
metals

Article

Prediction of Strain Path Changing Effect on Forming Limits of
AA 6111-T4 Based on a Shear Ductile Fracture Criterion

Silin Luo 1 , Gang Yang 1, Yanshan Lou 2,* and Yongqian Xu 3

����������
�������

Citation: Luo, S.; Yang, G.; Lou, Y.;

Xu, Y. Prediction of Strain Path

Changing Effect on Forming Limits of

AA 6111-T4 Based on a Shear Ductile

Fracture Criterion. Metals 2021, 11,

546. https://doi.org/10.3390/

met11040546

Academic Editors: Torgeir Welo and

Pavel Krakhmalev

Received: 27 February 2021

Accepted: 23 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechatronics and Mold Engineering, Taizhou Vocational College of Science & Technology,
Taizhou 318020, China; Lsilin@tzvcst.edu.cn (S.L.); GangYang@tzvcst.edu.cn (G.Y.)

2 School of Mechanical Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China
3 State Key Laboratory of High-Performance Complex Manufacturing, Central South University,

Changsha 410083, China; yongqian.xu@csu.edu.cn
* Correspondence: ys.lou@xjtu.edu.cn; Tel.: +86-186-9183-6771

Abstract: Strain path changing is a phenomenon in the stamping of complex panels or multiple-step
stamping processes. In this study, the influence of the strain path changing effect was investigated and
assessed for an aluminum alloy of 6111-T4 with a shear ductile fracture criterion. Plastic deformation
of the alloy was modeled by an anisotropic Drucker yield function with the assumption of normal
anisotropy. Then the shear ductile fracture criterion was calibrated by the fracture strains at uniaxial
tension, plane strain tension and equibiaxial tension under proportional loading conditions. The
calibrated fracture criterion was utilized to predict forming limit curves (FLCs) of the alloy stretched
under bilinear strain paths. The analyzed bilinear strain paths included biaxial tension after uniaxial
tension, plane strain tension and equibiaxial tension. The predicted FLCs of bilinear strain paths
were compared with experimental results. The comparison showed that the shear ductile fracture
criterion could reasonably describe the effect of strain path changing on FLCs, but its accuracy was
poor for some bilinear paths, such as uniaxial tension followed by equibiaxial tension and equibiaxial
tension followed by plane strain tension. Kinematic hardening is suggested to substitute the isotropic
hardening assumption for better prediction of FLCs with strain path changing effect.

Keywords: shear ductile fracture; forming limit curve; strain path changing; sheet metal forming

1. Introduction

The accurate prediction of failure during sheet metal forming is a big challenge in the
numerical design of sheet metal forming processes. To describe the largest strain that sheet
metals can plastically deform without failure during stamping, Goodwin [1] introduced
the idea of forming limit curves (FLCs), which set the maximum plastic deformation in
the space of the major and minor strains. Since its proposal, FLC has been widely used
to define the forming limit of sheet metal forming. An FLC is generally measured by
experiments, which are designed for linear strain paths. However, the sheet metal forming
processes of complex panels and multiple-step forming involves dramatic strain path
changing during stamping. Experimental studies show that strain path changing strongly
influences the formability of sheet metals. Graf and Hosford [2] conducted experiments of
AA2008-T4 to investigate the effect of strain path changing on FLCs. One year later, Graf
and Hosford [3] shared their experimental results on the influence of strain path changing
on FLCs of AA6111-T4. Their experiments have shown that the experimental FLCs under
proportional strain path are proper for the failure prediction of sheet metal forming with
approximately linear strain paths, but the FLC is somewhat wrongly used for stamping of
complex-shaped panels or multiple-step forming with strong strain path changing.

Theoretically, Hill [4] proposed a localized necking model for the failure modeling of
sheet metal forming. Meanwhile, Swift [5] introduced a diffuse necking model. Generally,
Hill’s localized necking model is used to predict the left-hand side of an FLC, while Swift’s
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diffuse necking model is used to predict the right-hand side FLC. Therefore, these two mod-
els are generally combined together and referred to as the Hill-Swift model. Marciniak and
Kuczynski [6] proposed an imperfection-based model to predict FLCs of sheet metals. The
Marciniak-Kuczynski model is widely used and analyzed since its proposal. The Marciniak-
Kuczynski model can be used to take account of the effect of yield functions, strain rate
effect and even microstructures in FLC prediction [7]. Cao et al. [8] applied the Marciniak-
Kuczynski model to investigate the effect of strain path changing on FLCs. Stoughton [9]
showed that the forming limit for both proportional and nonproportional loading could be
explained from a single criterion, which is based on the state of stress rather than the state
of strain, thereby introducing the definition of forming a limit stress diagram. Based on the
crystal plasticity theory in conjunction with the Marciniak-Kuczynski model, Wu et al. [10]
suggested that the forming limit stress diagram is much more favorable than the forming
limit strain diagram in representing forming limits in the numerical simulation of sheet
metal forming processes. Alternatively, Stoughton and Yoon [11] proposed a new type of
forming limit diagrams based on a polar representation of the effective plastic strain and
showed that the new diagram is an effective solution to the problem of nonlinear effects.
Korkolis and Kyriakides [12] studied the effect of strain path changing effect on the failure
of inflated aluminum tubes and concluded that the amount of plastic pre-strain also affects
the failure stress and strain during tube hydroforming.

Since the beginning of the 20th century, ductile fracture has attracted increasing efforts
for failure prediction in sheet metal forming as the wide employment of advanced high
strength steels and aluminum alloys. It is because the lightweight metals fail mainly by a
ductile fracture with little necking [13,14]. Various ductile fracture criteria were proposed
for the modeling of ductile fracture under different loading conditions for sheet metals. Bai
and Wierzbicki [15] modified the Mohr-Coulomb criterion for ductile fracture modeling
of advanced high strength steels. Mohr and Marcedat [16] proposed a phenomenological
Hosford-Coulomb model for the prediction of ductile fracture at low-stress triaxiality.
Ductile fracture is observed to take place along the direction of the maximum shear
stress in different stress states of compression, shear and tension [17]. Based on this
experimental observation, Lou et al. [18] proposed a shear ductile fracture criterion based
on the micro-mechanism of ductile fracture for the nucleation, growth and coalescence
of voids. Thereafter, two modifications were developed to consider a changeable cutoff
value for the stress triaxiality [19] and to describe fracture in shear, uniaxial tension, plane
strain tension and equibiaxial tension of sheet metals [20]. Hu et al. [21] and Mu et al. [22]
developed two different fracture models considering the effect of the maximum shear stress.
Sun et al. [23] proposed a new method by directly utilizing original measured data of the
stress-strain relation in the Marciniak-Kuczynski model to predict the FLC of an aluminum
alloy sheet. Cao et al. [24] developed a fracture model coupled with the Johnson-Cook
plasticity model to investigate the strain rate effect for 7050-T7451 aluminum alloy.

Though ductile fracture criteria are increasingly used in the fracture prediction of
sheet metal forming, the effect of strain path changing is still not clear. In this study, the
strain path changing effect is investigated by using a recently proposed ductile fracture
criterion [18], which is referred to as DF2012. The DF2012 criterion is first calibrated for
AA6111-T4 under proportional loading. Then the calibrated criterion is used to describe
the pre-strain effect of uniaxial tension, plane strain tension and equibiaxial tension on the
fracture-forming limit curve (FFLC). The predicted FFLCs under bilinear strain paths are
compared with experimental results to analyze its predictability of the pre-strain influence
on FFLCs. Reasons are discussed for the improper prediction of FFLCs under some strain
path pairs, such as uniaxial tension followed by equibiaxial tension and equibiaxial tension
followed by plane strain tension.
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2. Modeling of Plastic Deformation

The material used in this study was an aluminum alloy sheet of AA6111-T4. Its
thickness was 1.05 mm. The chemical composition of the alloy was approximately of 0.85%
Si, 0.75% Cu, 0.65% Mg, 0.25% Fe, 0.22% Mn and 0.03% Cr. The grain of the alloy was
pancake-shaped. Experiments were conducted using dog bone specimens along three
directions of 0◦, 45◦ and 90◦. Strain hardening behavior was described by the Hollomon
law as σ = 563ε0.255 MPa. The anisotropic Lankford values or R-values were also measured
along the rolling, diagonal and transverse directions as 0.67, 0.63 and 0.78, respectively. The
average R-value was calculated as r = (r0 + 2r45 + r90)/4 = 0.68, and ∆r was calculated as
∆r = (r0 − 2r45 + r90)/2 = 0.1. ∆r was comparatively small compared with r. Accordingly,
normal anisotropy could be assumed for simplicity purposes. All the experiments in this
paragraph and the FFLC tests under proportional and nonproportional loading paths
below were conducted by Graf and Hosford [3]. Readers are strongly suggested to refer to
the original paper by Graf and Hosford [3] for the details of the experimental procedures
and results.

FFLCs under proportional loading were measured by the standard punch stretching
tests for AA6111-T4 sheets. The strains were measured by the distortion of circles for,
which its diameter was 2.54 mm before stretching. The measured fracture strain was
about 0.35 at uniaxial tension, 0.17 under plane strain tension and 0.244 at equibiaxial
tension. The sheets were also prestrained in uniaxial tension, plane strain tension and
biaxial tension to different strain levels. Then specimens were cut from the prestrained
sheets and stretched further by punch stretching to measure the FFLC for each combination
of prestrain strain paths and levels. The measured FFLC under bilinear strain paths was
used for the evaluation of the analytical prediction of fracture limits. Details of FFLC
experiments were suggested to refer to Graf and Hosford [3].

For the sake of simplicity, the material is assumed to be normal anisotropic. There
are many anisotropic yield functions proposed for both sheet and bulk metals [25–32].
The anisotropic Drucker function [33] is used to describe the normal anisotropy of the
metal in this study. Similar to the non-quadratic yield functions, the anisotropic Drucker
function can differentiate the difference in yielding between face-centered cubic (FCC) and
body-centered cubic (BCC) metals. The anisotropic Drucker function is formulated as:

f
(
σij
)
=
(

J′2
3 − cJ′3

2
)1/6

= σ (1)

In the anisotropic Drucker function above, J′2 and J′3 are referred to as the second and
third invariants of s

′
, which is computed as follows:

J′2 =
1
2

s
′

: s′= −s′11s′22−s′22s′33−s′11s′33+s
′2
12+s

′2
23+s

′2
13 (2)

J′3 = det
(

s
′
)
= s′11s′22s′33+2s′12s′23s′13−s′11s

′2
23−s′22s

′2
13−s′33s

′2
12 (3)

where s
′

is computed as:
s
′
= L

′
σ (4)

Here L
′

is the fourth-order linear transformation given by:

L
′
=



(c′2 + c′3)/3 −c′3/3 −c′2/3 0 0 0
−c′3/3

(
c′3 + c′1

)
/3 −c′1/3 0 0 0

−c′2/3 −c′1/3
(
c′1 + c′2

)
/3 0 0 0

0 0 0 c′4 0 0
0 0 0 0 c′5 0
0 0 0 0 0 c′6

 (5)
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Then the linearly transformed stress tensor s
′

can be explicitly expressed as:

s
′
= L

′
σ =



(c′2 + c′3)/3 −c′3/3 −c′2/3 0 0 0
−c′3/3

(
c′3 + c′1

)
/3 −c′1/3 0 0 0

−c′2/3 −c′1/3
(
c′1 + c′2

)
/3 0 0 0

0 0 0 c′4 0 0
0 0 0 0 c′5 0
0 0 0 0 0 c′6





σxx
σyy
σzz
σyz
σzx
σxy



=



c′2+c′3
3 σxx −

c′3
3 σyy −

c′2
3 σzz

− c′3
3 σxx +

c′3+c′1
3 σyy −

c′1
3 σzz

− c′2
3 σxx −

c′1
3 σyy +

c′1+c′2
3 σzz

c′4σyz
c′5σzx
c′6σxy


(6)

For sheet metal forming under plane-stress conditions, the linearly transformed tensor
is computed as:

s
′
= L

′
σ =



(c′2 + c′3)/3 −c′3/3 −c′2/3 0 0 0
−c′3/3

(
c′3 + c′1

)
/3 −c′1/3 0 0 0

−c′2/3 −c′1/3
(
c′1 + c′2

)
/3 0 0 0

0 0 0 c′4 0 0
0 0 0 0 c′5 0
0 0 0 0 0 c′6





σxx
σyy
0
0
0

σxy



=



c′2+c′3
3 σxx −

c′3
3 σyy

− c′3
3 σxx +

c′3+c′1
3 σyy

− c′2
3 σxx −

c′1
3 σyy

0
0

c′6σxy


(7)

In the anisotropic Drucker function, the effect of the third invariant J′3 is modified
by c, which is calibrated to be 1.226 and 2.0 for BCC and FCC metals. Moreover, six
anisotropic parameters are introduced in the linear transformation tensor of L′, among
which four are related to anisotropic plastic behavior. When the anisotropic parameters are
c′i = 1.8365 ( i = 1 ∼ 6) with c = 2, the anisotropic Drucker function reduces to isotropic
for FCC metals, while the isotropic Drucker function for BCC metals is recovered when
c′i = 1.7909 ( i = 1 ∼ 6) with c = 1.226.

The derivatives of the anisotropic Drucker function for plane-stress conditions are
calculated as follows:

dεxx =
∂σy

∂σxx
=

1
6

(
J
′3
2 − cJ

′2
3

)−5/6
(

3J
′2
2

∂J′2
∂σxx

− 2cJ′3
∂J′3

∂σxx

)
(8)

dεyy =
∂σy

∂σyy
=

1
6

(
J
′3
2 − cJ

′2
3

)−5/6
(

3J
′2
2

∂J′2
∂σyy

− 2cJ′3
∂J′3

∂σyy

)
(9)

dεxy =
∂σy

∂σxy
=

1
6

(
J
′3
2 − cJ

′2
3

)−5/6
(

3J
′2
2

∂J′2
∂σxy

− 2cJ′3
∂J′3

∂σxy

)
(10)

with dεyz = dεzx = 0 and:

∂J′2
∂σxx

=
(c′2 + c′3)s

′
11 − c′3s′22 − c′2s′33

3
(11)
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∂J′2
∂σyy

=
−c′3s′11 +

(
c′1 + c′3

)
s′22 − c′1s′33

3
(12)

∂J′2
∂σxy

= 2c′6s′12 (13)

∂J′3
∂σxx

=
(c′2 + c′3)s

′
22s′33 − c′3s′11s′33 − c′2s′11s′22 + c′2s′212

3
(14)

∂J′3
∂σyy

=
−c′3s′22s′33 +

(
c′1 + c′3

)
s′11s′33 − c′1s′11s′22 + c′1s

′2
12

3
(15)

∂J′3
∂σxy

= −2c′6s′12s′33 (16)

s′ij is the vector transformed in Equation (7) and calculated in the forms of:

s′11 =
(c′2 + c′3)σxx − c′3σyy

3
(17)

s′22 =
−c′3σxx +

(
c′1 + c′3

)
σyy

3
(18)

s′33 =
−c′2σxx − c′1σyy

3
(19)

s′12 = c′6σxy, s′23 = s′13 = 0 (20)

Considering the incompressibility of plastic deformation for continuum metals, the
thickness strain can be computed as dεzz = −dεxx − dεyy.

For AA6111-T4, the anisotropic Drucker function was calibrated by the mean R-values
by the assumption that the material was normal anisotropic. The calibrated anisotropic
parameters are listed in Table 1. The AA6111-T4 yield surface is described in Figure 1. The
anisotropic Drucker yield surface was noted to describe lower strength under plane strain
tension than the von Mises function. Furthermore, the predicted R-values and uniaxial
tensile yield stress were insensitive to the loading direction since normal anisotropy was
assumed for AA6111-T4. The predicted R-value was 0.68, which was identical to the
experimental mean R-value.

Table 1. Parameters of the anisotropic Drucker function.

c c
′
1 c

′
2

2.0000 1.9392 1.9392
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Figure 1. Anisotropic Drucker yield surface for AA6111-T4: (a) yield surface; (b) uniaxial tensile yield stresses and R-
values. 

Table 1. Parameters of the anisotropic Drucker function. 𝒄 𝒄𝟏ᇱ  𝒄𝟐ᇱ  
2.0000 1.9392 1.9392 

3. Shear Ductile Fracture Criterion 
To model fracture in metal forming processes, various ductile fracture criteria [15–

22] were developed based on different assumptions. Recently, Lou et al. [18] developed a 
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Figure 1. Anisotropic Drucker yield surface for AA6111-T4: (a) yield surface; (b) uniaxial tensile
yield stresses and R-values.
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3. Shear Ductile Fracture Criterion

To model fracture in metal forming processes, various ductile fracture criteria [15–22]
were developed based on different assumptions. Recently, Lou et al. [18] developed a micro-
mechanism-inspired ductile fracture criterion for nucleation, growth and shear coalescence
of voids in the form of:(

2τmax
σ

)C1
(
〈1+3η〉

2

)C2
ε

p
f = C3 〈x〉 =

{
x i f x ≥ 0
0 i f x < 0

(21)

where σ represents the equivalent stress, τmax is the largest shear stress, η is the stress
triaxiality, and ε

p
f is the equivalent plastic strain at the onset of fracture. η is computed as

η = σm/σ with σm as the mean stress. There are three fracture parameters of C1, C2 and
C3, which need to be calibrated by experimental data points. For a sheet metal stretched by
two principal stresses along RD and TD, the stress state is assumed to be

(
σxx, σyy

)
and the

stress ratio is defined as α = σyy/σxx. Then the strain increment ratio under this loading
condition is computed with the assumption of the associate flow rule as below:

β =
dεyy

dεxx
(22)

The strain increments of dεxx and dεyy are given in Equations (8) and (9), respectively.
Moreover, φ is defined as the ratio of the stress σxx to the anisotropic Drucker effective
stress computed in Equation (1) as below:

φ =
σxx

σ
(23)

Under biaxial tension with σxx ≥ σyy ≥ 0, the normalized maximum shear stress is
obtained as:

τmax

σ
=

σxx

2σ
=

φ

2
(24)

The stress triaxiality is calculated as:

η =
σm

σ
=

σxx + σyy

3σ
=

φ(1 + α)

3
(25)

The equivalent plastic strain increment can be calculated with the equation below:

σdε = σxxdεxx + σyydεyy = σxxdεxx(1 + αβ) (26)

Then the equivalent plastic strain increment is obtained as:

dε =
σxxdεxx(1 + αβ)

σ
= φ(1 + αβ)dεxx (27)

With Equations (24)–(27), the DF2012 criterion under proportional biaxial tension can
be reformulated as:

φC1

(
〈1 + φ(1 + α)〉

2

)C2

φ(1 + αβ)ε
f
xx = C3 (28)

The above equation can be expressed in the form below:

φC1

(
〈1 + φ(1 + α)〉

2

)C2

=
C3

φ(1 + αβ)ε
f
xx

(29)
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Logarithmic operation is applied on both sides of the above equation, which gives:

C1 log φ + C2 log
(
〈1 + φ(1 + α)〉

2

)
= log

(
C3

φ(1 + αβ)ε
f
xx

)
(30)

For AA6111-T4, the relations between α, φ and β are obtained with the anisotropic
Drucker function, as illustrated in Figure 2.
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For uniaxial tension, α = 0, φ = 1, and β = −r/(1 + r) ≈ −0.404 and then C3 =

ε
f
xx[UT] = ε

f
[UT], where ε

f
xx[UT] and ε

f
[UT] are the uniaxial tensile fracture strain components

along RD and the equivalent plastic strain to fracture of uniaxial tension.
For plane strain tension, α = α[PS], φ = φ[PS], and β = 0. Then the DF2012 criterion in

Equation (30) reduces to:

C1 log φ[PS] + C2 log


〈

1 + φ[PS]

(
1 + α[PS]

)〉
2

 = log

 C3

φ[PS]ε
f
xx[PS]

 (31)

with ε
f
xx[PS] as the fracture strain component along RD under plane strain tension along RD.

For the equibiaxial tension with dεxx = dεyy, α = α[EB], φ = φ[EB], and β = 1. Then
the DF2012 criterion in Equation (30) reduces to:

C1 log φ[EB] + C2 log


〈

1 + φ[EB]

(
1 + α[EB]

)〉
2

 = log

 C3

φ[EB]

(
1 + α[EB]

)
ε

f
xx[EB]

 (32)

with ε
f
xx[EB] as the fracture strain component along RD under equibiaxial tension.

Since C3 = ε
f
xx[UT] = ε

f
[UT], C1 and C2 are solved with Equations (31) and (32)

as follows:

[
C1
C2

]
=

 log φ[PS] log
(
〈1+φ[PS](1+α[PS])〉

2

)
log φ[EB] log

(
〈1+φ[EB](1+α[EB])〉

2

)

−1


log

(
C3

φ[PS]ε
f
xx[PS]

)

log

(
C3

φ[EB](1+α[EB])ε
f
xx[EB]

)
 (33)
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4. Modeling of Strain Path Changing Effect on FFLC

Graf and Hosford [3] conducted forming limit tests for AA6111-T4 from uniaxial
tension to equibiaxial tension. The fracture strains were measured for the alloy. Table 2
summarizes the measured fracture strain pairs under uniaxial tension, plane strain tension
and equibiaxial tension. With the analysis in Section 3 and Equation (33), the fracture
parameters of the DF2012 criterion can be easily calculated as C1 = 8.8484, C2 = 0.0417
and C3 = 0.2900. For the computation of fracture strain under bilinear strain path, we
first assume that the pre-strain strain path is β1, the corresponding stress ratio α1 and the
magnitude of the pre-strain εxx(1). Then the following strain path, stress ratio and strain
increment up to fracture are denoted as β2,α2 and εxx(2). According to Equation (28), it is
easy to obtain the secondary strain up to fracture by solving Equation (34) as below:

φC1
1

(
〈1 + φ1(1 + α1)〉

2

)C2

φ1(1 + α1β1)εxx(1) + φC1
2

(
〈1 + φ2(1 + α2)〉

2

)C2

φ2(1 + α2β2)ε
f
xx(2) = C3 (34)

Table 2. Fracture strains for AA6111-T4.

Loading Conditions Uniaxial Tension Plane Strain Tension

Maximum principal strain 0.290 0.170
Minimum principal strain 0.117 0

Then the fracture limit strain with a pre-strain of εxx(1) and strain path of β1 followed
by the strain path of β2 is obtained as:

[
εxx
εyy

]
=

 εxx(1) + ε
f
xx(2)

εyy(1) + ε
f
yy(2)

 =

 εxx(1) + ε
f
xx(2)

β1εxx(1) + β2ε
f
xx(2)

 (35)

Then the FFLC under bilinear strain paths are easily predicted by keeping β1 as
uniaxial tension, plane strain tension, equibiaxial tension or other strain paths and setting
εxx(1) as different values prestrain, and then varying the strain path of secondary plastic
deformation of β2 from uniaxial tension to equibiaxial tension.

The FFLC was predicted by the calibrated DF2012 criterion as compared with exper-
imental measurement in Figure 3. It was obvious that the DF2012 criterion predicts the
FFLC of AA6111-T4 accurately from uniaxial tension to equibiaxial tension. The difference
between prediction and experimental measurement was acceptable for the failure modeling
of sheet metal.

The effect of pre-strain under uniaxial tension was theoretically predicted by the
DF2012 criterion and compared with experimental results in Figure 4. From both prediction
and experiments, pre-strain under uniaxial tension had little impact on the fracture strain
between uniaxial tension and plane strain tension. On the other hand, the pre-strain under
uniaxial tension tremendously improves the formability when the following strain path
was from plane strain tension to balanced biaxial tension. The improvement in fracture
strain reached the maximum when the strain path was first uniaxial tension followed by
balanced biaxial tension. This observation indicated that forming processed and tools
could be designed to reach better drawability of metal sheets when the strain path follows
the sequence of uniaxial tension and equibiaxial tension. Moreover, it was noted that the
fracture strain under uniaxial tension followed by uniaxial tension was about 0.06 higher
than that of solely uniaxial tension. This was because the unloading improves the fracture
strain for uniaxial tension, unloading and reloaded under uniaxial tension. Finally, the
experimental measured FFLC with the second strain path from plane strain tension to
balanced biaxial tension was higher than the FFLC from prediction. The prediction error
was due to the simple isotropic hardening was assumed in this study. The unloading effect
was expected to be the reason for higher fracture strain for these bilinear strain paths, but it
was neglected in the plasticity modeling. Analytically, kinematic hardening or anisotropic
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hardening were suggested to be employed for better predicting accuracy of FFLCs for
strain path changing effect.
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The predicted effect of the pre-strain under plane strain tension was compared with
experimental results in Figure 5. First, it should be noted that there was a quite large differ-
ence in experimental fracture strain between monotonic loading and loading-unloading-
reloading even with the identical strain path. Taking the plane strain as an example,
0.05 prestrain under plane strain tension improved about 9.4% fracture strain under plane
strain tension than monotonic plane strain tension, as observed in Figure 5. 0.11 prestrain
under plane strain tension raised the fracture strain by about 26.2% compared with the
fracture strain under monotonically plane strain tension. This could not be explained
theoretically here with isotropic hardening. The evolution of yield surfaces was recom-
mended to be considered to improve the analytical prediction accuracy of this phenomenon.
This would be attributed to annealing or some kind of damage recovering of the alloy
or cyclic loading effect under the identical strain path. Moreover, experimental results
show that the pre-strain under plane strain tension had little effect on the shape of FFLCs,
which was also observed by the prediction of the DF2012 criterion. The prediction also
demonstrated that the pre-strain effect under plane strain tension was negligible for the
left-hand side of FFLCs, but slightly lowers the right-hand side FLC, even though the
effect was not so obvious. To summarize, the prestrain under plane strain tension had little
effect on the formability when the following strain path was between uniaxial tension and
plane strain tension, but slightly reduces the ductility of metals in case that the secondary
strain path was from plane strain tension to equibiaxial tension. However, the comparison
shows that there was a large potential for the improvement of fracture modeling under
stretching after plane strain tension. One of the improving approaches was to take the
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evolution of yield surfaces or kinematic hardening into account instead of simple isotropic
hardening assumption.
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The effect of pre-strain under equibiaxial tension was compared between experiments
and the DF2012 prediction in Figure 6. Both experiments and prediction show that the
pre-strain of equibiaxial tension lowers the formability of metals for most secondary strain
paths, except for the case that the secondary strain path was close to uniaxial tension. How-
ever, the predicted effect of pre-strain under equibiaxial tension was less than experimental
observation, even though a similar effect was predicted by the DF2012 criterion. The exper-
imental results and the DF2012 prediction suggest that the secondary strain paths between
plane strain tension and equibiaxial tension after prestrain under equibiaxial tension should
be avoided for better formability of sheet metals in the design of forming processed and
tool geometry, but the strain path of equibiaxial tension followed by uniaxial tension was
preferred since this special loading path improves the deformation limits before fracture.
The results also show that the fracture predicting error of equibiaxial tension followed by
plane strain tension was very large, and approaches should be proposed to better model
the strain path changing effect on fracture limit for this bilinear strain path.
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5. Conclusions

This study investigates the predictability of the DF2012 criterion for the effect of strain
path changing on fracture limits of an aluminum alloy of AA6111-T4. The DF2012 criterion
was first shown to be capable of fracture prediction under proportional loading conditions
from uniaxial tension to equibiaxial tension. The application of the calibrated DF2012
criterion to FFLC prediction under bilinear strain paths demonstrated that the DF2012
criterion describes the similar effect of pre-strain under uniaxial tension, plane strain tension
and equibiaxial tension on FFLCs. However, there was a big difference between prediction
and experiments for some cases, including fracture strain of uniaxial tension followed
by equibiaxial tension, plane strain tension followed by uniaxial tension, and equibiaxial
tension followed by plane strain tension. The reason was probably due to the neglecting of
cyclic loading effect in analytical modeling of plasticity. Analytically, predicting accuracy,
in this case, would be improved if the evolution of the yield surface or kinematic hardening
was considered for plasticity for strain path changes. To summarize, the DF2012 criterion
was capable of FFLC modeling accurately under proportional loading and reasonable
predicting the strain path changing effect on FFLCs for AA6111-T4. However, the predicting
error for some bilinear strain paths still could not be neglected. A better analytical approach
should be developed to reduce the difference between prediction and experiments, such as
the consideration of kinematic hardening in plasticity modeling for bilinear strain paths.
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