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Abstract: Integration of models that capture the complex physics of solidification on the macro
and microstructural scale with the flexibility to consider multicomponent materials systems is
a significant challenge in modeling additive manufacturing processes. This work aims to link
process variables, such as energy density, with non-equilibrium solidification by integrating additive
manufacturing process simulations with solidification models that consider thermodynamics and
diffusion. Temperature histories are generated using a semi-analytic laser powder bed fusion process
model and feed into a CALPHAD-based ICME (CALPHAD: Calculation of Phase Diagrams, ICME:
Integrated Computational Materials Engineering) framework to model non-equilibrium solidification
as a function of both composition and processing parameters. Solidification cracking susceptibility
is modeled as a function of composition, cooling rate, and energy density in Al-Cu Alloys and
stainless steel 316L (SS316L). Trends in solidification cracking susceptibility predicted by the model
are validated by experimental solidification cracking measurements of Al-Cu alloys. Non-equilibrium
solidification in additively manufactured SS316L is investigated to determine if this approach can
be applied to commercial materials. Modeling results show a linear relationship between energy
density and solidification cracking susceptibility in additively manufactured SS316L. This work
shows that integration of process and microstructure models is essential for modeling solidification
during additive manufacturing.

Keywords: solidification cracking susceptibility; non-equilibrium solidification; high-throughput
calculations; 3D Printing; Calculation of Phase Diagrams (CALPHAD); Integrated Computational
Materials Engineering (ICME); Diffusion-Controlled Transformations (DICTRA) software

1. Introduction

Deviation from equilibrium during solidification in additive manufacturing and
welding processes causes microsegregation, reduction in the solidus temperature, and
increased solidification cracking susceptibility (SCS) [1–3]. Computational models with
the flexibility to predict non-equilibrium solidification in multicomponent materials are
limited, and new computational frameworks are desired to design the next generation of
additively manufactured materials. CALPHAD-based ICME (CALPHAD: Calculation of
Phase Diagrams, ICME: Integrated Computational Materials Engineering) [4,5] frameworks
have shown the ability to model the effects of non-equilibrium solidification in both welding
and additive manufacturing process [6–9]. However, these models typically fail to couple
the thermodynamics and kinetics of materials with changes in processing parameters.
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Overcoming this challenge requires the integration of macroscale process simulations with
microstructure level models [10] for non-equilibrium solidification.

The Scheil-Gulliver model [11] for solidification is commonly coupled with CALPHAD-
based thermodynamics and provides a simple approximation of non-equilibrium solid-
ification in the case of a well-mixed liquid and no solid back-diffusion. Scheil-Gulliver
models are frequently used to model solidification in additively manufactured materials
and have demonstrated success in modeling SCS using the models proposed by Clyne [12]
and Kou [13,14] et al. Due to its simplicity, the Scheil-Gulliver model cannot quantitatively
consider changes in the cooling rate or the effect of cyclic heating and cooling encountered
during additive manufacturing processes. One-dimensional kinetic models provide a
more robust prediction by considering the effect of back-diffusion across mobile phase
boundaries [11] and dynamic changes in the cooling rate caused by variable processing
conditions. Although one-dimensional kinetic models are more computationally expensive
than Scheil-Gulliver models, they are still more efficient than high-fidelity microstructure
simulation approaches such as phase-field modeling, particularly in the case of multicom-
ponent systems. The diffusion-controlled transformations (DICTRA) software module
within Thermo-Calc software [15] for modeling diffusion-controlled phase transformations
can be used to construct one-dimensional solidification models. Lippard et al. [16] modeled
the microsegregation behavior during solidification of high-alloy steel using DICTRA and
found good agreement between the model prediction and experimental measurements of
microsegregation using electron dispersive spectroscopy. Zhang et al. [17] showed that
reliable mobility and thermodynamic databases are necessary to accurately model solid-
ification using DICTRA. Valiente et al. [18] used DICTRA to estimate the ferrite content
in austenitic stainless-steel welds and found good agreement with the experimentally
observed phase fraction. Work by Keller and Lindwall et al. [19,20] demonstrated the
potential of applying one-dimensional kinetic models to additive manufacturing processes
by coupling DICTRA with a finite element process model to predict microsegregation
in additively manufactured Inconel 718 and 625. These efforts have demonstrated the
ability of one-dimensional kinetic models to approximate non-equilibrium solidification
in additively manufactured materials. However, these previous works have focused on a
small number of calculations and have not investigated the effects of changes in compo-
sition or processing conditions on DICTRA solidification models using high-throughput
calculations. The recent development of the Thermo-Calc Python (TC-Python) application
programing interface has enabled high-throughput DICTRA calculations by adding the
capability to automatically setup and post-processing batches of DICTRA calculations
that cover large ranges in composition and processing parameters. Furthermore, DICTRA
solidification models have never been coupled with models for SCS. Integrating process
models with DICTRA solidification calculations and the Kou SCS criteria can be used
to extend SCS models to the process level, enabling SCS to be investigated as a function
of processing variables and composition. Integrating these models in a high-throughput
computational framework creates a linkage between processing and microstructural ef-
fects that reveals new relationships between the additive manufacturing process and
non-equilibrium solidification.

2. Materials and Methods

One-dimensional DICTRA solidification models are implemented using the TC-
Python application programming interface to enable batch calculations as a function
of both processing conditions and composition. The semi-analytic laser powder bed fusion
(LPBF) process model developed by Wolfer et al. [21], which uses a Green’s function ap-
proach, is coupled with DICTRA simulations and the Kou SCS model [13,14] to create a
CALPHAD-based ICME framework for modeling non-equilibrium solidification in addi-
tively manufactured materials. Temperature histories under different processing conditions
are used as an input for DICTRA solidification calculations to investigate the relationship
between the additive manufacturing process and non-equilibrium solidification. This
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approach couples alloy thermodynamics and diffusion with process variables such as
laser power, scan speed, and energy density to model the effect of process parameters on
non-equilibrium solidification.

Figure 1 shows how the models used in this work are coupled together using the
TC-Python application programing interface to create an automated CALPHAD-based
ICME framework for modeling solidification in additively manufactured materials. The
TC-Python application programing interface is used to automate the Scheil-Gulliver, equi-
librium, and DICTRA solidification calculations presented in this work. Integrating the
LPBF process model, DICTRA calculations, and the SCS model defined by Kou using
the TC-Python application programing interface expedites the tedious process of running
models and post-processing data. Calculation results, such as microsegregation and SCS,
are automatically post-processed and saved in a convenient text file format. This automated
workflow enables the user to efficiently model large ranges in processing conditions and
multicomponent composition space. The connection between macroscale process simula-
tions and CALPHAD solidification models simplifies the complex process-microstructure
relationship in additively manufactured materials into a resolvable problem by considering
processing effects on the temperature history at a microstructural scale.

Figure 1. CALPHAD-based ICME (CALPHAD: Calculation of Phase Diagrams, ICME: Integrated Computational Materials
Engineering) framework for modeling non-equilibrium solidification of additively manufactured materials. This modeling
framework integrates processing and microstructure models for non-equilibrium solidification.

Setting up solidification calculations using DICTRA requires the user to have a prior
understanding of the expected solidification pathway. The liquid and solid phases present
during solidification and the type of solidification reaction must be known to properly setup
the calculation. For example, SS316L typically undergoes a peritectic reaction with the
liquid phase solidifying as BCC and then transforming into FCC. Modeling peritectic type
solidification with DICTRA requires that the primary and secondary solidification phases
be initialized on the same side of the one-dimensional diffusion cell. For eutectic type
solidification reactions, such as the eutectic in the Al-Cu system, the primary and secondary
solidification phases must be initialized on opposite sides of the one-dimensional DICTRA
simulation. Conversely, the Scheil-Gulliver model does not require prior knowledge of the
materials system and can be used to gain insight into the expected solidification pathway in
cases where there is limited kinetic knowledge available. From the Scheil-Gulliver model,
the expected solidification phases and reaction type can be determined and used to set up a
higher fidelity solidification calculation using DICTRA. Using information from the Scheil-
Gulliver model to determine the solidification pathway and automate the construction of
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high-throughput DICTRA calculations gives the modeling framework flexibility to inves-
tigate large ranges of unexplored composition space by dynamically changing the phase
transformation model. Although significant challenges, such as numerical convergence
issues and a deficiency of multicomponent mobility databases still limit this approach, the
CALPHAD-based ICME framework outlined in this work takes a step towards utilizing
high-throughput DICTRA calculations as a tool for materials design and discovery.

Solidification cracking, also referred to as hot tearing and hot cracking, is caused by
the contraction of solid in the mushy zone during solidification. When the liquid becomes
trapped between dendrite arms, it causes stress resulting from the lower density of the
liquid when compared to the solid. SCS is related to the ability of the liquid to move
out of the area between dendrite arms when shrinkage occurs. The ability of the liquid
to escape the region between dendrite arms is referred to as liquid feeding ability and
is related to the slope of the temperature versus the square root of the solid fraction as
defined by the Kou SCS model [13,14]. The Kou SCS model can predict trends in SCS
but cannot quantitatively determine if hot cracking will occur. This work aims to extend
the Kou criteria to the process level by using DICTRA calculations to rank SCS based on
processing parameters. The temperature versus the square root of the solid fraction is
obtained using the Scheil-Gulliver or DICTRA solidification models and used to calculate
the SCS according to Equation (1),

SCS = max

∣∣∣∣∣∣ dT
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s

)
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where fs and T are the total solid fraction and temperature, respectively. Various modifi-
cations of Equation (1) [13,14] have been investigated in previous works and in general,
yield similar results. The present form of Equation (1) was selected because it is easily
implemented with numerical simulations for solidification. Computing the derivative
shown in Equation (1) from DICTRA results causes numerical issues because the time and
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used in this work is controlled by the movement of phase boundaries to ensure that changes
in the rate of phase transformations are captured by the model. Variations in the time and
temperature step size implies that standard finite difference approximations of Equation (1)
cannot be applied. Lagrange polynomial differentiation is used to overcome this limitation
because a constant point spacing is not required for the derivative to be calculated. The
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differentiation [22] is given in Equation (2),
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The thermal model used to generate temperature histories for the LPBF process is the
fast semi-analytical method developed by Wolfer et al. [21]. This method is utilized because
it is an order of magnitude faster than an equivalent finite element model, allowing the user
to quickly sweep the chosen parameter space while introducing minimal error. The model
treats the powder bed as a homogeneous continuum with uniform and constant material
properties and ignores explicit melt pool dynamics, focusing instead on a conduction-
based approximation. With some calibration, this conduction-only method can be used to
reproduce, with a reasonable degree of accuracy, the melt pool dimensions generated by
high-fidelity simulations [23]. This calibration involves the adjustment of the volumetric
source term and a selection of material properties that are representative of the material
at elevated temperatures. When high-temperature material properties are unavailable or
the materials system is unstudied, CALPHAD databases can be used to determine the
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density, specific heat, conductivity, and Gibbs free energy as a function of composition
and temperature [10]. The significant speed increase over traditional methods is achieved
by using a Green’s function solution to the reduced-order conduction-based model. This
semi-analytical solution takes the form of a Gaussian filtering function and is fast because
it is computationally simple and allows for the use of larger time steps and coarser meshes.
Though the large time step results in a more complicated laser source term, it can be re-used
for identical time-steps, maintaining the speed of the model.

3. Results
3.1. Modeling Non-Equilibrium Solidification of Al-Cu Alloys

Non-equilibrium solidification of Al-Cu alloys is modeled to validate the ability of
DICTRA to predict trends in SCS as a function of the cooling rate. DICTRA calculations
for the Al-Cu system are set up using the eutectic phase transformation model, a cell
size of 1 µm, and a constant cooling rate. The TCAL7 and MOBAL5 databases released
with Thermo-Calc software version 2020b are used (Thermo-Calc Software AB, Stockholm,
Sweden). The liquid, FCC, and Al2Cu phases are included in the model, all metastable
phases are suspended, and the system is assumed to be closed. The effect of nucleation
barriers is also neglected, and a planar geometry is used for all calculations. Three constant
cooling rates, −102, −104, and −105 K/s, were investigated to determine if DICTRA can
accurately model the reduction in the solidus temperature caused by microsegregation and
match the experimentally observed trend of SCS reported in the literature. Figure 2a shows
the solidus and liquidus temperature predicted using the equilibrium, Scheil-Gulliver, and
DICTRA models for solidification. DICTRA predicts a decreasing solidus temperature with
an increase in the cooling rate. As the cooling rate is increased, the solidus temperature
predicted by DICTRA approaches the result of the Scheil-Gulliver model. The liquidus
temperature is predicted to be the same by all models investigated in this work because all
nucleation barriers are assumed to be negligible. Figure 2b shows the SCS predicted by
the Scheil-Gulliver and DICTRA models with a cooling rate of −102, −104, and −105 K/s.
SCS is calculated using the model proposed by Kou et al. [13,14] and is compared with
experimental SCS % data on a secondary axis. The experimental data shown in Figure 2b
were collected by Yan et al. [12], summarized by Campbell et al. [24], and originally
produced by [25–27]. Model results are plotted using a five-point moving average to smooth
out the numerical error associated with calculating the derivative at higher copper content.

3.2. Predicting Thermal History during the Laser Powder Bed Fusion Process

The LPBF process model used in this work to predict the temperature history dur-
ing additive manufacturing of SS316L consisted of a single layer 1080 µm square with a
bidirectional raster scanning pattern and a 90 µm hatch spacing. The material properties
were taken at 700 K by performing a linear interpolation of the properties given by Khairal-
lah et al. [28], yielding a density of 7.9 g/(cm3), thermal conductivity of 20.2 W/(m·K),
and specific heat of 470 J/(kg·K). This temperature was chosen as previous results have
shown that the melt pool dimensions in SS316L are more accurate when modeled using
material properties from this elevated temperature range. Zero flux boundary conditions
are applied to the top and sides of the substrate and the bottom has a constant temperature
consistent with the initial temperature (300 K). These boundary conditions are consistent
with those used during the validation of the thermal model. The model was run with a
selection of laser velocities, 0.8–1.2 m/s varying by 0.2 m/s, and laser powers 170–190 W
varying by 10 W based on the optimal parameters proposed by Yan et al. [29]. A range
of processing parameters was investigated to determine if the CALPHAD-based ICME
framework can predict the effect of processing conditions on non-equilibrium solidification.
The results were then inspected to determine which locations may be of interest to the
microstructural model. These points were chosen to give a broad representation of thermal
histories produced by the model. Three subsets of points were selected; the first were
points from a cross section of the melt pool to capture dependence on relative location.
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Second, points were selected that melted more than once. Lastly, points were selected
with higher and lower than average cooling rates. These points were down-selected to
three points; one which rapidly remelted, one at the center of the path, and one between
subsequent passes. This down-selection was carried out to avoid convergence issues with
the DICTRA model for certain cooling curves. Figure 3 shows the development of the
thermal field as the laser moves through the bidirectional raster scanning pattern. The
white X’s shown in Figure 3 mark the location of temperature histories used as inputs to
the CALPHAD-based ICME framework.

Figure 2. (a) Modeling the effect of cooling rate on the solidus temperature of Al-Cu alloys using the equilibrium, Scheil-
Gulliver, and diffusion-controlled transformations (DICTRA) solidification models available in Thermo-Calc software.
(b) Solidification cracking susceptibility of Al-Cu alloys calculated by the DICTRA and Scheil-Gulliver models using the
Kou solidification cracking susceptibility model. The trend in solidification cracking susceptibility predicted by the model is
compared with experimentally observed solidification crack susceptibility data plotted on the secondary y-axis. This data
was reproduced from [12].

Figure 3. Heat map of the thermal history in stainless steel 316L manufactured by laser powder bed fusion predicted
by the model developed by Wolfer et al. The white X’s mark the location of the temperature histories used as inputs to
the CALPHAD-based ICME (CALPHAD: Calculation of Phase Diagrams, ICME: Integrated Computational Materials
Engineering) framework.
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Temperature histories taken from the locations marked in Figure 3 are shown as a
function of time in Figure 4. The location that undergoes rapid double melting was screened
for by finding the location where the liquidus temperature is reached consecutively in the
shortest period. Rapid double melting was investigated to determine if the non-equilibrium
DICTRA solidification model is affected. The inset plot shown in Figure 4 highlights the
rapid double melting cycle. One feature of the thermal histories that is worth addressing
is the high peak temperatures predicted at the point of incidence of the laser during
melting. As the thermal model uses a conduction-only approach (combined with calibrated
effective transport parameters) to capture multiple heat transfer mechanisms, it produces
peak melt temperatures that are beyond what is expected. However, because the model
was calibrated using high-fidelity numerical simulations by comparison of the melt pool
geometry, it is hypothesized that the accuracy of the predicted thermal field outside of
the melt pool would be reasonable. Since the boundary of the melt pool is constrained
to the melting temperature, it is analogous to a Dirichlet boundary condition and the
thermal field calculated inside the melt pool can be ignored as it has no effect on the overall
thermal field. This hypothesis was verified by comparing the isotherms predicted by the
thermal model with those obtained by ALE3D, a high-fidelity multi-physics simulation
code produced by Lawrence Livermore National Lab which has itself been validated
experimentally [23,28,30].

Figure 4. Thermal history of additively manufactured stainless steel 316L generated using the laser
powder bed fusion process model developed by Wolfer et al. at a location between the hatch lines,
in the center a hatch line, and at a location that undergoes rapid double melting. The inset figure is
taken from the area marked by the blue square to highlight the rapid double melting seen at various
locations in the model.

3.3. Solidification of SS316L during Additive Manufacturing

Non-equilibrium solidification of SS316L is modeled using the CALPHAD-based
ICME framework shown in Figure 1 to test the convergence of DICTRA models under
different temperature histories and investigate the effect of processing conditions on non-
equilibrium solidification. A six-component system, consisting of Fe66.985-Cr17-Ni12-
Mn1.5-Mo2.5-C0.015 in weight percent, is considered using the TCFE10 and MOBFE5
databases available in the 2020b release of Thermo-Calc software. The effects of nucleation
barriers are neglected, and a closed system with a constant cell size of 10 nm and planar
geometry is used for all calculations. Temperature histories generated from the LPBF
process model for various processing conditions and locations throughout a single layer
build are used as inputs to the DICTRA solidification model. Figure 5 shows the results
of a representative DICTRA simulation from a location in the LPBF process model that
undergoes multiple remelting cycles. The temperature history is directly used from the
LPBF process model as shown in Figure 5a. Cutoff temperatures, defined as the solidus
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and liquidus, are used to select only the portion of the temperature history that relates to
solidification. This minimizes the computational expense of each model and enables high-
throughput calculations by only modeling phase transformations during solidification.
The phase fraction of BCC and FCC as a function of temperature predicted by DICTRA
deviates significantly from the Scheil-Gulliver prediction as shown in Figure 5b. Thus, the
effect of back-diffusion is significant in SS316L at the high cooling rates seen in additive
manufacturing processes. During the second solidification cycle, the phase fraction of BCC
and FCC moves closer to the Scheil-Gulliver prediction, indicating that multiple remelting
cycles cause solidification to deviate further from equilibrium if segregation in the liquid is
not given enough time to homogenize. Figure 5c shows the phase fraction as a function
of time predicted by DICTRA and highlights the rapid solidification and remelting that
occurs because of the temperature history shown in Figure 5a. The plot of temperature
versus the total solid fraction shown in Figure 5d shows reasonable agreement between the
Scheil-Gulliver and DICTRA prediction.

Figure 5. Non-equilibrium solidification modeling of stainless steel 316L undergoing rapid double melting. (1) corresponds
to the first solidification transformation, (2) refers to remelting, and (3) marks the second solidification transformation.
(a) Temperature history with rapid double melting directly used as an input to the diffusion-controlled transformations
(DICTRA) model. (b) Mole fraction of each phase as a function of temperature predicted using the DICTRA and Scheil-
Gulliver models. (c) Mole fraction of each phase as a function of time modeled using DICTRA. (d) Temperature versus the
mole fraction of solid as predicted by the equilibrium, Scheil-Gulliver, and DICTRA models for solidification.
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Figure 6 shows the results of the Kou SCS model applied to DICTRA solidification
calculations for SS316L as a function of energy density. Energy density is defined as the
laser power divided by the product of hatch spacing, layer height, and scanning speed.
A linear relationship is observed between SCS and the energy density used in the LPBF
process model. Considering the inherent numerical error associated with DICTRA, the
relationship between the Kou SCS model prediction and energy density is significant.
The correlation between energy density and SCS is related to changes in the cooling rate
during solidification. Temperature histories generated by the LPBF process model under
processing conditions with lower energy density yielded faster cooling rates and higher
SCS. No significant difference in the Kou SCS model is found based on the location the
temperature history is taken from. Some calculations resulted in convergence issues and
could not be resolved. However, convergence was achieved in most temperature histories
tested in this work.

Figure 6. Solidification cracking susceptibility in stainless steel 316L as a function of energy density
calculated by the diffusion-controlled transformations (DICTRA) model using the solidification
cracking susceptibility model proposed by Kou. The trend line considers data from all three locations
shown in Figure 3.

4. Discussion

Non-equilibrium solidification of Al-Cu alloys is used as a case study to demonstrate
the ability of DICTRA to correlate changes in the cooling rate with SCS as a function of
composition. In general, the trend in SCS predicted by the Scheil-Gulliver and DICTRA
models is consistent with experimental solidification crack length measurements. The peak
in SCS predicted by the Scheil-Gulliver and DICTRA models occurs at slightly higher Cu
content than the experimentally observed peak reported by Campbell et al. [24]. However,
the characteristic lambda shape commonly observed in SCS measurements of binary
aluminum alloys [8] matches reasonably well with the experimental data as shown in
Figure 2b. It is also observed that increasing the cooling rate during solidification pushes
the solidification reaction further from equilibrium which, reduces the solidus temperature,
increases microsegregation, and leads to increased SCS. The experimentally observed
trend in SCS is reasonably reproduced by the model, demonstrating its ability to correlate
process-level variables with microstructural effects. Intuitively, the model also predicts a
reduction in the SCS with a decrease in the cooling rate.

The linear relationship between energy density and SCS predicted for SS316L made
by LPBF demonstrates the value of coupling process models with microstructure level
CALPHAD models. Increasing the energy density generally decreases the cooling rate
because a larger amount of thermal energy is applied to the material, thus taking a longer
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time to cool. Reductions in the cooling rate led to a reduced SCS at higher energy density.
Future work may be able to correlate changes in scanning strategy with SCS, microsegre-
gation, and phase fraction using high-throughput DICTRA calculations by investigating
the effect of temperature histories at various locations throughout a single layer build. No
trends in SCS based on the location in the LPBF process model were found. However,
switching to a material with higher SCS than SS316L, such as Ti-6Al-4V or Al-Cu, may
reveal a spatial dependence.

Non-equilibrium solidification is an important metallurgical phenomenon to consider
in materials design for additive manufacturing. Optimization of new alloys should focus
on controlling solidification during the additive manufacturing process to obtain improved
properties in the as-built condition. Models for predicting microsegregation, SCS, and
phase transformations in additively manufactured materials as a function of processing
parameters and composition are limited and the potential for impact in the field is apparent.
The CALPHAD-based ICME framework proposed in this work attempts to address the
disconnect between macroscale processing effects and microstructure level models for solid-
ification. This work falls short of defining a quantitative process-microstructure relationship
but demonstrates that modern materials models can predict qualitative relationships in
additive manufacturing processes.

Improvement of the numerical solver within DICTRA is needed to realize the full
potential of the CALPHAD-based ICME framework developed in this work. Convergence
issues with DICTRA affected about half of the temperature histories tested in this work
and limited the ability to use DICTRA in high-throughput calculations. This work also
highlights the importance of reliable thermodynamic and mobility databases of critical
materials systems. Improvement of thermodynamic and mobility databases will directly
improve the ability of the CALPHAD approach to design the next generation of additively
manufactured materials.

5. Conclusions

• The TC-Python application programing interface is used to couple a thermal model
for the LPBF process with a DICTRA solidification model to simulate the process-
microstructure relationship between processing variables and non-equilibrium solidi-
fication in additively manufactured materials. Automation of the CALPHAD-based
ICME framework with the TC-Python application programing interface enables DIC-
TRA calculations to be used as a high-throughput computational materials design
tool. Improvement of numerical algorithms within DICTRA is necessary to enhance
the computational efficiency of diffusion simulations.

• Experimental measurements of SCS for the binary Al-Cu system are in good agreement
with DICTRA solidification calculations using the model proposed by Kou et al. [13,14].

• A linear relationship between SCS and energy density in SS316L manufactured by
LPBF is predicted using a CALPHAD-based ICME framework. A location-dependent
relationship with SCS in SS316L is not found.

• The ICME modeling framework developed in this work demonstrates the importance
of integrating mechanical and materials models for design simulations in additive
manufacturing. The developed modeling framework can be used to guide alloy
design and process optimization for additive manufacturing. This framework can
also be applied to other processing techniques provided a suitable thermal model is
available. Since the present ICME model is based on thermodynamics and diffusion
model-predictions, sustainable improvement of the CALPAHD database fidelity is
critical to sustaining model accuracy.
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