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Abstract: Titanium and its alloys exhibit superior properties of high corrosion resistance, an excellent
strength to weight ratio and outstanding stiffness among other things. However, their relatively low
hardness and wear resistance limit their service life in high-performance applications of structure
parts, gears and bearings, for example. The fabrication of a ceramic reinforced titanium matrix
composite (TMC) coating could be one of the solutions to enhance the microhardness and wear
resistance. Titanium carbide (TiC) is a preferable candidate due to the advantages of self-lubrication,
low cost and a similar density and thermal expansion coefficient with titanium. The fabrication of
TiC-TMC coatings onto titanium using a laser directed energy deposition (LDED) process has been
conducted. The problems of TiC aggregation, low bonding quality and the generation of fabrication
defects still exist. Considering ultrasonic vibration could generate acoustic steaming and transient
cavitation actions in melted materials, which could homogenize the distribution of reinforcement
materials and promote the dissolution of TiC into liquid titanium. In this study, for the first time, we
investigate the ultrasonic vibration-assisted LDED of TiC-TMC coatings. The effects of ultrasonic
vibration and reinforcement content on the phase compositions, reinforcement aggregation, bonding
quality, fabrication defects and mechanical properties (including microhardness and wear resistance)
of LDED deposited TiC-TMC coatings have been investigated. With the assistance of ultrasonic
vibration, the aggregation of TiC was reduced, the porosity was decreased, the defects in the bonding
interface were reduced and the mechanical properties including microhardness and wear resistance
were increased. However, the excessive TiC content could significantly increase the TiC aggregation
and manufacturing defects, resulting in the reduction of the mechanical properties.

Keywords: ultrasonic vibration; laser directed energy deposition; coating; TiC-TMC

1. Introduction

Titanium and its alloys have been widely used in many industries (including the auto-
motive industry, aerospace industry and medical industry) due to their superior properties
of strong corrosion resistance, a high strength to weight ratio and outstanding stiffness
among other things [1,2]. However, their relatively low surface mechanical properties
(hardness and wear resistance) limit the service life in high-performance applications of
structure parts, gears, bearings and jet engine compressors, for example. [3,4]. Ceramic
reinforced titanium matrix composites (TMCs) were coated onto titanium to improve the
mechanical properties [5,6]. Compared with other ceramic reinforcements (such as Al2O3,
SiC, TiN and TiB [7–10]), TiC exhibits the unique property of self-lubrication with enhanced
the wear resistance, a relativity low material cost and a similar thermal expansion coef-
ficient with titanium [11]. TiC-TMC coatings have been successfully fabricated by laser
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additive manufacturing processes [12–15]. The mechanism of the dissolution of TiC into
titanium and the phase transformations during the fabrication have been investigated. The
results show that the precipitated TiC with a refined microstructure could significantly
improve the surface microhardness and wear resistance.

Laser directed energy deposition (LDED) has been widely used in the fabrications of
TMC coatings onto a metallic workpiece. In LDED, the melted material can be solidified
at a high cooling rate (103–106 K/s) [16], which contributes to the development of coating
layers with a relatively fine-grained microstructure [17,18]. LDED also has the capability
of the functionally gradient coatings fabrication, which can reduce the discontinuity of
properties between base materials and reinforced layers [19]. TiC-TMC, as a kind of
preferable coating material, has been deposited onto titanium and its alloys by an LDED
process [12,13,20–24]. The results showed that the LDED fabricated TiC-TMC coatings
could significantly improve the surface properties of microhardness and wear resistance.
By optimizing the laser density, the microhardness and wear resistance could be further
increased [21,22]. In addition, by utilizing the functionally gradient coating layers, the
bonding quality, density and surface properties were improved [12,24].

However, there are still a few problems that exist in the LDED fabricated TiC-TMC
coatings such as the reinforcement aggregation and the generation of fabrication defects.
Due to the high cooling rate of LDED, TiC powders were always partially melted and
dissolved into liquid titanium during the fabrication [22]. These solid TiC particles resulted
in the problem of the inhomogeneous distribution of unmelted reinforcement particles. In
addition, the existence of solid TiC particles in the molten pool caused the lack of fusion,
which was the major reason of the generation of fabrication defects. Both problems could
reduce the microhardness and wear resistance of TiC-TMC coatings fabricated by the LDED
process [13]. Utilizing ultrasonic vibration-assisted LDED to fabricated TiC-TMC coatings
could be a possible solution to solve the existing problems. Ultrasonic vibration had been
widely utilized in the LDED process to fabricate alloys and metal matrix composites. Cong
et al. pointed out that the assistance of ultrasonic vibration could reduce the grain size and
porosity, increase the size of the molten pool and improve the Rockwell hardness [25]. Wang
et al. found the assistance of ultrasonic vibration could refine the Laves phase in LDED
fabricated Inconel 718 parts, which improved the microhardness and wear resistance [26].
Li et al. investigated the effects of ultrasonic vibration on LDED fabricated Ni/WC/La2O3
coatings [27]. The assistance of ultrasonic vibration could disrupt the dendrites, refine
the grain size and improve the hardness and wear resistance. The reinforcement size
and mechanical properties of TiB reinforced Ti matrix composites were improved by the
assistance of ultrasonic vibration, as stated by Ning et al. [28]. Ultrasonic vibration induced
two direct actions on liquid materials including acoustic streaming and transient cavitation.
The acoustic streaming was a steady flow in the fluid materials driven by the absorption of
acoustic oscillations. Such actions could mix and stir the liquid materials in the molten pool,
which could homogenize the distribution of reinforcement [25,26]. The transient cavitation
was the dynamic process of growth and collapse of microbubbles in liquid materials, which
promoted the dissolution of solid particles [29]. In addition, ultrasonic vibration could
provide extra energy to the molten pool and promote the melting of powder materials [25].

In this study, the TiC-TMC coatings were successfully coated onto titanium by the
ultrasonic vibration-assisted LDED process. The effects of ultrasonic vibration and TiC
content on the phase compositions, reinforcement aggregation, bonding quality, fabrication
defects, microhardness and wear resistance of TiC-TMC coatings were investigated.

2. Materials and Methods
2.1. Powder Materials and Treatment

The powder materials used in this study were TiC powder (99.7% purity) and Ti
powder (99.9% purity) (Atlantic Equipment Engineers Inc., Upper Saddle River, NJ, USA).
A pure Ti plate with a thickness of 6.65 mm was used to coat the substrate.
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According to the results of the preliminary experiments, three feedstock material
powders (Ti, Ti + 5 wt.% TiC and Ti + 10 wt.% TiC) were adopted to study the effects of TiC
content. As shown in Figure 1, before the LDED process TiC powder and Ti powder were
mixed by a ball milling machine (ND2L, Torrey Hills Technologies LLC., San Diego, CA,
USA). The weight ratio of the milling balls to powders was 1:1. The milling time was 4 h
with a consistent rotation speed of 200 rpm. The TiC powders were partially embedded on
the surface of the Ti powders after the ball milling process.
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(d) prepared TiC-Ti powder.

2.2. Experimental Setup

Experiments were conducted on an LDED system (LENS 450, Optomec Inc., Albu-
querque, NM, USA). Figure 2 shows the experimental setup of the ultrasonic vibration-
assisted LDED system. To avoid the oxidation of Ti at a high temperature, the chamber
system was purged by argon gas until the oxygen level was lower than 50 ppm. Inside the
chamber, a ceramic vibrator with a frequency of 29 kHz was fixed under the Ti substrate
to provide ultrasonic vibration. A laser system equipped with a 400 W fiber laser source
(YLM-1070, IPG Photonics, Oxford, MA, USA) was used to generate the laser beam. The
movement of the substrate and the cladding head were controlled by the control system to
build the designed 3D structures. During the fabrication, the laser beam was transmitted
to the surface of the substrate to generate a molten pool, which caught and melted the
material powders. When the laser beam moved away, the molten pool was solidified to
fabricate the first layer. After the fabrication of the first layer, the cladding head moved up
the distance of the layer thickness. The second layer was fabricated on top of the first layer.
The designed coatings were deposited layer by layer. The laser coating parameters in this
study are listed in Table 1.
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Table 1. Laser coating parameters.

Input Fabrication Variables Value

Laser power (W) 375
Beam diameter of laser (µm) 400

Wavelength of laser (µm) 1.07
Deposit head scanning speed (mm/min) 11

Hatch distance (µm) 380
Layer thickness (µm) 432

Powder feeding rate (g/min) 2.5
Number of layers 3

Oxygen level (ppm) <50
Argon gas flow rate (L/min) 6

Scanning orientation (◦) 45, alternate 90 per layer

2.3. Measurement Procedures

After fabrication, the deposited coating layers were ground and polished (perpendicu-
lar to the deposition direction) by a grinder/polisher machine (MetaServ 250, Buehler, Lake
Bluff, IL, USA). The whole cross-sectional surfaces and bonding quality were observed
by an optical microscope (OM) (DSX-510, OLYMPUS, Tokyo, Japan). ImageJ software
(1.8.0_172, LOCI, University of Wisconsin, Madison, WI, USA) was used to analyze the
observed images under the mode of black and white [30]. The morphologies of the pow-
ders and the microstructure of the fabricated coatings were observed by scanning electron
microscopy (SEM) (Phenom Pharos, Nanoscience, Phoenix, AZ, USA), which was equipped
with a backscatter electron detector (BSD) system and an energy dispersive X-ray spec-
troscopy (EDS) system. The element compositions and phases were analyzed by an EDS
and X-ray diffraction (XRD) machine (Ultima III, Rigaku Corp., Woodlands, TX, USA),
respectively. In the XRD, the samples were scanned from 20 to 80 degrees (2θ) with a
scanning step of 0.02 degrees (2θ), a wavelength of 0.154 nm, a voltage of 40 kV and a
current of 44 mA. The weight percentages of each phase were calculated by MDI/JADE
software (Version 2020, Materials Data, Livermore, CA, USA).

The microhardness of the deposited coating layers was tested by a Vickers microhard-
ness tester (Phase II, Upper Saddle River, Bergen, NJ, USA) with a 10 N normal load and
a 10 s dwell time. For each combination of inputs, two samples fabricated by the LDED
process were tested. For each sample, the microhardness values were measured on ten
random positions of the cross-sectional surface. The wear rate was tested and measured by
dry sliding tests with a 1 mm radium silicon carbide (SiC) ball at room temperature using a
mechanical testing system (PB1000, Nanovea, Irvine, CA, USA). During the dry sliding
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test, the SiC ball slid on the surface of the coating for 0.25 h with a load of 0.2 N, a constant
sliding speed of 3 mm/s and a sliding distance of 3 mm. The wear volume lost, V, was
calculated by Equation (1) [26].

V = L × [(πR2)/180 × arcsin(W/2R) − W/2 × (R2 − (W/2)2)0.5] (1)

where L was the sliding distance, mm; R was the radius of the sliding ball, mm and W was
the scratching width, mm. The wear rate Wr was calculated by Equation (2).

Wr = V/(F(vT)) (2)

where F was the normal load used in the dry sliding test, N; v was the sliding speed, mm/s
and T was the time of the dry sliding test, s.

3. Results and Discussion
3.1. Phase Compositions

The XRD results on the phase compositions are shown in Figure 3. The peaks were
fitted and identified according to the information in the powder diffraction file (PDF) cards.
Both TiC(O) and non-stoichiometric TixCy(P) had a cubic lattice structure [9,21]. The lattice
parameter a could be calculated by Bragg’s law, as shown in Equation (3) [31]:

1/(dhkl)
2 = (h2 + k2 + l2)/a2 (3)

where dhkl was the lattice spacing, which could be calculated by the location of the peak
(Degree 2-theta) and h, k and l were the Miller indices of the Bragg plane, which could be
found in PDF cards. The lattice parameter of TiC(O) was 4.337 Å. As a comparison, the
lattice parameter of TixCy(P) was 4.272 Å, which was lower than that of TiC(O).
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The TiC(O) was the phase of original feedstock TiC powders in which the atomic
ratio of Ti and C was 1:1. The TixCy(P) phase was non-stoichiometric TiC, which was
precipitated from the TiC-Ti solutions during the fabrication [9,32]. Its atomic ratio of
Ti and C could be changed from 1:0.55 to 1:1. The phase compositions of the feedstock
powders and the LDED fabricated TiC-TMC coatings with 5% TiC and 10% TiC are shown
in Tables 2 and 3, respectively. As shown in Figure 3a, at the low level of TiC content
with the assistance of ultrasonic vibration, the area of TiC(O) peaks was significantly
decreased. The detailed phase compositions results showed that the content of the TiC(O)
phase in the TiC-TMC coatings decreased from 2.94 wt.% to 0.72 wt.%. In addition, the
content of the TixCy(P) phase increased from 4.36 wt.% to 6.98 wt.%. The reason for the
phase composition changes was that ultrasonic vibration could promote the dissolution
and precipitation process during the fabrication. On one hand, the acoustic streaming
could mix and stir the liquid materials inside the molten pool, which could enhance the
movement of both solvent and solute [22,33]. In addition, the transient cavitation induced
by ultrasonic vibration could increase the diffusion rate between the TiC(O) particles and
the liquid titanium [34]. Due to these two actions, more solid TiC(O) particles could be
directly dissolved in liquid Ti. On the other hand, the additional energy was induced to
the molten pool by ultrasonic vibration, which increased the temperature of the liquid
materials [15]. More TiC(O) particles could be melted at a high temperature and then
dissolved into the liquid titanium. During the solidification, the solubility of the TiC
in the titanium was reduced. There were more TixCy(P) phases precipitated from the
TiC-Ti solution.

Table 2. Phase compositions of the feedstock powder and the TiC-TMC coatings with 5% TiC.

Conditions TiC(O) (wt.%) TixCy(P) (wt.%) Ti (wt.%)

Feedstock powder 5.24 0 balance
TiC-TMC coatings without UV 2.94 4.36 balance

TiC-TMC coatings with UV 0.72 6.98 balance

Table 3. Phase compositions of the feedstock powder and the TiC-TMC coatings with 10% TiC.

Conditions TiC(O) (wt.%) TixCy(P) (wt.%) Ti (wt.%)

Feedstock powder 10.71 0 balance
TiC-TMC coatings without UV 6.89 5.87 balance

TiC-TMC coatings with UV 5.12 8.48 balance

The XRD results of the feedstock powders and the fabricated TiC-TMC coatings with
a high level of TiC content are shown in Figure 3b. It could be observed that the peaks pf of
TiC(O) and TixCy(P) had slight changes. The detailed phase compositions are shown in
Table 3. Similar to the conditions with a lower TiC content, with the assistance of ultrasonic
vibration, the content of TiC(O) decreased and the content of TixCy(P) increased. However,
the TiC(O) content in the TiC-TMC coatings was slightly reduced in comparison with that
in the coatings with a lower TiC content. It meant that the effects of ultrasonic vibration on
the phase transformation (from the TiC(O) phase to the TixCy(P) phase) were suppressed.
The higher content of TiC had two major effects. First, feedstock powders need more energy
to melt due to the high melting point of TiC. At a relatively high TiC content of 10 wt.%, the
TiC(O) particles were harder to melt and then be dissolved into liquid Ti, which prevented
the precipitation of TixCy(P) particles. Second, the increase of solid TiC(O) particles reduced
the fluidity of the molten pool. The actions of ultrasonic vibration on the liquid materials
were suppressed, which further prevented the dissolution and precipitation process.

3.2. Microstructure

Figure 4 shows the element compositions analyzed by EDS on the cross-section of the
TiC-TMC coatings fabricated by the LDED process. There were three different kinds of
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regions (black, grey and light). In these three different regions, the element compositions
were analyzed (as shown in Figure 4b–d). It could be seen that the irregular-shaped black
regions had an atomic ratio of titanium to carbon of 1:1 (the same as the atomic ratio of
titanium to carbon in the TiC(O) phase). Associated with the XRD analysis, it could be
considered that the black regions were the TiC(O) phase. The grey regions had 36 at.%
of the C element, which could be considered as TixCy(P). The major reason was that the
composition range of TixCy(P) was extraordinarily wide according to the Ti-C phase dia-
gram and its C element content was lower than that in the TiC(O) (50 at.%) [12]. Figure 4a
shows that the size of the individual spherical-shaped grey regions was smaller than the
size of the feedstock TiC powders, indicating the grey regions should be generated during
the solidification. Similar phenomena have also been reported in other investigations
on the fabrication of TiC-TMC parts [13,33]. Beside the independently distributed grey
regions, there were also grey regions surrounded by the boundary of black regions. Due
to the high cooling rate in the LDED process, the TiC particles with larger sizes could
not be fully dissolved into the liquid titanium. The dissolution of TiC(O) into titanium
took place at the boundary of the solid TiC(O) particles, which formed the TiC-Ti solution
around the undissolved TiC(O) cores. During the solidification, the solubility of TiC in the
TiC-Ti solution decreased, resulting in the interfacial reaction product of TixCy(P). A similar
phenomenon was also reported in the investigations of sintered TiC-TMC materials [35–37].
The light regions had 95.5 at.% of the Ti element, which indicated that these regions were
the titanium matrix.
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The effects of ultrasonic vibration and TiC content on the microstructure are shown in
Figure 5. Figure 5b,c,f,g show the cross-sectional OM images of the coatings fabricated by
LDED. It could be observed that the reinforcements aggregated with the laser direction.
Figure 5a,d,e,h show the enlarged view of SEM images of the aggregated regions of the
reinforcements. It could be seen that the grey particles with a smaller size were relatively
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evenly distributed in the Ti matrix. As a comparison, the black particles mainly caused the
aggregation. As discussed in Section 3.2, the small-sized grey particles were in the TixCy(P)
phase and the large-sized black particles were in the TiC(O) phase. According to the SEM
images, it could be confirmed that the reinforcement aggregation was mainly caused by the
TiC(O) particles. It can be seen in Figure 5e–h that with the assistance of ultrasonic vibration,
there were less TiC(O) particles aggregated. As discussed in Section 3.1, with the assistance
of ultrasonic vibration, the amount and size of the TiC(O) particles in the TiC-TMC coatings
could be significantly decreased. The reduction of unmelted and undissolved particles
could increase the fluidity of the liquid materials in the molten pool. Similar phenomena
were also reported in the laser melting of TiC-Al composites [38]. These solid TiC(O)
particles recirculated in the molten pool faster, which improved the distribution of the
undissolved TiC(O). Both the reduction of the TiC(O) particles and the better distribution
of TiC(O) could significantly release the reinforcement aggregation.
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As shown in Figure 5c,g, with the increase of TiC content, more TiC(O) particles
aggregated in the LDED fabricated coatings. As discussed in Section 3.1, the TiC-TMC
coatings with a higher content of TiC had more TiC(O) particles. The larger amount of
solid TiC(O) particles could reduce the fluidity of the molten pool, which suppressed the
movement of solid TiC(O) particles [39]. In addition, the specific heat capacity and laser
absorptivity of TiC and Ti were different. The increase of the TiC content could enlarge the
difference of the temperature and solidification rates inside the molten pool [40]. In the
regions with a low temperature, liquid materials solidified faster. It could also suppress
the movement of solid TiC(O) particles and resulted in the variation of the distribution of
TiC(O) particles.

3.3. Bonding Quality

The molten pool of TiC-TMC coatings generated in the laser DED process with and
without ultrasonic vibration are shown in Figure 6a. With the assistance of ultrasonic
vibration, the width and depth of the molten pool became larger. The major reason was
that the actions of acoustic streaming could stir the liquid material in the molten pool.
For the Gaussian laser used in this study, the energy at the center of the laser beam was
much higher than that at the boundary, leading to uneven heat density in the molten
pool [41,42]. The actions of mixing and stirring promoted the dispersion of the high-
temperature liquid from the center to the boundary of the molten pool. The temperature at
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the boundary then increased, which promoted the melting of the substrate materials [43].
In addition, ultrasonic vibration provided extra energy to the molten pool and increased
the temperature of the liquid materials. A greater number of substrate materials could be
melted at a higher temperature.
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Figure 6. The effects of ultrasonic vibration on bonding quality: (a) the molten pool of the TiC-TMC coatings; (b) the
bonding interface of the TiC-TMC coatings.

Figure 6b shows the bonding interface of the TiC-TMC coatings. The defects in
the bonding regions were mainly caused by the insufficient overlap between adjacent
layers, which could be significantly reduced by the assistance of ultrasonic vibration. The
major reason was that ultrasonic vibration increased the depth of the molten pool on
the substrate. The metallic bonding between the substrate materials and coating layers
could be significantly improved. In addition, as discussed in Section 3.3, the fluidity of
the liquid materials in the molten pool was improved by ultrasonic vibration. The higher
fluidity increased the powder absorbability of the molten pool, which was also helpful
for generating sufficient overlaps. A similar result was reported in the fabrication of
zirconia-alumina ceramics using an LDED process [44].

3.4. Fabrication Defects

The fabrication defects of the LDED fabricated TiC-TMC coatings on a cross-sectional
surface are shown in Figure 7. It could be seen that most fabrication defects were in
irregular shapes. In the LDED process, the irregular-shaped fabrication defects on the
cross-sectional surface were usually caused by lack of fusion, as demonstrated by Zhang
et al. [45]. As the molten pool was enlarged by the assistance of ultrasonic vibration, the
lack of fusion at the boundary of the molten pool was reduced. In addition, more powder
could be caught by the molten pool during the fabrication, promoting the formation of
sufficient overlaps.
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With the increased TiC content, the amount of irregular fabrication defects increased
due to the lack of fusion. In this study, the laser input energy was constant. The TiC needed
to absorb more energy to be melted than titanium. The TiC-TMC coatings with a higher
TiC content had more unmelted TiC(O) particles in the molten pool during the fabrication,
which aggravated the lack of fusion. Moreover, the large number of solid TiC(O) particles
reduced the fluidity of the liquid materials in the molten pool resulting in the aggregation
of unmelted TiC(O) particles. In these unmelted TiC(O)-rich regions, a lack of fusion was
more likely to happen, as reported in the LDED fabricated Ti6Al4V with trace boron and
the selected laser melting of a TiB2 coating on Ti6Al4V [46,47].

3.5. Mechanical Properties
3.5.1. Microhardness

Figure 8 shows the effects of ultrasonic vibration and TiC content on microhardness.
With the assistance of ultrasonic vibration, the microhardness value increased. As discussed
in Section 3.1, more refined TixCy(P) particles were precipitated in the titanium matrix with
the assistance of ultrasonic vibration. These refined reinforcements could evenly bear the
load and increase the resistance of plastic deformation during the microhardness tests. A
similar result was demonstrated by Shen et al. through numerical methods [48]. Moreover,
as discussed in Section 3.4, with the assistance of ultrasonic vibration, the fabrication
defects decreased significantly. The higher density increased the ability to support the
load, which could also increase the microhardness. Compared with commercial pure
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titanium coating layers, TiC-TMC coatings had a larger microhardness. The major reason
was that TiC could support the load and reduce the deformation. However, the excessive
TiC content led to the reduction of microhardness. As discussed before, the major reason
was that the increase of fabrication defects reduced the microhardness.
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3.5.2. Wear Resistance

The sliding width of the material removal trail and wear rate are shown in Figure 9.
Both the sliding width and wear rate had a negative relationship with the wear resistance.
With the assistance of ultrasonic vibration, the wear resistance increased. The significant
reduction of the fabrication defects provided a smoother interface and reduced the friction
coefficient of the coating layers [49]. Under the same test condition, the friction force was
reduced, resulting in a smaller material removal volume and higher wear resistance. In
addition, the reinforcement aggregation was reduced by ultrasonic vibration. It contributed
to the formation of the uniform anti-wear protective layer during the dry sliding tests to
further increase the wear resistance.
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Compared with CP-Ti, TiC-TMC coatings showed a higher wear resistance. In ad-
dition, the friction force was measured during the dry sliding tests. The average friction
coefficients of each combination of input were calculated and are listed in Table 4. The ma-
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jor reason was that the hardness of TiC was extremely high, which increased the hardness
of the TiC-TMC coatings. The adhesive wear mode was changed to abrasive wear, which
could significantly increase the wear resistance [50,51]. In addition, during the dry sliding
tests, the SiC ball would leave a rough worn surface on the samples. The spherical TiC
particles might have the function of self-lubrication [52,53]. With the increase of the TiC
content to a high level (10 wt.%), the wear resistance was reduced. The major reason was
that the greater number of fabrication defects increased the friction coefficient.

Table 4. The average friction coefficient of the CP-Ti and TiC-TMC coatings.

Conditions Friction Coefficient

CP-Ti without UV 0.322
CP-Ti with UV 0.324

5 wt.% TiC-TMC coatings without UV 0.201
5 wt.% TiC-TMC coatings with UV 0.129

10 wt.% TiC-TMC coatings without UV 0.296
10 wt.% TiC-TMC coatings with UV 0.268

4. Conclusions

In this study, TiC-TMC coatings with different TiC contents were fabricated by an
ultrasonic vibration-assisted LDED process. The effects of ultrasonic vibration and TiC
content on the phase composition, TiC aggregation, bonding quality, fabrication defects
and mechanical properties were investigated.

With the assistance of ultrasonic vibration, the liquid materials were mixed and
stirred by the actions of acoustic streaming and transient cavitation in liquid material
solidification, which promoted the dissolution of TiC(O) and the precipitation of refined
TixCy(P). In the TiC-TMC coatings fabricated by LDED without ultrasonic vibration, TiC(O)
particles preferred to aggregate in a titanium matrix. In contrast, the process with ultrasonic
vibration could significantly reduce the TiC(O) aggregation by decreasing the amount of
TiC(O) and improving the distribution. In addition, extra heat energy was generated by
the ultrasonic vibration assistant, which could increase the bonding quality and reduce the
fabrication defects. The improved TiC(O) aggregation and fabrication defects were effective
in enhancing the microhardness and wear resistance of the ultrasonic vibration-assisted
LDED fabricated TiC-TMC coatings.

With the increase of TiC content, the phase transformation from the TiC(O) phase to
the TixCy(P) phase was suppressed. The major reason was that the higher TiC content
suppressed the further dissolution of TiC(O) in liquid titanium. At a high content of
TiC, there were more undissolved TiC(O) particles existing in the TiC-TMC coatings after
the fabrication, which aggravated the reinforcement aggregation. In addition, the higher
TiC content exacerbated the generation of a lack of fusion defects as the TiC powders
needed more energy to be melted than Ti. The generation of both the TiC(O) aggregation
and fabrication defects decreased the mechanical properties of microhardness and wear
resistance of the TiC-TMC coatings with a higher TiC content.
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