1]. The formation of MDZ caused a decrease in Mn
content and an increase in transformation temperature, which promoted intragranular AF
nucleation around the inclusion [25,26]. In addition, the driving force for ferrite formation,
i.e., the Gibbs free energy change for γ→α, increased with a decrease in Mn content, which
contributed to promoting AF nucleation [27]. In the present experimental steel, Ti oxide was
the main inclusion type and was considered to be effective through the MDZ mechanism.
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content, which contributed to promoting AF nucleation [27]. In the present experimental 
steel, Ti oxide was the main inclusion type and was considered to be effective through the 
MDZ mechanism. 

 
Figure 3. (a) SEM micrograph of the as-cast steel and (b) EDS analysis of the inclusion in (a). 
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particles. Austenitizing temperature was chosen as 1300 °C to acquire a large enough aus-
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started at 680 °C and ferrite nucleation first happened on austenite grain boundaries, as 
indicated in Figure 4a. The initial growth of the grain boundary ferrite (GBF) was rela-
tively slow. As the GBF grew along the boundaries and then towards the interior, intra-
granular ferrite plates were found to nucleate at 632 °C, as shown in Figure 4b. The sub-
sequent transformation was accelerated through two nucleation ways, i.e., from intra-
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3.2. In Situ Transformation Behaviors by LSCM

The whole transformation processes during cooling at different cooling rates were
recorded by LSCM and the typical micrographs were presented in Figures 4–6. LSCM
presented the sample surface change and temperature simultaneously so that we could
identify the start temperatures of transformation at grain boundaries or at intragranular
particles. Austenitizing temperature was chosen as 1300 ◦C to acquire a large enough
austenite grain size for promoting intragranular ferrite formation. At 3 ◦C/s, transforma-
tion started at 680 ◦C and ferrite nucleation first happened on austenite grain boundaries, as
indicated in Figure 4a. The initial growth of the grain boundary ferrite (GBF) was relatively
slow. As the GBF grew along the boundaries and then towards the interior, intragranular
ferrite plates were found to nucleate at 632 ◦C, as shown in Figure 4b. The subsequent
transformation was accelerated through two nucleation ways, i.e., from intragranular sites
and on boundaries. However, the final microstructure was dominated by the ferrite side
plates (FSP) forming from boundaries. Figure 4c showed the intermediate stage of the
transforming process. Figure 4d showed the end of transformation at about 575 ◦C. The
coarse ferrite sheaves growing across the whole austenite grain were obvious.
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of FSP, such that the chance for the formation of ferrite sheaves across the whole austenite 
grain decreased. In addition, the ferrite plates could also originate from the first-formed 
ferrite plate but with a different orientation, as shown in Figure 5b, where the long red 
arrow indicated the primary ferrite plate as well as its growth direction, while the short 
red arrows indicated the secondary ferrite plates. The transformation continued at 615 °C 
in Figure 5c. The transformation nearly finished at 565 °C, as shown in Figure 5d, and the 
morphology seemed more interlocked than that for 3 °C/s. 

Figure 4. Micrographs by LSCM showing transformation behaviors during cooling at 3 ◦C/s. The
micrographs are taken at (a) 680 ◦C, (b) 632 ◦C, (c) 611 ◦C and (d) 575 ◦C, respectively.
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For the cooling rate of 6 ◦C/s, microstructural evolution was shown in Figure 5.
Ferrite nucleation still started from austenite grain boundaries while the start temperature
decreased to 670 ◦C. FSP had grown to a short distance at 640 ◦C while no intragranular
nucleation was observed, as shown in Figure 5a. With the temperature decreasing to
625 ◦C, a number of intragranular acicular ferrite plates were observed to form, mostly
at the intragranular particles. In comparison with Figure 4, the intragranular nucleating
rate became higher and the AF fraction increased. AF plates were encountered during
the growth of FSP, such that the chance for the formation of ferrite sheaves across the
whole austenite grain decreased. In addition, the ferrite plates could also originate from
the first-formed ferrite plate but with a different orientation, as shown in Figure 5b, where
the long red arrow indicated the primary ferrite plate as well as its growth direction, while
the short red arrows indicated the secondary ferrite plates. The transformation continued
at 615 ◦C in Figure 5c. The transformation nearly finished at 565 ◦C, as shown in Figure 5d,
and the morphology seemed more interlocked than that for 3 ◦C/s.

The transformation behavior for the cooling rate of 15 ◦C/s showed remarkable
difference from that of 3 ◦C/s and 6 ◦C/s. Ferrite nucleation was observed to start at 601 ◦C
at grain boundaries and intragranular particles simultaneously, as shown in Figure 6a. With
the decrease in temperature, in Figure 6b, more intragranular primary and secondary AF
plates nucleated and lengthened without the obvious formation of grain boundary FSP. In
this condition, the parent austenite grain was segmented into smaller parts by intragranular
ferrite plates, see Figure 6c. The AF plates grew in some particular orientations as a
result of the K-S orientation relationship with parent austenite and formed a weaving
configuration [28,29]. However, this trend did not continue to the end of transformation
of all the retained austenite. It seemed that the available intragranular nucleation sites
were limited. The AF formation stopped after all the available nucleation sites were used
up, which was followed by the formation of parallel ferrite packets between the prior AF
plates. Figure 6d showed the finish point of transformation by in situ observation. Even so,
the surface microstructure evolution exhibited significant difference from the interior of
the sample, which will be revealed in the following section.

3.3. Microstructural Comparison between the Surface and Interior

The optical microstructures of different sample surfaces without etching after LSCM
thermal cycles were presented in Figure 7, where two samples with lower austenitizing
temperatures of 1000 ◦C and 1200 ◦C were also included. The nital etched surface mi-
crostructures and corresponding interior microstructures were shown in Figure 8. With a
low austenitizing temperature of 1000 ◦C, the austenite grain size was fine and polygonal
ferrite was formed via the reconstructive transformation mechanism, as shown in Figure 7a.
With the increase in austenitizing temperature and austenite grain size, the amount of
parallel ferrite plates increased and the surface relief phenomenon appeared as a result
of the displacive transformation, as shown in Figure 7b,c. For the cooling rate of 15 ◦C/s
(Figure 7d), with the massive formation of intragranular AF, the surface relief also became
much clearer.

Figure 8 showed the great difference between the surface and interior microstructures.
In general, the interior microstructures for the experimental conditions were significantly
finer than the surface. In Figure 8a–c, with the increase in cooling rate, the amount of
intragranular AF plates increased and segmented the parent austenite grain into smaller
regions. It corresponded to the result of in situ observation by LSCM. For the experimental
cooling rates, AF dominating microstructures were always obtained in the interiors of
different samples. AF plates obtained at 3 ◦C/s were coarse (Figure 8a’) and they became
much finer as the cooling rate increased to 6 ◦C/s and 15 ◦C/s. It was shown from the
in situ transformation behavior that the intragranular AF nucleation rate increased at a
higher cooling rate and the lengthening of the AF plates also speeded up. On the sample
surface, the number of nucleating sites, i.e., effective oxide particles, was limited and the
hard impingement probability between AF plates was low such that the AF plates on
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the sample surface could grow to a large size, but with a small plate number. On the
contrary, the AF nucleation rate and hard impingement were remarkably improved in the
sample interior and there was less space for AF plates to coarsen, which resulted in much
finer microstructure.

The surface and interior microstructures were further analyzed by EBSD with the
results shown in Figure 9. For the surface microstructures, the coarse plates and sheaves
were characterized by high-angled boundaries. In addition, the low-angled boundary
concentration increased with the increase of cooling rate. The interior AF microstructures
exhibited dense high-angled boundaries. The AF plates within one parent austenite grain
showed some particular orientations as a result of the orientation relationship. In the
sample interior, besides the dominating AF plates, there also existed a certain amount of
small ferrite grains with granular or quasi-polygonal morphology. It could be distinguished
in optical micrographs in Figure 8 and also in EBSD maps. Some research indicated that
polygonal ferrite could form from the remaining austenite between acicular ferrite grains,
by a reconstructive mechanism after the reaction stasis of acicular ferrite [30]. However,
according to the present in situ observation of the continuous cooling transformation
behavior, especially for the cooling rates of 6 ◦C/s and 15 ◦C/s, austenite could almost
completely transform into ferrite plates and packets via a displacive transformation regime
accompanied with surface relief. In addition, in the EBSD maps of sample interior, the
small granular ferrite grains within one parent austenite grain mostly have one similar or
a few particular crystallographic orientations, whereas the orientations of ferrite grains
formed by reconstructive mechanism should distribute randomly. This means the granular
ferrite grains were actually the transverse sections of AF laths. Their nucleation sites were
at inclusions above or beneath the viewing plane. Their formation belonged to the same
transforming stage as the acicular ferrite plates.

 
Figure 7. Surface optical micrographs without etching of the samples after LSCM thermal cycles. 
The austenitizing temperatures and cooling rates are (a) 1000 °C–3 °C/s, (b) 1200 °C–3 °C/s, (c) 
1300 °C–3 °C/s and (d) 1300 °C–15 °C/s. 
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1300 ◦C–3 ◦C/s and (d) 1300 ◦C–15 ◦C/s.
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microstructures; (a’–c’) are interior microstructures; (a,a’), (b,b’) and (c,c’) correspond to cooling rates
of 3 ◦C/s, 6 ◦C/s and 15 ◦C/s, respectively.

3.4. Micro and Macrohardness

The micro and macro Vickers hardness values of different microstructures, on the
surface and inside the sample obtained under experimental cooling rates, were tested. The
results were shown in Figure 10. In Figure 10a, microhardness for both the inside and
surface of the sample increased with the increase in cooling rate while the surface micro-
hardness was much lower than the sample interior. In Figure 10b, the macrohardness also
increased with the cooling rate, but the difference between the surface and the inside was
not obvious. In addition, the micro and macrohardness values tested from the sample inte-
rior were consistent with each other. However, the micro and macrohardness values tested
from the sample surface varied significantly, where the surface microhardness was much
lower than its macrohardness. This result was analyzed combined with microstructures.
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formed by reconstructive mechanism should distribute randomly. This means the granu-
lar ferrite grains were actually the transverse sections of AF laths. Their nucleation sites 
were at inclusions above or beneath the viewing plane. Their formation belonged to the 
same transforming stage as the acicular ferrite plates. 

 
Figure 9. EBSD IPF maps of samples after LSCM thermal cycles. (a–c) are surface microstructures; 
(a'–c') are interior microstructures; (a,a'), (b,b') and (c,c') correspond to cooling rates of 3 °C/s, 6 
°C/s and 15 °C/s, respectively. The black lines indicate high-angled misorientation ≥ 15°; the grey 
lines indicate low-angled misorientation between 5° and 15°. 

3.4. Micro and Macrohardness 
The micro and macro Vickers hardness values of different microstructures, on the 

surface and inside the sample obtained under experimental cooling rates, were tested. The 
results were shown in Figure 10. In Figure 10a, microhardness for both the inside and 
surface of the sample increased with the increase in cooling rate while the surface micro-
hardness was much lower than the sample interior. In Figure 10b, the macrohardness also 
increased with the cooling rate, but the difference between the surface and the inside was 

Figure 9. EBSD IPF maps of samples after LSCM thermal cycles. (a–c) are surface microstructures;
(a’–c’) are interior microstructures; (a,a’), (b,b’) and (c,c’) correspond to cooling rates of 3 ◦C/s, 6 ◦C/s
and 15 ◦C/s, respectively. The black lines indicate high-angled misorientation ≥ 15◦; the grey lines
indicate low-angled misorientation between 5◦ and 15◦.

Figures 11 and 12 showed examples of the indentation shape. The Vickers hardness
tester indentation was a square. In Figure 11, the micro HV indentation side length was
12.6 µm and 9.5 µm for the sample surface and interior, where the indentation depth could
be calculated as 2.5 µm and 1.9 µm, respectively. In Figure 12, the macro HV indentation
side length for sample surface and interior was both about 253 µm and the indentation
depth was calculated to be 51 µm. The thickness of surface microstructure could be
measured from the cross-section, as shown in Figure 13. The thickness of the surface
layer in samples with cooling rates of 3 ◦C/s, 6 ◦C/s and 15 ◦C/s was 9.3 µm, 7.0 µm
and 5.6 µm, respectively. It was also found that carbide tended to precipitate under the
surface ferrite layer as a result of carbon diffusion inwards. In the micro HV test carried
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out on the sample surface, the indenter could not penetrate through the surface layer and
the indentation depth was, in fact, even less than half the layer thickness. However, the
macro HV indentation depth was far more than the surface layer thickness, where the
indentation depth was nearly determined by the interior microstructure hardness rather
than the soft surface microstructure. Therefore, the micro HV test reflected the hardness of
surface microstructure and interior microstructure factually. The macro HV test reflected
the sample matrix hardness for both testing positions.
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terior were consistent with each other. However, the micro and macrohardness values 
tested from the sample surface varied significantly, where the surface microhardness was 
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tures. 
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In the driving force for nucleation of a new phase, elastic strain energy ∆Gε is a
component of resistance [31]. ∆Gε for sample surface layer could be negligible due to its
free expansion during γ→α transformation. Thus, the driving force for transformation
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of the sample surface was higher than that of the sample interior and accordingly the
transformation temperature was higher for the sample surface. AF on the sample surface
could only nucleate at inclusion particles located in the surface layer of several microns,
which were quite limited in number. AF plates could extend along the surface or towards
the interior after nucleation, where K–S orientation relationship should be kept [28,32]. For
the sample interior, AF plates grew in any proper spatial directions but did not reach the
sample surface because of its lower transforming temperature.

The coarse size of AF on the sample surface was due to several reasons. Firstly, AF
formed at a higher temperature had a coarse size in itself, which was similar to the interior
AF. Secondly, the available nucleation sites were quite limited such that hard impingement
between AF plates was much weaker than that in the sample interior. In addition, ferrite
plates formed via a displacive mechanism were affected by the austenite stress state. The
transformation stress in austenite on the sample surface could be released largely and
this contributed to a coarser AF plate size. With a coarse grain size, a lower dislocation
concentration under high transformation temperature, and carbon diffusion away from
the surface ferrite into the sample interior, the surface microstructure hardness was much
lower than the whole AF microstructure in the same sample.

4. Conclusions

In situ observation of the transformation behavior of a Ti–Ca deoxidized low carbon
steel was conducted using HT-LSCM. The microstructure between the surface and interior
of the HT-LSCM sample was compared. The main conclusions are as follows:

(1) Cooling rates have significant influence on the AF transformation behavior. With
an increase in cooling rate, the nucleation rate of AF increased and the surface mi-
crostructure was more interlocked. Sample surface microstructure formed at 3 ◦C/s
was dominated by ferrite side plates, while the ferrite nucleating sites transferred
from grain boundaries to intragranular particles when the cooling rate was 15 ◦C/s.

(2) The microstructure between the surface and interior of the HT-LSCM sample was
obviously different. AF dominating microstructure was always obtained in the sample
interior and was much finer than the sample surface. The micro and macrohardness
values tested on the sample surface varied significantly, and the microhardness of the
sample surface was much lower than that of the sample interior.

(3) The start and finish transformation temperatures of surface layers were both higher
than the sample matrix. For the sample surface, the start temperatures of nucleation
at grain boundaries and intragranular particles decreased with the increase in cooling
rate, where the two nucleation manners happened simultaneously when the cooling
rate was 15 ◦C/s. However, the temperature-dilation curves reflected almost pure
intragranular AF transformation behavior.

(4) The combined factors led to the coarse size of AF on the sample surface. AF formed
at a higher temperature resulted in a coarse size. The available particles for AF
nucleation on the sample surface were quite limited, such that hard impingement
between AF plates was much weaker than that in the sample interior. In addition,
the transformation stress in austenite on the sample surface could be largely released,
which contributed to a coarse AF plate size.
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