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Abstract: This study concerns the numerical simulation of two competing ultrasonic treatment (UST)
strategies for microstructure refinement in the direct-chill (DC) casting of aluminium alloys. In
the first, more conventional, case, the sonotrode vibrating at 17.3 kHz is immersed in the hop-top
to treat the sump melt pool, in the second case, the sonotrode is inserted between baffles in the
launder. It is known that microstructure refinement depends on the intensity of acoustic cavitation
and the residence time of the treated fluid in the cavitation zone. The geometry, acoustic field
intensity, induced flow velocities, and local temperature are factors which affect this treatment. The
mathematical model developed in this work couples flow velocity, acoustics modified by cavitation,
heat transfer, and solidification at the macroscale, with Lagrangian refiner particles, used to determine:
(a) their residence time in the active zones, and (b) their eventual distribution in the sump as a function
of the velocity field. This is the first attempt at using particle models as an efficient, though indirect,
alternative to microstructure simulation, and the results indicate that UST in the launder, assisted
with baffle separators, yields a more uniform distribution of refining particles, avoiding the strong
acoustic streaming jet that, otherwise, accompanies hot-top treatment, and may lead to the strong
segregation of refining particles. Experiments conducted in parallel to the numerical studies in this
work appeared to support the results obtained in the simulation.

Keywords: ultrasonic processing; DC casting; cavitation; Lagrangian tracking

1. Introduction

In the casting of aluminium alloys, the improvement of microstructure by the reduc-
tion of grain size is important due to multiple benefits, ranging from improved mechanical
properties, to increased resistance to hot tearing [1]. A number of methods have been tested,
including the addition of a grain refiner [2], the application of an ultrasonic field through
the use of a mechanical sonotrode [3], an alternating current (AC) induction coil [4], or
the combination of an AC induction coil with a background DC field [5]. The efficiency of
ultrasonic melt treatment (UST) is attributed to the onset of the formation and explosive
collapse of bubbles in the melt (cavitation), due to large pressure oscillations [6]. Extreme
temperatures (>10,000 K) [7] and pressures (>400 MPa) [8] occur at the centre of these
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collapsing bubbles, which triggers nucleation on, and fragmentation of, the solidification
substrates (refining particles), and ultimately refines the microstructure. The two primary
mechanisms driving grain refinement due to UST have previously been reviewed in [3],
and can be explained by: (i) the activation of latent (e.g., Al2O3) or intentionally added
(e.g., TiB2) non-metallic inclusions, which then enhance heterogeneous nucleation; and
(ii) fragmentation of primary intermetallics (e.g., Al3Zr). If UST is applied during direct-
chill (DC) casting by immersing the mechanical sonotrode directly inside the hot-top, the
acoustic jet can additionally cause primary crystals of aluminium to be fragmented. This is
a common approach in the DC casting process [9], however a weakness of this approach is
that with current implementations, effective treatment is restricted by the active zone being
confined to a narrow region under the sonotrode. An alternative idea which could help
upscale this process is to place the sonotrode further upstream in the launder. The addition
of partitions, or baffles, to regulate the flow can then be used to increase residence time and
allow more of the aluminium alloy to be effectively processed. In our previous work, this
approach was investigated in pilot scale experiments in the DC casting of an AA6XXX alloy
with Zr addition [10], and we showed that grain refinement can also be observed when
processing is carried out in the launder, primarily driven by the activation/fragmentation
of particles, which then act as nucleation sites in the solidifying volume. Ideally, a cross
section of the resulting ingot should have a uniform and fine grain structure throughout
the billet. In this work, we extend this idea by numerically comparing the effectiveness of
the two approaches to see which one is more advantageous in terms of potential structural
refinement. A coupled numerical method is developed by using a finite element solver for
the nonlinear Helmholtz cavitation model [11], coupled to turbulent buoyant fluid flow
computed in a custom OpenFOAM solver, which incorporates an enthalpy method [12]
for the computation of the solidifying sump. The fully 3D model runs in parallel and
simulates for the first time the combined process of DC casting, UST, and launder melt
feeding. The use of a Helmholtz cavitation model is validated by comparing the results
to the frequency domain signal obtained by applying a fast Fourier transform (FFT) to
the pressures obtained, using a time domain Caflisch equation solver [13]. A Lagrangian
tracking algorithm is then used to predict the distribution of the transported refining
particles, and some experimental validation is provided to correlate this with the observed
grain refinement from actual billets.

2. Experimental Setup

DC casting of AA6XXX series aluminium alloy billets was carried out in the Advanced
Metal Casting Centre (AMCC) of the Brunel Centre of Advanced Solidification Technology
(BCAST). The diameter of the produced billets was 152 mm, and the casting was done with
a hot-top. More information regarding the DC-casting set up can be found elsewhere [10].
All billets were cast to a length of approximately 1 m at a casting speed of 140 mm/min
(corresponds to around 2.5 L/min melt flow-rate). The billets were cast at a temperature
of 668 ± 5 ◦C. The experimental setup of the ultrasonic melt treatment (UST)-DC casting
is illustrated in Figure 1a. A 5 kW water-cooled magnetostrictive transducer was used,
coupled with a Nb sonotrode with a 20 mm working diameter operated at 17.3 kHz at
a 3.5 kW power (40 µm amplitude peak-to-peak). Three billets were cast for this study.
The first billet was cast using a conventional DC casting setup (without UST), the second
billet was cast with UST carried out in the DC casting hot-top (Figure 1a), and the third
was cast with UST performed in the DC casting launder (Figure 1b). For the third billet, to
compare the effect between UST and non-UST conditions, the ultrasonic transducer was
only activated once a steady state regime had been reached and the first half part of the
billet had been cast (approximately 0.5 m of the billet length).
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Figure 1. Illustration of DC casting setup and different locations of ultrasonic melt treatment (UST).
(a) On the DC casting hot-top, and (b) on the DC casting launder.

The effect of UST on microstructure was verified through grain size analysis. For
microstructure observation, samples were cut from different parts across the billet, from the
centre to the surface. The samples were ground and polished, and subsequently anodized in
5 wt.% HBF4 in water solution (Barker’s reagent) using 20 VDC, and then examined under
a Carl Zeiss (Oberkochen, Germany) Axioscope A1 optical microscope with polarized light.
The average grain size was measured using the linear intercept method taken randomly
from microscope images and then statistically analysed. The chemical composition of the
alloys (Table 1) differed slightly between the first two billets and the third one. There was
some AlTiB grain refiner added to the first and second billets. While the third billet had
0.2 wt.% Zr added as a grain-refiner. It was reported that Al3Zr is a very potent substrate
for aluminium grains upon UST, as efficient as TiB2 [12]. For the purpose of simulation, we
considered the particles that provide substrates for aluminium as equivalent irrespective
of their nature. Since the focus was to compare the effectiveness of structure refinement at
different locations of UST treatment, we used the normalised grain size value at different
UST locations with the maximum value considered as unity value.

Table 1. Chemical composition (wt.%) of the alloy obtained through optical emission spec-
troscopy (OES).

Al Si Cu Mg Mn Zr Fe Ti

Balance 0.8 0.73 0.68 0.48 0.21 0.2 0.04

3. Numerical Methods

Numerical simulations of UST treatment in a DC casting launder with settings (e.g.,
launder geometry, sonotrode tip geometry, and immersion level, etc.) imitating the experi-
mental conditions were carried out to provide guidelines on the optimisation of UST in
the melt flow by using flow control partitions. A nonlinear Helmholtz-type model [9] was
especially developed to compute the acoustic pressure field, accounting for the effect of
cavitation. This is given in Equation (1), where P represents the complex acoustic pressure
field, and k2

m is a modified wave number given by Equation (2).

∇2P + k2
mP = 0 (1)
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where ω is the angular frequency and c = 4600 m/s is the speed of sound in liquid
aluminium. The dissipation functions A and B take the same form as in [11]. In the
previous work [10] a weighting function was included to aid convergence, but this was not
necessary here since the discontinuity at the Blake threshold was naturally smooth when
evaluating the attenuation coefficients dependent on the local pressure rather than using
a reference value. Then, the real part of ω/km describes the change in speed of sound,
and the imaginary part of km describes the attenuation due to the existence of inertially
cavitating bubbles. To model the bubble activity, the Keller–Miksis (KM) approach [14] is
used, as given in Equation (3).(
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Here pl represents the liquid pressure at the liquid gas interface. The pressure
p(t) = p0(1− A sin(ωt)) accounts for the atmospheric and acoustic pressures. In
Lebon et al. [15], the amplitude parameter A was chosen to be 2.4, matching that of
the expected readings from experiments in liquid aluminium [16]. However, in this work
individual bubble simulations were performed at a range of pressures from A = 1 up to
A = 4, and the computed coefficients were referred to as a function of the local pressure in
the Helmholtz equation. This more closely follows the method of Trujillo [17]. A and B
can be calculated using Equation (4), which considers only the change in void fraction over
the last acoustic period.

A = −ρlω
2

π

∫ 2π

0

∂β

∂τ
sin τdτ, B = −ρlω

2

π

∫ 2π

0

∂β

∂τ
cos τdτ (4)

where β is the void fraction and can be calculated using:

β =
4
3

πR3N (5)

where N is the number of bubbles. For the fluid flow simulation, an OpenFOAM solver was
developed using “buoyantPimpleFoam” (a combination of the PISO and SIMPLE algorithms)
as a base. Solidification is modelled using a single continuum approach with the solid
region acting as a momentum sink. The continuity and momentum equations are given in:

∇ · v = 0 (6)

ρ0
∂v
∂t

+ ρ0∇ · (vv) = −∇p + µ0∇2v + Sb + Sd + Fs (7)

where ρ0 and µ0 are the fluid density and the dynamic viscosity, Sb represents the buoyancy
term given in Equation (8), and Sd is the Carman–Kozeny momentum sink term that
forces the fluid velocity to the background velocity vre f , as given by Equation (9). Fs is
an additional term accounting for acoustic streaming and has the form Fs = ∇(ρva⊗va),
where va is the acoustic velocity. The simulation was run until the flow reached steady state.

Sb = ρ0gβT

(
T − Tre f

)
(8)

Sd = −C
(1− gl)

2

g3
l

(
v− vre f

)
(9)

where C is the mushy zone constant, and vre f is the background velocity field, which is 0 in
the launder, and the casting velocity in the DC caster. Sd in Equation (9) is 0 in the liquid
region but acts as a strong damping term as the melt fraction approaches zero, forcing the
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solid velocity to equal the casting velocity. Turbulence is included in the model, using the
k-Omega-SST turbulence model. The system is closed by the energy balance, as given in
Equation (10).

ρcp
∂T
∂t

+ ρcp∇ · (vT) = ∇ · (k∇T)− ρ0L f

[
∂gl
∂t

+∇ · (vgl)

]
(10)

where cp is the specific heat, T is the temperature, and k is the thermal conductivity. L f in
this equation accounts for the latent heat of fusion, and gl is the volume fraction of liquid.
In the slurry, the effective dynamic viscosity µeff can be calculated from the Stefanescu
formula [18,19] given in Equations (11) and (12), where µl is the liquid viscosity, fs is the
solid fraction, and fc is the dendrite coherency point, chosen to be 0.3.

µeff = µl

(
1

1− Fµ fs/ fc

)2
(11)

Fµ = 0.5− (1/π) tan−1(100( fs − fc)) (12)

A summary of all the material properties used for liquid aluminium is given in Table 2.
The heat transfer across a solid boundary can be approximated by the Fourier boundary
condition k ∂T

∂x = q, where k represents the material conductivity. For the water spray, the
heat flux is often computed directly using a forced-convection heat transfer equation [15,20],
but the resulting term can be approximated as being a linear function depending on the
average temperature T between the surface of the billet and the bulk fluid [21]. Accounting
for the effect of nucleate boiling above a critical point qc = 3910∆T2.16 the final heat transfer
coefficient takes the form in Equation (13).

hc =

{[
−1.67× 105 + 704T

]
·Q′1/3, if qc ≥ qi[

−1.67× 105 + 704T
]
·Q′1/3 + 20.8(∆Tx)

3

∆T , if qc < qi
(13)

Table 2. Model properties of liquid aluminium. Properties obtained from [15].

Casting velocity (m s−1) 0.0023

Inlet temperature (K) 1013.15

Liquidus temperature (K) 929.2

Solidus temperature (K) 757.4

Latent Heat (J kg−1) 375,696.0

Density (kg m−3) 2375

Speed of sound (m s−1) 4600

Thermal expansion coefficient (K−1) 2.3 × 10−5

Kinematic viscosity (m2s−1) 5.5 × 10−7

At the free surface, the loss of heat due to surface radiation is given by Equation (14),
where ε = 0.3 is the surface emmisivity, and σ = 5.6708× 10−8 is the Stefan–Boltzmann
constant.

∇T =
εσ
(
T4

amb − T4)
k

(14)

While the nucleating particles like TiB2 or Al3Zr particles are small, they are prone to
sediment and do not flow perfectly with the bulk fluid, meaning that a massless particle
formulation is not appropriate. Apart from their slightly higher density, these particles are
also plate-like in morphology, so a non-spherical drag model is needed and the method
of [22] was used here. Ultrasonic processing of Al-Zr alloys showed a wide range of resul-



Metals 2021, 11, 674 6 of 14

tant refined particles, dependent on the processing temperature [23]. The fragmentation of
these particles is not yet modelled and can be considered for future work. In this study, the
density of nucleating particles was assumed to be 4140 kg m−3 [24] with a non-spherical
drag model coefficient of φ = 0.512. The distribution and concentration of these particles
can be linked to a reduction of grain size by the fact that they act as nucleation sites, giving
clues as to how the microstructure might be affected. Lagrangian particle tracking via the
discrete element method (DEM) was used to determine the location of nucleating particles
in the final billet, as affected by the passage through regions of active cavitation. In previous
work [25], we discussed the possibility of different launder configurations also affecting
the total processing time, and found that there was only a small difference between those
that were tested. For this reason, only one partition configuration was tested here, and the
residence time of particles was compared against those processed in the hot-top.

4. Results
4.1. Bubble Simulation

Equations (1)–(3) are solved assuming a uniform initial distribution of 5 µm hydrogen
bubbles in a periodic acoustic field operating at a frequency of 17.3 kHz. The system of
nonlinear equations is solved using the “DifferentialEquations.jl” Julia package, with the
Tsitouras 5/4 Runge-Kutta algorithm used for time stepping [26]. Coefficients A and B
were calculated from Equation (4), with the integrals taking the time average solution
for the final acoustic cycle. The material properties for a hydrogen bubble are given in
Table 3 [15].

Table 3. Hydrogen bubble properties [15].

Surface Tension (N m−1) 0.860

Vapour pressure (Pa) 0

Specific Heat Capacity (J kg−1 K−1) 717

Bulk Temperature (K) 1013.15

Ambient bubble radius R0 (m) 5 × 10−6

The simulation was run for a maximum of 50 acoustic cycles, and cases that failed
to converge to a stable harmonic solution were interpolated with a piecewise spline.
Coefficients for the range A = 1 to 4 are given in Figure 2. The vertical dotted line at
approximately A = 2.177 corresponds to the Blake threshold, after which the nonlinear
formulation causes a significant increase in the attenuation coefficients, in line with that of
previous work [15].
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4.2. Casting Simulation

Full 3D simulations were performed, first using COMSOL Multiphysics (version 5.2a,
COMSOL Inc., Stockholm, Sweden.) to calculate the acoustic field, and then the results were
converted to OpenFOAM format to calculate the turbulent fluid flow. The OpenFOAM
solver described in Section 3 was implemented in OpenFOAM 7 (OpenFOAM Foundation,
London, UK). The material boundary conditions used in the fluid flow simulation are
given in Table 4. The inlet temperature was chosen to match the temperature recorded in
the launder experiments. The simulation was run for a total of 300 s and took a total run
time of approximately 4 h on a Ryzen 3600 CPU (AMD, California, USA) to complete, in
addition to the 1 h needed to precompute the acoustic field. This makes the model a good
option for uncertainty quantification studies where speed is of importance.

Table 4. Fluid flow model boundary conditions.

P_rgh

Inlet TotalPressure uniform 0

Outlet ZeroGradient

Free Surface, Hot-Top, Graphite, Mold fixedFluxPressure uniform 0

Launder, Water, Sonotrode fixedFluxPressure uniform 0

P

All Calculated;

U

Inlet pressureInletOutletVelocity

Outlet fixedValue uniform (0–uCast 0)

Launder, Water, Graphite, Mold, Sonotrode noSlip

Free Surface, Hot Top Slip

T

Inlet fixedValue uniform 1034

Outlet, Free Surface, Hot Top, Launder zeroGradient

Water, Mold, Graphite Fixed Gradient = (h/ke)
(

T − Tin f

)
Free Surface, Hot Top

Alpha1

Inlet 1

Outlet, Free Surface, Hot Top, Sonotrode,
Launder, Mold, Graphite zeroGradient

To generate the complex geometry, the cfMesh cartesianMesh mesh generator was
used, with a surface mesh generated using Salome. Coefficients A and B were precom-
puted over the range 1–4x atmospheric pressure, with piecewise splines used to interpolate
intermediate values. The acoustic pressure was then calculated from Equation (1), assum-
ing that the acoustic pressure field can be approximated by a time harmonic solution. To
verify the assumption that considering only the driving frequency is sufficient, full time-
dependent modelling was performed for the launder case. It was based on the Caflisch
model of acoustic cavitation [11], and an efficient, in terms of computational time, imple-
mentation was achieved following a practical assumption about the effect of the cavitation
bubble dynamics on the ultrasound field [27]. An FFT analysis of this time dependent
result is shown in Figure 3a, and the computed raw pressure signals in Figure 3b. From the
FFT analysis, the driving frequency was observed to dominate over the higher harmonics,
validating the use of a harmonic model. While it is possible that the application of UST
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could lead to visible surface vibrations, the effect is minimal compared to the main acoustic
field, and no noticeable surface vibrations were detected in experiments. For this reason,
the free surface is assumed to be a fixed sound-soft boundary.
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The time harmonic pressure distribution for processing in the launder is given in
Figure 4a, and in the hot-top in Figure 4b. Peak pressures under the sonotrode are seen to
be comparable in both cases, but the launder processing sustains a larger region around
the Blake threshold pressure (~217 kPa) [10]. A comparison of the amplitudes in a straight
vertical line below the centre of the sonotrode is given in Figure 4c. The acoustic waves are
attenuated rapidly in the region just under the sonotrode, forming the primary cavitation
region. The acoustic energy is dissipated in the form of thermal and viscous losses, as well
as acoustic radiation. It is in this region that large bubble structures develop and contribute
to the effect known as acoustic shielding [28].
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Figure 4. Acoustic pressure distribution in the launder (a) and the hot-top (b) a comparison of the
pressure observed as a function of the vertical distance from the sonotrode tip is given in (c).
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Differences in the acoustic field also affected the magnitude of the induced streaming
volumetric force (N m−3), and vector plots of the induced forces are given in Figure 5. The
red highlighted region visible under the sonotrode in both the launder and the hot-top
corresponds to the region with acoustic pressures above the Blake threshold (~217 kPa).
The induced force is several orders of magnitude higher in a narrow layer directly under
the sonotrode, and the magnitude of the force is comparable in both cases.Metals 2021, 11, x FOR PEER REVIEW 10 of 16 
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Figure 5. Magnitude of the induced acoustic streaming force when applying UST in the launder (a),
and in the hot-top (b).

When UST is applied in the launder, the flow in the hot-top is dominated by the side
melt feeding velocity, as can be seen in Figure 6b. This feeding results in an asymmetric
flow profile, which could not be revealed in earlier 2D axisymmetric simulations [15]. This
is due to the feeding velocity pushing against the flow expected from natural convection.
When UST was applied in the hot-top directly, the results agreed more closely with the
axisymmetric model used in [15]. In this case, the velocity field is dominated by the acoustic
streaming jet and not the flow inlet velocity. This can be seen in Figure 7b, with streaming
velocities of the order 0.5 m/s. Streaming velocities in the hot-top were found be lower
than when processing in the launder, where streaming velocities of the order 1 m/s were
found (Figure 8c). The transition zone from the fully liquidus state to the fully solidus state
is compressed in the centre of the domain, resulting in a wider transition zone near the
surface of the billet. The compressed transition region increased the temperature gradient,
a result which agrees with that of [15]. This can clearly be observed by the temperature
contours in Figure 7a. It has been suggested that these high thermal gradients could lead
to increased hot tearing risk [29], despite reducing the overall tearing risk due to grain
refinement [1].
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Figure 7. Resulting solid fraction and temperature profile (a), and fluid flow velocity magnitude (b) in the billet when
applying UST directly at the hot-top.

Figure 8a shows the temperature distribution in the launder when UST is applied, and
Figure 8b when UST is not applied. In both cases, the recirculation pattern resulted in the
coldest area being behind the upstream partition, but when UST was applied the amount
of stirring resulted in a more even temperature distribution, and a reduced temperature
drop between the upstream and downstream partitions. Figure 8c shows the magnitude of
the acoustic streaming induced by the sonotrode, with streaming velocities of the order
of 1 m/s found directly under the sonotrode. For comparison, Figure 8d shows the flow
profile when UST was not applied.
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Figure 8. Temperature distribution when UST was applied (a), and without UST (b). Velocity fields when UST was applied
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The relationship between processing time and grain size was previously established
by Atamanenko et al. [30]. It was demonstrated experimentally that grain refinement
was not observed in an Al-0.18 mass pct Zr-0.07 Ti alloy not subjected to UST, while
upon UST, the grain size reduced from 285 to 180 µm after 3 s of processing, and longer
treatment times of 7 and 10 s further reduced the grain size to 107 and 67 µm, respectively.
Atamanenko et al. [30] clearly established the importance of the active cavitation zone, but
only the total processing time was measured, not the residence time in the active zone. The
simulation results presented in Figure 9a demonstrate the difference in particle residence
time in the active zone when applying UST between the partitions in the launder, or in
the hot-top. A total of 10,000 particles were released over a 5 s interval once the fluid
simulation had reached a steady state. Here, residence time is defined simply as the time a
refining particle spends suspended in the liquid in a region where the acoustic pressure is
above the Blake threshold pressure of 217 kPa. Moving the processing into the launder,
results in particle recirculation, and a much higher average particle residence time than
when processing in the hot-top. The launder case had a mean particle residence time of
0.067 s, with a standard deviation of 0.045 s, compared with a mean of 0.03 s and a standard
deviation of 0.017 for the hot-top. Conversely to Reference [30], the times given relate to the
active zone residence time, rather than the total processing time (operation of an ultrasonic
transducer), hence the time scales are different. However, it is this active zone residence
time that is an important criterion for the efficiency of processing.
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Figure 9. Particle residence time (a), and computed refining particle distributions in the billet through processing in the
hot-top (b) and in the launder (c). Arrow on the bottom left indicates the inlet flow direction.

Notably, when processing in the hot-top, many particles do not enter the processing
region at all, which could indicate that processing in the launder can activate more refining
particles, which then ultimately nucleate aluminium grains and refine the microstructure
in the solidifying volume.

The distribution of particles in the resulting billet could be linked with the grain
refinement observed in the billet cross-section from the experiments, which were obtained
with the experimental procedure mentioned in Section 2. The modelled particle distri-
bution demonstrates that in the case of UST in the hot-top (Figure 9b) the particles were
predominantly located in the center of the billet, and near the outside wall opposite from
the inlet location. Meanwhile, a much more uniform distribution was observed in the case
of UST in the launder, given in Figure 9c. This appeared to correlate with the grain size
measurements found in the experiments, as seen in Figure 10. When processing in the
hot-top, grain refinement was mostly observed in the center of the billet, with increasing
grain size at the inner middle (20 mm), outer middle (40 mm), and surface locations. Mean-
while when processing in the launder, a higher degree of grain refinement was observed
throughout the cross section of the billet. A qualitatively similar behavior has also been
reported in previous experiments [31], in which grain refinement was observed across
the billet when UST was applied in a launder, but significant variation in grain size was
observed when UST was performed in the hot-top.
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5. Conclusions

This work has attempted the first numerical comparison between the effects of apply-
ing ultrasonic treatment in the hot-top, as is conventionally performed, and the application
of UST directly in the launder. Experiments were also carried out, and refining particle
statistics from the numerical simulation were shown to correlate with the microstructure
grain analysis from experiments.

This demonstrates the potential benefits of moving the UST processing upstream into
the launder, at which point melt-flow management systems (partitions) can then be used
to further increase residence time, activating more refining particles, and improving the
microstructure in the final billet. The effects of including partitions and increasing the
operating temperature for UST in the launder have been suggested to be beneficial in
previous works [10].

In the current work, only the distribution of dispersed refining particles was consid-
ered, but, in reality, these particles are also fragmented or deagglomerated by the shock
waves emitted from cavitation. In future work, extending the model to include particle
fragmentation and deagglomeration with a range of particle sizes will allow for, not only im-
proved distribution modelling, but also a better approximation of grain size. Furthermore,
while our results show that processing in the launder can lead to more dispersed particles,
the launder geometry has yet to be optimised and this also needs to be undertaken.
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