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Abstract: This article introduces the microstructural and mechanical properties of low and medium-
carbon advanced martensitic steels (AMSs) subjected to heat-treatment, hot- and warm- working,
and/or case-hardening processes. The AMSs developed for sheet and wire rod products have a
tensile strength higher than 1.5 GPa, good cold-formability, superior toughness and fatigue strength,
and delayed fracture strength due to a mixture of martensite and retained austenite, compared with
the conventional martensitic steels. In addition, the hot- and warm-stamping and forging contribute
to enhance the mechanical properties of the AMSs due to grain refining and the improvement of
retained austenite characteristics. The case-hardening process (fine particle peening and vacuum
carburization) is effective to further increase the fatigue strength.

Keywords: advanced martensitic steel; retained austenite characteristics; microstructure; mechanical
properties; heat treatment; hot-stamping; hot-forging; case hardening

1. Introduction

The strain-induced transformation of austenite to martensite enhances the ductility of
austenitic steels such as Fe-Ni, Fe-Ni-C, and Fe-Cr-Ni steels. These high-alloy austenitic
steels are called TRansformation-Induced Plasticity (TRIP) steels [1,2]. In the 1980s, low and
medium carbon Si-Mn ferritic steels subjected to intercritical annealing and then isothermal
transformation (IT) or austempering process were developed by Sakuma et al. [3,4]. The
steel is named low alloy TRIP-aided steel or TRIP-assisted steel because it achieves high
ductility by the TRIP effect of metastable retained austenite of 5 to 30 vol %. The TRIP-aided
steel was mainly applied to the automotive body parts that need high cold press formability
and weldability [4–6]. Up to now, various kinds of low and medium carbon advanced
ultrahigh- and high-strength steels (AHSSs) with metastable retained austenite of different
volume fraction, stability, size, morphology, and chemical composition were developed for
the weight reduction and the improvement of crash safety of the automotive body [7–10].

In general, the AHSSs are categorized as the following: first-, second- and third-
generation AHSSs [7–9]. The second-generation AHSSs are high Mn austenitic steels with
an Mn content higher than 14 mass % and are named TWinning-Induced Plasticity (TWIP)
steels [11]. The first- and third-generation AHSSs except for medium Mn (MMn) steels
with 4 to 12% Mn are lean micro-alloyed Si/Al-Mn steels. The third-generation AHSSs are
classified into two types, Type A and Type B, by the kind of matrix structure.

(I). First-generation AHSS: ferrite–martensite dual-phase (DP) steel [7,9,12–16], TRIP-
aided polygonal ferrite (TPF) steel [3–7,9,17–19], TRIP-aided annealed martensite
(TAM) steel [20–22], and complex-phase (CP) steel [7,9,15,23],

(II). Second-generation AHSS: high Mn TWIP and TWIP/TRIP steels [7,9,11,24–28],
(III). Third-generation AHSS (Type A): TRIP-aided bainitic ferrite (TBF) steel [9,10,29–33],

one-step and two-step quenched and partitioned (Q&P) steels [7–9,25,34–41], carbide-
free bainitic (CFB) steel [42–49], and duplex type medium manganese (D-MMn)
steel [9,25,50–57].
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(IV). Third-generation AHSS (Type B): TRIP-aided martensitic (TM) steel [58–63] and
martensite-type medium manganese (M-MMn) steel [53,64–69], which are called
advanced martensitic steel (AMS).

The product of tensile strength and total elongation (TS×TEl) of various AHSSs
as a function of austenite or retained austenite fraction is shown in Figure 1. For the
third-generation AHSSs (Type A), a TS×TEl higher than 30 GPa% is required to apply to
the automotive body frame members, the seat frame members, the concrete mixer truck
cylinders, etc. In connection with this, the IT process at low temperatures during martensite-
start temperature (Ms) and martensite-finish temperature (Mf) is recently applied to TBF,
one-step Q&P, and CFB steels [30–32,34–41,43,47,48,58–61], which achieve high tensile
strength and mechanical properties due to bainitic ferrite/martensite (BF/M) structure
matrix. To obtain the tensile strength higher than 1.5 GPa, TM and M-MMn steels with
martensitic structure matrix are recently developed [58–69]. These steels are classified as
the third-generation AHSSs (Type B). Hereafter, these third-generation AHSSs (type B)
are also called low and medium-carbon “Advanced Martensitic Steel (AMS)”, because the
martensitic structure is the main matrix structure.
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In the case of Mf > room temperature, the partitioning process will be added after the DQ 
process. The AMS exhibits higher TS×TEl [59–63] (Figure 1) and higher formability [60–
63] than the conventional quenched and tempered (Q&T) martensitic steel. In addition, 
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Figure 1. Relationship between the product of tensile strength and total elongation (TS×TEl) and ini-
tial volume fraction of austenite or retained austenite (fγ0) in the first-, second-, and third-generation
(Type A and Type B) advanced high-strength steels (AHSSs). Q&T: conventional quenched and
tempered martensitic steel, DP: ferrite–martensite dual-phase steel, CP: complex-phase steel, TPF,
TAM, TBF, and TM: transformation-induced plasticity (TRIP)-aided steels with polygonal ferrite,
annealed martensite, bainitic ferrite, and martensite matrix structure, respectively. Q&P: one-step
and two-step quenched and partitioned steel, CFB: carbide-free bainitic steel, D-MMn: duplex-type
medium Mn steel, M-MMn: martensite-type medium Mn steel, HMn TWIP: high manganese TWIP
steel, Aus: austenitic steel. This figure is reproduced based on Ref. [52]. Reprinted with permission
from Elsevier: Mater. Sci. Eng. A, Copyright 2021.

To produce the AMS, two kinds of heat-treatment process are proposed: (1) IT process
below Mf [59–63] and (2) direct quenching to room temperature (DQ) [58–63,70–73]. In the
case of Mf > room temperature, the partitioning process will be added after the DQ process.
The AMS exhibits higher TS×TEl [59–63] (Figure 1) and higher formability [60–63] than
the conventional quenched and tempered (Q&T) martensitic steel. In addition, the AMS
possesses excellent toughness [53,64,65,74], high fatigue strength (especially high notch-
fatigue strength) [75], and high delayed fracture strength [76]. So, the AMS is expected to
be applied to not only press forming sheet products but also bar-forging products such as
gear, screw, etc.

This paper introduces the microstructural and mechanical properties of various low
and medium-carbon AMSs. In addition, the improvement mechanisms of the mechanical
properties are detailed by relating to the matrix structure, the strain-induced transformation
behavior of metastable retained austenite, and/or the martensite/austenite constituent
(MA phase).
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2. Two Kinds of Heat-Treatment Process for AMSs

The heat-treatment process of AMS is as simple as the Q&T process of the conventional
martensitic steels. In addition, the process after austenitizing is conducted at relatively
low temperature, compared with those of TBF, Q&P, and CFB steels [58–63,66–73]. This
means that quenching in an oil bath can be used for the heat treatment, not a salt bath.
Regarding alloying elements of the AMS, Si, and/or Al higher than 0.5 mass% are added
to suppress the carbide precipitation and increase the volume fraction of carbon-enriched
retained austenite [59–63]. In some cases, micro-alloying elements of Mn, Cr, Ni, Mo, B,
etc. are added to increase the hardenability of the steels [62,65]. Furthermore, V, Ti, and/or
Nb are added to refine the prior austenitic grain and to increase the strength through their
carbide precipitates [27,59–63,67,68].

When the Mf of the AMS is higher than room temperature, the IT process below
Mf [59–63] or DQ process [53,58–63,70–73] immediately after austenitizing and hot-rolling
is conducted using an oil bath below 200 ◦C (Figure 2a). In the case of the DQ process,
partitioning is added after the DQ process (named DQ-P process) [59,60,70–72]. The
partitioning temperatures just below and above Mf are recommended to minimize the
increase in carbide precipitation and the decrease in retained austenite fraction [59,60].
Unlike this, Gao et al. propose the partitioning (tempering) temperature above Ms [70–72].
Such IT and DQ-P processes (Figure 2a) are applied to Si/Al-Mn steels with low and
medium carbon content [59–63] and with a medium manganese content of about 5% [65,66].
Regarding M-MMn steels, air cooling to room temperature is possible instead of quenching
in oil or water bath due to the high hardenability [64,77–80].
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Figure 2. Heat treatment diagrams of (a) the isothermal transformation (IT) process below Mf and direct quenching to room
temperature (RT) followed by partitioning (DQ-P) process in a case of RT < Mf [58–63] and (b) the DQ and DQ-P process in
a case of RT > Mf [67–69]. RT: room temperature, TIT: isothermal transformation temperature, TQ: quenching temperature,
TP: partitioning temperature.

On the other hand, when the Mf of the AMS is lower than room temperature such as
for M-MMn steel with a relatively high Mn content of about 10 mass %, the DQ or DQ-P
process is carried out [67–69] (Figure 2b). For the DQ-P process, He et al. [67] adopt the
partitioning (tempering) at 300 to 400 ◦C for 10 min in 0.2%C–10%Mn–2%Al–0.1%V steel.

To optimize the microstructure and mechanical properties of the AMS, ausform-
ing at temperatures between Ac3 and Ms is carried out before the IT, DQ, or DQ-P
process [68,81–83], in the same way as TBF [84] and CFB steels [49,85].

3. Microstructure and Retained Austenite Characteristics of AMSs
3.1. IT and DQ-P Processes (RT < Mf)

When 0.21%C–1.49%Si–1.50%Mn–1.0%Cr–0.05%Mn TM steel is subjected to the IT
process at temperatures below Mf (261 ◦C) and the DQ process, most of the austenite
start to transform to soft coarse lath-martensite accompanied with auto-tempering [59–63]
(Figures 3 and 4a). The other austenites are retained as filmy and blocky morphology in
the lath-martensite structure matrix, and a part of retained austenite stays in the fine MA
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phase [35,59–63]. It is noteworthy that fine lath/twin-martensite in the MA phase is very
hard because of fine morphology, high dislocation density, and high carbon concentration.
As mentioned in the previous section, partitioning after the DQ process rises the mechanical
stability of the retained austenite due to carbon-enrichment. In addition, it plays an
important role in the softening of the coarse lath-martensite and fine lath/twin-martensite
and carbon enrichment of retained austenite, with a small increase in carbide fraction and a
small decrease in retained austenite fraction [60], as well as the relaxation of transformation
strain. Such the AMSs are corresponding to low and medium-carbon TM steels [32,59–63]
and M-MMn steels with relatively low Mn content [65,66]. Note that carbides precipitate
only in soft coarse lath-martensite (Figure 3c). De Cooman et al. show that the carbide is
transition carbide or cementite [17].
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Figure 4. Illustration of typical microstructures of advanced martensitic steels (AMSs) subjected to (a) the IT and DQ processes
in the case of RT < Mf and (b) the DQ and DQ-P processes in the case of RT > Mf. RT: room temperature. αm, αm*, γR, θ and
MA represent coarse lath-martensite, fine lath/twin-martensite, retained austenite, carbide and MA phase, respectively.

According to Sugimoto et al. [60,61,63], the retained austenite fraction increases with
increasing IT temperature, with a constant carbon concentration, in an IT temperature range
of 25 to 250 ◦C in 0.21%C–1.49%Si–1.50%Mn–1.0%Cr–0.05%Nb TM steel (Figure 5a), where
the IT process at 25 ◦C is corresponding to the DQ process. It is noteworthy that the MA
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phase fraction increases and the carbide fraction decreases with increasing IT temperature
in the TM steel (Figure 5b). The carbide fraction is 1/4 to 1/2 times that of JIS-SCM420
Q&T steel. Additions of Cr and Mo hardly influence the retained austenite fraction (about
4 vol %) but increase the MA phase fraction and decrease the carbide fraction [59,62]. An
increase in Mn content significantly increases the volume fraction of retained austenite in
0.2%C–1.5%Si–1.5%Mn TM steel [65,66]. The mechanical stability of the retained austenite
defined by the following strain-induced transformation factor k [6] is nearly constant in an
IT temperature range below Mf in the same way as the carbon concentration of the retained
austenite (Figure 5b,c).

log fγ = log fγ0 − k ε (1)

where fγ is the volume fraction of retained austenite after being subjected to a plastic strain
ε and fγ0 is the initial volume fraction of retained austenite. The k-value is higher than
that of TBF steel [29,30] owing to the lower carbon concentration of the retained austenite
and higher flow stress. Mn addition in 0.2%C–1.5%Si–1.5%Mn steel increases the volume
fraction and mechanical stability of retained austenite because Mn is austenite former
element [65,66].
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3.2. DQ and DQ-P Processes (RT > Mf)

The DQ process at the temperatures above Mf produces a simple duplex structure
of soft coarse lath-martensite structure matrix and blocky and filmy retained austen-
ite in 0.2%C–10%Mn–2%Al–0.1%V [67,68] (Figure 4b). The soft lath-martensite fraction
(fαm) can be estimated by the following empirical equation proposed by Koistinen and
Marburger [8,86].

fαm = 1 − exp {−1.1 × 10−2 (Ms − TQ)} (2)

where TQ is the quenching temperature. It is noteworthy that the retained austenite
fraction is much higher than that of TM steel subjected to the IT process of Figure 2a [67,68].
Differing from the IT process (Figure 4a), the MA phase and carbide are hardly formed
because the process is not cooled to temperatures below Mf, similar to TBF, Q&P, and CFB
steels with a BF/M matrix structure [29–32,34,42–44,47]. In addition, such a microstructure
without carbide in the soft lath-martensite resembles that of 0.23%C–2.3%Mn–1.5%Si–
12.5%Cr–0.03%Ti–0.05%Nb martensitic stainless steel containing retained austenite [87].

According to Du et al. [69], in 0.24C–7.5Mn–1.1Si–0.1V M-MMn steel subjected to the
DQ-P process, partitioning above Ms softens the lath-martensite matrix structure due to
the decreased carbon concentration and dislocation density, in the same way as TM steel
subjected to the DQ-P process. On the contrary, the retained austenite is carbon-enriched.
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Sub-cooling in liquid nitrogen decreases the retained austenite fraction. It is very important
to know that the subsequent partitioning increases the volume fraction of retained austenite
through the migration of austenite/martensite interface, with an increase in the carbon
concentration. The AMS subjected to the DQ-P process is corresponding to M-MMn steels
with Mf lower than room temperature.

3.3. Ausforming

Ausforming at temperatures between Ac3 and Ms before the IT, DQ, and DQ-P process
can not only reduce the Ms due to the strengthening of austenite but also introduce
deformation defects and elongate the microstructure [81], in the same way as TBF [84] and
CFB [49] steels. If the ausforming is conducted under the conditions of relatively high
temperature and large plastic strain, prior austenitic grain is refined, although dislocation
density is decreased. According to He et al. [68], warm rolling at 600 ◦C before the DQ
process is expected to avoid dynamic recrystallization and minimize dislocation recovery
in 0.2%C–10%Mn–2%Al–0.1%V M-MMn steel. In this case, it is also essential to keep a
finishing rolling temperature higher than the Ms temperature (about 130 ◦C) to avoid
martensitic transformation during the warm rolling process [68]. Hojo et al. [82,83] show
that ausforming at 650 ◦C and subsequent IT process at 200 ◦C refines the microstructure
and increases the retained austenite fraction and its stability in 0.23%C–1.5%Si–1.5%Mn–
1.0%Cr–0.2%Mo–0.002%B TM steel.

4. Tensile Properties and Cold Formability of AMS Sheets
4.1. Tensile Properties

The IT process brings on the continuous yielding and low yield stress (or 0.2% offset
proof stress) at room temperature in 0.21%C–1.49%Si–1.50%Mn–1.0%Cr–0.05%Nb TM steel
(Figure 6). The main origin is due to a large amount of hard MA phase [61–63], which
creates a preferential yielding zone in a matrix as fresh martensite second phase in dual-
phase steel, as well as the strain-induced transformation of retained austenite [61–63,88].
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When 0.21C–1.49Si–1.50Mn–1.0Cr–0.05Nb TM steel is subjected to the DQ process or
the IT process at temperatures below 200 ◦C (< Mf), the tensile strength exceeds 1.5 GPa,
although the tensile strength and yield stress slightly decrease with increasing IT temper-
ature [60,61,63] (Figure 6). The uniform and total elongations and reduction of the area
tend to slightly increase with increasing IT temperature. Partitioning after the DQ process
increases the yield stress due to the relaxation of the internal residual stress, despite the
softening of coarse and fine martensites and the coarsening of the carbides. In addition,
the partitioning slightly decreases the uniform and total elongations [60]. Resultantly, the
TM steel subjected to the DQ-P process exhibits a TS×TEl of about 11 GPa%. Torizuka and



Metals 2021, 11, 652 7 of 24

Hanamura [53] show that 0.1%C–2%Si–5%Mn M-MMn steel subjected to the DQ process
completes a TS×TEl of 30 GPa%, almost equal to those of D-MMn steel. He et al. [67]
report that 0.2%C–10%Mn–2%Al–0.1%V M-MMn steel subjected to the DQ-P process
(Tp = 300 ◦C) achieves higher TS×TEl than press hardening steel and DP steel. Gao et al.
find that slow cooling on the DQ process increases the total elongation with no change in
tensile strength, compared to rapid cooling such as quenching in water [70].

4.2. Formabilities

The best combination of tensile strength and formabilities such as stretch-formability,
stretch-flangeability, and bendability can be achieved by the IT process at TIT = 200 ◦C in
0.21%C–1.49%Si–1.50%Mn–1.0%Cr–0.05%Nb TM steel (Figure 7) [61]. This optimum IT
temperature (200 ◦C) is equivalent to Mf—60 ◦C in the TM steel. All formabilities of the TM
steel are superior to those of 22MnB5 Q&T steel and 0.082%C–0.88%Si–2.0%Mn DP steel.
The increased stretch-formability may be caused by the TRIP effect of metastable retained
austenite. Meanwhile, the high stretch-flangeability is brought from a small degree of
damage to the punched hole-surface with a long shear section and a small number of tiny
cracks or voids, resulting from the plastic relaxation by the strain-induced transformation
of retained austenite. Such small punching damage leads to difficult crack propagation
and void growth on hole-expanding [60,61]. Good bendability is considered to be caused
by a high localized ductility. Partitioning after the DQ process further increases these
formabilities, but the formabilities are lower than those of the IT process at 200 ◦C [60].
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bending radius (Rmin), and tensile strength (TS) in 0.21%C–1.49%Si–1.50%Mn–1.0%Cr–0.05%Nb TM steel subjected to the
DQ process or the IT process at TIT = 100 to 250 ◦C for 1000 s (•). DP (5): 0.082%C–0.88%Si–2.0%Mn ferrite–martensite
dual-phase steel, DIN-22MnB5 (N): 0.23%C–0.19%Si–1.29%Mn–0.21%Cr–0.003%B Q&T steel [61], 3Mn (3): 0.2%C–1.5%Si–
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steel subjected to the DQ process and the IT process at 100 ◦C [66]. This figure was reproduced from Refs. [61,66]. Ref. [61]
is reprinted with permission from AIST: AIST 2013, Copyright 2021.

Sugimoto and Tanino [66] show that 0.2%C-1.5%Si-5%Mn M-MMn steel subjected
to the IT process at 100 ◦C (<Mf) achieves a maximum stretch height (Hmax) of 6.3 mm
and a hole expanding ratio (HER) of 16.7% at maximum (Figure 7). However, 0.2%C-
1.5%Si-3%Mn M-MMn steel with low Mn content exhibits higher Hmax and HER, although
the HER is lower than that of 22MnB5 Q&T steel [89]. Sugimoto et al. propose that a
large amount of retained austenite transformed at an early stage in the M-MMn steels
contradicts the increase in the stretch-formability and stretch-flangeability through the
easy void initiation and growth [66]. Up to now, there is no data of bendability in the
M-MMn steel.
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5. Mechanical Properties of Heat-Treated AMS Plates and Bars
5.1. Impact Toughness and Fracture Toughness

According to Kobayashi et al. [74], 0.2%C-1.5%Si-1.5%Mn-(0–1.0)%Cr-(0–0.2)%Mo
TM steels subjected to the DQ-P process (Tp = 300 ◦C) possess as high Charpy V-notch
impact value (Ev) at room temperature as TBF steels with the same chemical composition
(Figure 8a). The Evs and the product of TS and Ev (TS×Ev) of 0.2%C-1.5%Si-(3, 5)%Mn
M-MMn steels subjected to the DQ or the IT process decrease compared with those of TM
steels, especially in 5%Mn steel [65]. Ductile-brittle transition temperatures (DBTTs) of the
TM steels are far lower than those of JIS-SCM420 Q&T and TBF steels [74,90] (Figure 8b).
The DBTTs of the M-MMn steels are almost the same as those of 0.2%C-1.5%Si-1.5%Mn-(0–
1.0)%Cr-(0–0.2)%Mn TBF steels but are far higher than the TM steels [65].
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Figure 9 illustrates (a) the ductile fracture (void initiation, growth and void-coalescence)
and (b) brittle fracture (cleavage crack initiation and propagation) behavior of the TM steel
appeared on impact tests [74,90]. In the ductile fracture, most of the voids originate at the
interface of the large MA phase and the matrix structure. In this case, retained austenite
suppresses the void initiation through the plastic relaxation by the strain-induced marten-
site transformation. As the deformation progresses further, these voids grow and coalesce
(Figure 9a). Therefore, (i) a large amount of MA phase and (ii) the plastic relaxation mainly
contribute to the high Evs of the TM steels. Gao et al. show that 0.20%C–2.0%Mn–1.5%Si–
0.5%Cr–0.28%Mo and 0.4%C–2.0%Mn–1.7%Si–0.4%Cr TM steels subjected to the DQ-P
process (Tp = 280 ◦C > Ms) exhibit higher Evs than TBF and CFB steels, although the
Evs of these steels are lower than that of two-step Q&P steels with the same chemical
composition [71,72].

In the brittle fracture, the strain-induced transformation of retained austenite also
suppresses the cleavage crack initiation, and the MA phase retards the crack growth
(Figure 9b). Resultantly, the retained austenite and MA phase play a role in lowering the
DBTT of the TM steel [74]. On the other hand, high DBTTs of 0.2%C–1.5%Si–(3,5)%Mn
M-MMn steels are mainly associated with high solute Mn concentration in the matrix,
although high Mn addition increases the volume fraction and mechanical stability of
retained austenite and decreases the unit path of quasi-cleavage crack (Lc in Figure 9b) [65].



Metals 2021, 11, 652 9 of 24Metals 2021, 11, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 9. Illustrations showing (a) ductile fracture and (b) brittle fracture of TM steel appeared on impact tests [74]. Lc: 
Quasi-cleavage length affected by the MA phase located on prior austenitic, packet, and block boundaries. αm, αm*, γR, θ, 
and MA represent coarse lath-martensite, fine lath/twin-martensite, retained austenite, carbide, and MA phase, respec-
tively. Reprinted with permission from Springer Nature: Metall. Mater. Trans. A, Copyright 2021. 

Kobayashi et al. find that 0.2%C–1.5%Si–1.5%Mn–1.0%Cr–0.05%Nb TM steel sub-
jected to the DQ-P process (Tp = 200 to 450 °C) [91] and the IT process (TIT = 200 °C and 250 
°C, <Mf) [92] shows extremely high fracture toughness (KIC = 132–163 MPa m1/2) (Figure 
10). The fracture toughness is two times that (KIC = 57–63 MPa m1/2) of JIS-SCM420 Q&T 
steel tempered at TT = 200 to 400 °C and is the same degree as that of 18Ni maraging steel. 
It is considered that the superior fracture toughness is essentially due to (i) a large amount 
of MA phase and (ii) plastic relaxation by the strain-induced transformation of the re-
tained austenite in the same way as the above impact toughness, which suppresses crack 
formation, growth, and coalescence as well as cleavage fracture at the pre-crack tip. Wu 
et al. [93] report that fracture toughness of 0.20%C–1.42%Si–1.87%Mn steel subjected to 
the DQ-P process (Tp = 300 °C) is only KIC = 54.5 MPa m1/2. The low fracture toughness 
significantly differs from the result of Figure 10. This result should be discussed in the 
future.  

 
Figure 10. Relationship between fracture toughness (KIC) and tensile strength (TS) [92] in 0.2%C–
1.5%Si–1.5%Mn–(0–1.0)%Cr–(0–0.2)%Mn TBF (□) and TM (DQ-P, Tp = 200 °C to 450 °C, ●) steels 
and JIS-SCM420 Q&T steel (TT = 200 °C to 400 °C, ▲), compared with low alloy Q&T, 18Ni marag-
ing and nanostructured bainitic steels [92,94]. This figure is reproduced based on Ref. [92]. Re-
printed with permission from ISIJ: ISIJ Int, Copyright 2021. 

Figure 9. Illustrations showing (a) ductile fracture and (b) brittle fracture of TM steel appeared on impact tests [74]. Lc:
Quasi-cleavage length affected by the MA phase located on prior austenitic, packet, and block boundaries. αm, αm*, γR, θ,
and MA represent coarse lath-martensite, fine lath/twin-martensite, retained austenite, carbide, and MA phase, respectively.
Reprinted with permission from Springer Nature: Metall. Mater. Trans. A, Copyright 2021.

Kobayashi et al. find that 0.2%C–1.5%Si–1.5%Mn–1.0%Cr–0.05%Nb TM steel sub-
jected to the DQ-P process (Tp = 200 to 450 ◦C) [91] and the IT process (TIT = 200 ◦C and
250 ◦C, <Mf) [92] shows extremely high fracture toughness (KIC = 132–163 MPa m1/2)
(Figure 10). The fracture toughness is two times that (KIC = 57–63 MPa m1/2) of JIS-SCM420
Q&T steel tempered at TT = 200 to 400 ◦C and is the same degree as that of 18Ni maraging
steel. It is considered that the superior fracture toughness is essentially due to (i) a large
amount of MA phase and (ii) plastic relaxation by the strain-induced transformation of
the retained austenite in the same way as the above impact toughness, which suppresses
crack formation, growth, and coalescence as well as cleavage fracture at the pre-crack tip.
Wu et al. [93] report that fracture toughness of 0.20%C–1.42%Si–1.87%Mn steel subjected
to the DQ-P process (Tp = 300 ◦C) is only KIC = 54.5 MPa m1/2. The low fracture tough-
ness significantly differs from the result of Figure 10. This result should be discussed in
the future.
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Figure 10. Relationship between fracture toughness (KIC) and tensile strength (TS) [92] in 0.2%C–
1.5%Si–1.5%Mn–(0–1.0)%Cr–(0–0.2)%Mn TBF (�) and TM (DQ-P, Tp = 200 ◦C to 450 ◦C, •) steels and
JIS-SCM420 Q&T steel (TT = 200 ◦C to 400 ◦C, N), compared with low alloy Q&T, 18Ni maraging and
nanostructured bainitic steels [92,94]. This figure is reproduced based on Ref. [92]. Reprinted with
permission from ISIJ: ISIJ Int, Copyright 2021.
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5.2. Fatigue Property

0.2%C–1.5%Si–1.5%Mn–1.0%Cr–0.2%Mo TM steel subjected to the DQ-P (Tp = 200 ◦C)
process exhibits large fatigue hardening despite a tensile strength over 1.5 GPa [95]
(Figure 11a), in the same way as TBF [96], CFB [97], and high alloy TRIP (16%Cr–7%Mn–
8%Ni and 16%Cr–6%Mn–6%Ni) [98] steels. Conversely, conventional martensitic steel
such as JIS-SCM420 Q&T steel exhibits fatigue softening.
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In general, true cyclic hardening increment ∆σh,cyc(∆ε/2) of the TM steel (see Figure 11b)
is obtained by [95]

∆σh,cyc(∆ε/2) = σA,max(∆ε/2) − σM
A,max(∆ε/2) = ∆σi,cyc(∆ε/2) + ∆σt,cyc(∆ε/2)

+∆σf,cyc(∆ε/2)
(3)

where σA,max(∆ε/2) and σM
A,max(∆ε/2) are the maximum cyclic stress amplitudes of TM

steel and its matrix, respectively. ∆ε is total strain amplitude. Additionally, ∆σi,cyc(∆ε/2),
∆σt,cyc(∆ε/2), and ∆σf,cyc(∆ε/2) represent “the long-range internal stress hardening”, “the
strain-induced transformation hardening”, and “the forest dislocation hardening of the
matrix” upon cyclic deformation, respectively, which can be formulated by

∆σi,cyc(∆ε/2) = {(7 − 5ν)µ/5(1 − ν)} f ·εp
µ (4)

∆σt,cyc(∆ε/2) = g(∆fαm) (5)

∆σf,cyc(∆ε/2) = ζµ(b·f ·ε/2r)1/2 (6)

where ν is the Poisson’s ratio, µ is the shear modulus, εp
µ is the eigenstrain, f is the

volume fraction of the second phase, g(∆fαm) is a function of the strain-induced martensite
fraction, ζ is a material constant, b is the Burgers vector, and r is the particle radius of
the second phase. From the estimation of each cyclic hardening of Equations (4)–(6),
Sugimoto et al. [95] propose that the fatigue hardening of TM steel is mainly associated
with the compressive internal stress resulting from a difference in the flow stress (or plastic
strain) between the matrix and the MA phase, with a small contribution from the strain-
induced transformation and forest dislocation hardenings. The above theory is also applied
to the fatigue hardening behavior of TPF [99] and TBF [95] steels.
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The IT process enhances the smooth- and notch-fatigue limits (σw and σwn) of (0.1–0.4)%
C–1.5%Si–1.5%Mn TM steels and resultantly reduces the notch-sensitivity factor in a Vick-
ers hardness range between HV350 and HV600, compared to the conventional JIS-SCM420,
SCM435, and SCM440 Q&T steels (Figure 12a) [75]. However, the notch-fatigue limits
are lower than those of TBF steels [100]. In addition, the notch-sensitivity factor is higher
than that of 0.2%C–1.5%Si–1.5%Mn–(0–1.0)%Cr–(0–0.2)%Mo–(0–1.5)%Ni TBF steels in a
hardness range below 400HV. The above-mentioned notch-sensitivity factor for fatigue
limit (q) is defined by the following equation [101].

q = (Kf − 1)/(Kt − 1) (7)

where Kf and Kt are the fatigue notch factor (=σw/σwn) and the elastic stress concentration
coefficient (Kt = 1.7 in Ref. [75]), respectively.
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According to Knott [102], the plastic zone size (dY) at a small fatigue crack tip can be
estimated using the following equation,

dY = K2/(3πYS2) (8)

where K is the stress intensity factor defined by K = σ(πc)1/2 (σ is the applied stress and c is
the crack length) and YS is the yield stress of the material. The plastic zone size is estimated
to be about 4.0 µm in 0.4%C–1.5%Si–1.5%Mn TM steel if the fatigue crack length at the first
stage is 2c = 30 µm equivalent to the prior austenitic grain size and the applied stress is the
maximum stress corresponding to the fatigue limit [75].

As shown in Figure 13, the plastic zone always includes some retained austenite
particles in the MA phase because the inter-particle path of the MA phase is 0.5–2.0 µm,
as well as a matrix structure. Based on this result, Kobayashi et al. [75] propose that the
high fatigue limits and low notch-sensitivity of (0.1–0.4)%C–1.5%Si–1.5%Mn TM steels are
principally associated with (i) the plastic relaxation of localized stress concentration as a
result of the strain-induced transformation of 3–5 vol % metastable retained austenite and
(ii) a large amount of finely dispersed MA phase along prior austenitic, packet, and block
boundaries, as well as (iii) a small amount of carbide only in the coarse lath-martensite
structure, which contributes to difficult fatigue crack initiation and/or propagation.
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A similar mechanism is also reported by Tomita et al. using 0.6%C–1.5%Si–0.8%Mn
Q&P steel with BF/M duplex phase [103] and Huo and Gao using 0.24%C–1.75%Si–
1.79%Mn–1.74%Ni–1.06%Cr–0.32%Mo–0.13%V steel subjected to the DQ-P process (Tp = 150
to 550 ◦C) [104]. Zao et al. report that Nb addition of 0.042% in 0.21%C–1.74%Si–2.20%Mn–
0.62%Cr TM steel subjected to the DQ-P process (Tp = 280 ◦C) increases a very high cycle
fatigue strength because of the cumulative effect of strengthening associated with grain
refinement and precipitation strengthening mechanisms [105].

5.3. Delayed Fracture Strength

It is well-known that metastable retained austenite can absorb a large amount of
solute hydrogen in TBF, Q&P, CFB, and D-MMn steels [57,106–110]. This results in a high
delayed fracture strength in these steels because hydrogen concentration on the prior
austenitic grain boundary is lowered. In 0.2%C–1.5%Si–1.5%Mn–(0–1.0)%Cr–(0–0.2)%Mo–
(0–1.5%%Ni–0.05%Nb TM steels, the DQ-P process (Tp = 250 and 350 ◦C) increases the
delayed fracture strength (maximum fracture strength enduring for 5 h measured by four-
point bending tests). In addition, the DQ-P process decreases hydrogen embrittlement
susceptibility (HES), which is defined by the following equation in the TM steels [76,108]
(Figure 14a).

HES = (ε0 − ε1)/ε0 × 100% (9)

where ε0 and ε1 represent the total elongation of steel before and after hydrogen charging,
respectively. The HES values are comparable with those of TBF steels with the same chemi-
cal composition and far lower than those of 0.40%C–0.16%Si–1.44%Mn Q&T steel [106–108].
The HES of the TM steels can be improved by the addition of micro-alloying elements,
especially 1.0%Cr addition (corresponding to steel D of TM steel in Figure 14) [63]. In
the 1.0%Cr TM steels, the metastable retained austenite plays a role in trapping the dif-
fusible hydrogen, similar to the third-generation AHSSs (Type A) [63,76] (Figure 14b).
Hojo et al. [76] propose that the high hydrogen embrittlement resistance is caused by that
(i) most of the solute hydrogen is trapped in the retained austenite with high mechanical
stability, and resultantly, (ii) the initiation and propagation of voids and cracks at prior
austenite grain, packet, block, and lath boundaries are suppressed.
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Many researchers are investigating the hydrogen embrittlement of D-MMn
steels [57,111,112]. Unfortunately, there is not any research on the delayed fracture strength
of M-MMn steel up to now.

5.4. Wear Property and Overall Performance of Mechanical Properties

There are many kinds of research on the wear properties of TBF, Q&P, and CFB steels
with BF/M matrix structure [97,113,114]. However, the research on the wear property of
TM and M-MMn steels is hardly presented. According to De Oliveira et al. [113], the two-
step Q&P process improves the wear performance compared to the one-step Q&P process
(TIT > Ms) in 0.29%C–1.35%Si–1.96%Mn–0.1%Cr–0.03%Mo–0.04%Nb steel. Feng et al. [97]
show using 0.24%C–1.44%Si–1.76%Mn–0.75%Ni–1.76&Cr–0.39%Mo–0.65%Al rail steel that
the DQ process (air cooling) after austenitizing enhances the wear resistance compared to
the IT process above Ms. They propose that the strain-induced martensite transformation
of retained austenite in the steel can be linked to the retardation of crack initiation and
propagation, as well as martensite formed on air cooling. Wang et al. [114] show that
partitioning and cryogenic treatment after the IT process (TIT = 360 ◦C and 400 ◦C > Ms)
followed by slow cooling is effective to increase the wear property in 0.22%C–2.0%Mn–
1.0%Si–0.8%Cr–0.8%(Mo+Ni) BF/M rail steel. This is mainly associated with a decrease in
the volume fraction of retained austenite or an increase in the hardness because surface
hardness is the main factor controlling the abrasive wear [115]. From the above results of
TBF, Q&P, and CFB rail steels, we can expect that TM and M-MMn steels possess good
wear resistance because the hardness is higher than the TBF, Q&P, and CFB steels, although
the retained austenite fraction is lower.

When various mechanical properties without wear property of 0.2%C–1.5%Si–1.5Mn
TM steel are compared to those of TBF steel with the same composition and DIN-22MnB5
Q&T steel, the TM steel is superior to that of Q&T steel (Figure 15) [116,117]. The mechanical
properties of M-MMn steel are not ready yet. Ausforming at temperatures between Ac3
and Ms is expected to enhance the whole mechanical properties. However, only the effects
of ausforming conditions on the tensile strength, total elongation, and impact toughness
are reported up to now [118,119].
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Figure 15. Comparison of various mechanical properties of 0.2%C–1.5%Si–1.5Mn TBF and TM steels
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6. Hot- and Warm-Workings to Produce Automotive AMS Parts

Hot-workings such as hot-stamping and hot-forging refine the microstructure and in-
crease the retained austenite fraction in AMSs, in the same way as ausforming. Resultantly,
the hot-workings enhance strength and other mechanical properties. In the following, the
tensile and mechanical properties of hot-stamped and hot-forged AMSs are introduced.

6.1. Hot- and Warm-Stamping

In the conventional hot-stamping, the steel blank is completely austenitized at temper-
atures above Ac3 before stamping, followed by die-quenching to 150 to 250 ◦C [120,121].
The hot-stamping process considerably reduces the spring back of the products, differing
from the cold-stamping process [120]. As the process suppresses the hydrogen embrittle-
ment due to lowering the residual stress, hot-stamping steels such as DIN-22MnB5 and
30MnB5 steels are applied to automotive center pillars with the tensile strength of 1.5 to
1.8 GPa [120,122]. The matrix structure after die-quenching is almost martensite.

Recently, warm-stamping at temperatures above Ms are developed to improve pro-
ductivity and reduce manufacturing costs [122–125] (Figure 16). In the warm-stamping,
the blank is austenitized at temperatures above Ac3, in the same way as the conven-
tional hot-stamping process. After that, the austenitized blanks are pre-cooled to any
temperatures during Ac3 and Ms before stamping. By this warm-stamping, the blank
is strain-hardened along with the improvement of the drawability and formability. In
addition, productivity can also be increased by shortening the cooling cycle time and
decreasing the oxidation [122]. At present, the warm-stamping at 450 to 500 ◦C is applied
to the B-pillar of (0.08–0.2)%C–(4.0–7.0)%Mn D-MMn steels, not M-MMn steel [125]. After
the warm-stamping, the tensile strength is about 1.4 GPa with total elongation of 11.8%.
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As another latest advance, the combined hot-stamping and two-step Q&P process is
proposed [57,126]. In 0.28%C–1.69%Si–1.10%Mn–0.99%Cr–0.029%Nb steel, in which the
two-step Q&P process brings on the matrix structure containing martensite. This combined
process is also applied to the TM steel subjected to the IT and DQ-P processes [127].

6.2. Hot- and Warm-Forging

Up to now, the conventional forging steels such as precipitation hardening fer-
rite/pearlite (PHFP) steels, micro-alloyed PHFP (PHFP-M) steels [128,129], bainitic
steels [130,131] and Q&T martensitic steels [132,133] are applied to the automotive en-
gine, powertrain and chassis for weight reduction. For further weight reduction of their
parts, 1.5 to 2.0 GPa grade hot-forging AMSs such as TM [118,119,129] and M-MMn [78–80]
steels subjected to the IT, DQ, and DQ-P processes have been recently developed, as well
as TBF [80,134–136], Q&P [137], and CFB [138,139] forging steels with the BF/M matrix. In
general, this prospective AMSs contains Si and/or Al higher than 1.0 mass % to suppress
the carbide formation and promote a predominant formation of carbon-enriched retained
austenite [118,119,140]. Micro-alloying of Mn, Cr, Ni, Mo, B, etc. is fundamental to increase
the hardenability. In addition, additions of V, Ti, and/or Nb are required for refining the
prior austenitic grain and precipitation hardening.

According to Kobayashi et al. [118], hot-forging at 900 ◦C (>Ac3) with a reduction strain
of 40 to 60% (one pass, strain rate: 50%/s) followed by the DQ-P process (Tp = 200 to 350 ◦C)
produces a uniform and fine microstructure in 0.4C–1.5Si–1.5Mn–0.05Nb–0.002B TM steel,
without polygonal ferrite. In addition, the hot-forging increases the volume fractions of
retained austenite and MA phase, with the decreased carbide fraction. Resultantly, the
hot-forging and subsequent DQ-P process bring on an excellent combination of yield
stress and Charpy V-notch impact value (YS = 1400 to 1561 MPa and Ev of 35 to 44 J/cm2)
(Figure 17) [117,118]. The balance is far higher than the conventional Q&T martensitic,
bainitic, PHFP, and PHFP-M steels [141–146], and it is nearly the same as those of TBF,
Q&P, and CFB steels with a BF/M matrix structure, although the balance is slightly inferior
to that of TBF steels with the same chemistry. According to Kobayashi et al. [118,119],
the increased balance is associated with (i) refined duplex phase structure (soft coarse
lath-martensite and MA phase) and (ii) increased volume fractions of retained austenite
and MA phase. Note that the balance (YS×Ev) value of D-MMn steel is lower, although
the steel possesses an extremely high TS×TEl value.
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Figure 17. Relationship between Charpy V-notch impact value (Ev) and yield stress (YS) at room
temperature in steel groups [77,117,141–146]. PHFP, PHFP-M, TBF, Q&P, CFB, D-MMn, AMS, TM
and M-MMn are precipitation-hardening ferritic–pearlitic, micro-alloyed PHFP, TRIP-aided bainitic
ferrite, quenching and partitioning, carbide-free bainitic, duplex-type medium Mn, advanced marten-
sitic, TRIP-aided martensitic, and martensite-type medium Mn steels, respectively. This figure is
reproduced based on Ref. [117].
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The cooling rate just after hot-forging is a very important factor controlling the microstruc-
ture and mechanical properties of AMSs. Kobayashi et al. [119] show an important result that
a low cooling rate (1.2 ◦C/s) to room temperature after hot-forging increases the Ev and lowers
the DBTT in 0.21%C–1.49%Si–1.49%Mn–1.0%Cr–0.20%Mo–1.50%Ni–0.05%Nb TM steel. In
addition, they show that the improved impact toughness is mainly caused by the increased
volume fraction and carbon concentration of retained austenite and the decreased carbide
fraction as well as the finely dispersed MA phase. Gramlich et al. [80] show that air cooling to
room temperature after hot-forging produces a mixture of martensite with a small amount
of carbide and retained austenite and results in extremely high strain-hardening in 0.18%C–
0.52%Si–3.98%Mn–0.54%Al–0.11%Cr–0.20%Mo–0.10%Ni–0.11%V–0.036%Nb M-MMn steel.
In this case, subsequent partitioning or tempering at 250 to 350 ◦C slightly increases the
carbide size without major changes in morphology. Resultantly, the partitioning increases the
yield stress and slightly decreases the tensile strength with no change in elongation.

Hojo et al. [82] show that warm-forging at 650 ◦C and subsequent slow cooling
(1 ◦C/s) increases the volume fraction and carbon concentration of the retained austenite
and decreases the volume fractions of MA phase and carbide in 0.23%C–1.5%Si–1.5%Mn–
1.0%Cr–0.2%Mo–0.1%Ti–0.0019%B TM steel (Figure 18). The product of shear stress and
shear elongation of the TM steel after warm-forging, which is measured by small punching
tests at room temperature, is slightly increased.
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7. Case Hardening of AMSs

Fine particle peening (FPP) treatment after the heat-treatment (the DQ-P process,
Tp = 180 ◦C) increases the rotating bending fatigue limits of smooth and notched specimens
in 0.20%C–1.50%Si–1.51%Mn–1.0%Cr–0.05%Nb TM steel (Figure 19a) [147]. Vacuum
carburization (VC) treatment followed by the DQ-P process and subsequent FPP treatment
(VC+FPP, Tp = 180 ◦C) further increases the fatigue limits in 0.2%C–1.5%Si–1.5%Mn–
1.0%Cr–0.05%Nb TM steel [148]. According to Sugimoto et al., the high fatigue limits are
obtained under the conditions of carbon potential of 0.8 mass% (Figure 19b) [148] and
arc-height of 0.21 mm with a gage N (Figure 19a) [147].

The fatigue limits of case-hardened TM steel are mainly controlled by the Vickers
hardness (or yield stress) and compressive residual stress in the surface hardened layer,
which are developed from the severe strain-hardening and strain-induced transformation
of retained austenite [147,148]. As shown by line (1) in Figure 20, the smooth fatigue
limit (σw) of 0.2%C–1.5%Si–1.5%Mn–1.0%Cr–0.05%Nb TM steel subjected to only the FPP
treatment shows a linear relationship with the sum of the estimated maximum yield stress
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and the absolute value of maximum compressive X-ray residual stress (σY,est + |σXα,max|)
as the following equation proposed by Matsui and Koshimune et al. [149,150],

σw = 0.3891 × (σY,est + |σXα,max|), (2363 MPa < σY,est + |σXα,max| < 4505 MPa) (10)

where σY,est is calculated by

σY,est = (HVmax/3) × 9.80665 × (YS/TS) (11)

where HVmax is the maximum Vickers hardness and YS/TS is the yield ratio (assumed
by Matsui et al. to be 0.95 in 0.22%C–0.27%Si–0.74%Mn–1.1%Cr–0.36%Mo Q&T steel
gas-carburized and then shot-peened [150]).
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As shown in Figure 20, the slope in Equation (10) of notch-fatigue limit (σwn) lowers 
to 0.2282 in TM steel subjected to the FPP treatment (see Line (3)) [147]. On the other hand, 
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of smooth (solid marks) and notched (open marks) specimens in 0.2%C–1.5%Si–1.5%Mn–1.0%Cr–
0.05%Nb TM (•#) and JIS-SNCM420 (N4) steels subjected to only fine particle peening (FPP) with
an arc height of 0.21 mm(N) after the heat-treatment (DQ-P process, Tp = 180 ◦C)) and vacuum
carburization under various carbon potentials (CP = 0.2 to 0.8 mass%) and subsequent FPP (VC+FPP).
Lines (1) and (3) denote the fatigue limits of the smooth and notched specimens subjected to FPP
treatment, respectively. Lines (2) and (4) refer to the fatigue limits of the smooth and notched
specimens subjected to VC+FPP treatment [148]. Reprinted with permission from Taylor & Francis:
Mater. Sci. Technol., Copyright 2021.
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As shown in Figure 20, the slope in Equation (10) of notch-fatigue limit (σwn) lowers
to 0.2282 in TM steel subjected to the FPP treatment (see Line (3)) [147]. On the other hand,
the slops corresponding to the smooth and notch-fatigue limits of TM steel subjected to
the VC+FPP treatment further decrease such as Lines (2) and (4), respectively [147,148].
The decreased slopes of Lines (2) and (4) are caused by the fish-eye crack fracture. It is
noteworthy that the smooth and notch-fatigue limits of TM steel are higher than those of
JIS-SNCM420 Q&T steel subjected to the same process.

Skołek et al. [151] report that DIN-35CrSiMn5-5-4 steel subjected to the DQ-P (or
Q&T) process after the VC treatment (without FPP or shot-peening) possesses low surface
wear resistance compared to the steel with nano-bainitic structure subjected to the IT
process above Ms. They say that the low wear resistance of DQ-P process steel is caused
by low retained austenite fraction. Kanetani et al. [152] investigate the morphology of
the deformation-induced martensite formed on rolling contact fatigue in SAE4320 steel
subjected to carburization and then Q&T process and show an interesting result that the
deformation-induced martensite is formed preferentially within the retained austenite
grains, not from the interface between tempered martensite and retained austenite.

8. Summary

The AMS sheets can be produced by lower heat-treatment temperature than the
third-generation AHSSs (Type A) with BF/M structure matrix. As they possess the same
excellent cold formability as the third-generation AHSSs (Type A), some applications to the
automotive frame members can be expected in the future [153–155]. In addition, the AMSs
can be applied to the automotive wire rod and bar parts such as engine, powertrain and
chassis parts. Thus, the wear property, weldability, and machinability of the hot-forged
AMSs also must be systematically investigated in the future, apart from toughness, fatigue
strength, and delayed fracture strength described in this review. In addition, the effects of
case-hardening on the mechanical properties are also required, because the engineers and
scientists want to know them.

Finally, it is emphasized that the AMSs may be applied to not only automotive parts
but also the forging parts of other engineering structures such as construction machinery,
airplane, marine machinery, etc. Such applications will increase the fracture strength of
many products and resultantly bring about a great increase in reliability. The microstructure
and mechanical properties of martensitic stainless steel containing metastable retained
austenite subjected to the DQ and DQ-P process should be also discussed as one kind of
AMSs in the future.
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