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Abstract: Microstructure of Al-Cu-Yb and Al-Cu-Gd alloys at casting, hot-rolled -cold-rolled and
annealed state were observed; the effect of annealing on the microstructure was studied, as were
the mechanical properties and forming properties of the alloys, and the mechanism of action was
explored. Analysis of the solidification process showed that the primary Al solidification is followed
by the eutectic reaction. The second Al8Cu4Yb and Al8Cu4Gd phases play an important role as
recrystallization inhibitor. The Al3Yb or (Al, Cu)17Yb2 phase inclusions are present in the Al-Cu-Yb
alloy at the boundary between the eutectic and aluminum dendrites. The recrystallization starting
temperature of the alloys is in the range of 250–350 ◦C after rolling with previous quenching at
590 and 605 ◦C for Al-Cu-Yb and Al-Cu-Gd, respectively. The hardness and tensile properties of
Al-Cu-Yb and Al-Cu-Gd as-rolled alloys are reduced by increasing the annealing temperature and
time. The as-rolled alloys have high mechanical properties: YS = 303 MPa, UTS = 327 MPa and
El. = 3.2% for Al-Cu-Yb alloy, while YS = 290 MPa, UTS = 315 MPa and El. = 2.1% for Al-Cu-Gd alloy.

Keywords: aluminum alloys; ytterbium; gadolinium; quasi-binary alloys; mechanical properties

1. Introduction

Al-Cu alloy is an important series of aluminum alloys, because of its excellent prop-
erties, such as high specific strength, etc. 2xxx series aluminum alloys with copper has
been widely used in many applications such as aerospace and automotive industries [1–7].
Due to low weight, high strength and excellent machinability, Al-Cu alloys are important
candidates for steel substitution in some applications in the aerospace and automotive
industries [8]. Currently, it is imperative to further improve the strength and stiffness
of lightweight alloys to develop the next generation of aircraft and vehicles [8–10]. Rare
earth elements have been added in aluminum alloys to improve the tensile strength, heat
resistance and corrosion resistance [11,12]. For example, when Sc was added into Al al-
loys, a thermo-stable L12-type (AuCu3) Al3Sc phase would form in the Al solid solution,
which was able to inhibit the re-crystallization and the grain growth and then significantly
improve the high temperature properties of the alloys [13,14]. A similar to the addition
of Sc, a L12-type (AuCu3) phase Al3Yb formed when Yb was added into Al alloys [15].
It was found that after partial replacement of Sc with either Yb or Gd, the mechanical
properties, such as incubation time and peak hardness of the Al alloy were improved [16].
The recrystallization process of the Al-Cu-Mn alloy can be greatly slowed by the addition
of Gd [17].

The influence of rare earth elements is not only in improving mechanical properties by
producing new second phases, but also through improving casting defects. For example,
Min et al. [18] studied the effect of Y content on the hot-tearing resistance in Al–5 wt.% Cu
based alloys, and it was found that precipitation of the Y-rich phase increased the resistance
of hot-tearing and reduced the susceptibility of hot rupture significantly. Addition of Zr to
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Al-Cu-Re alloys also improves mechanical properties of Al-Cu alloys due to precipitation
of the Al3(RE,Zr) phase [19–21]. Most importantly, the addition of Mn to Al-Cu-Y [22]
and Al-Cu-Er [23] induces a new quaternary phase precipitation (Al,Cu,Mn,Y/Er) with
possible composition Al25Cu4Mn2Y/Er.

Many researchers studied the possibility of using quasi-binary alloys of the Al-Cu-RE
system to develop novel Al casting alloys with significantly improved casting properties
compared to commercial 2xx alloys. The quasi-binary alloys of Al-Cu-Ce [24,25], Al-Cu-
Y [26–28] and Al-Cu-Er [26,29,30] with an atomic ratio of 4/1 (Cu/RE) is an interesting
research due to the precipitation of the Al8Cu4RE phase, which leads to an improvement in
the mechanical properties of these alloys. This quasi-binary eutectic has a fine microstruc-
ture and is capable of fragmentation and spheroidization during heating. The rare earth
elements Yb and Gd can play a better role than these elements. In the following work, we
will study effect of Zr, Mn, and other alloying elements on Al-Cu-Yb and Al-Cu-Gd alloys.
These may provide better mechanical properties to these alloys, which helps in discovering
novel alloys that can be used in various industries.

In this work, the microstructure and mechanical properties of the novel Al-Cu-Yb
and Al-Cu-Gd alloys were studied. Efforts have been made to understand the mechanism
responsible for improving the structure and properties of Al-Cu alloy by the addition of
the rare earth elements Yb and Gd. As-cast, homogenized microstructure was investigated.
Evaluation of the mechanical properties after thermo-mechanical treatment was analyzed.
The alloys may be prospective for the development of novel heat-resistant materials for
the aerospace industry due to the high thermal stability of the eutectic phases, and may
be used as a cast and wrought base alloy due to a wide solidification range and tensile
strength. To increase its mechanical properties, the investigated alloy can be additionally
alloyed with Zr, Mn, and Mg. Due to its good castability, the alloy is a promising material
for use in additive manufacturing by laser selective melting.

2. Materials and Methods

The alloys that used in this study were Al-Cu-Yb and Al-Cu-Gd. The raw materials
for casting were pure Al (99.99%) and master alloys of Al-52Cu, Al-10Yb and Al-10Gd.
Master alloys were melted using by Al (99.99%). The alloys were prepared in a graphite
crucible in an electric resistance furnace, poured into a cast copper mold, and water cooled
to ambient temperature. The dimensions are 120 mm × 40 mm × 20 mm. The cooling rate
was about 15 Ks−1. The nominal composition of the alloys in the present study has been
shown in Table 1.

Table 1. Chemical composition of the alloys, wt %.

Alloys Cu Yb Gd Al

Al-Cu-Yb 4.4 2.5 - bal.

Al-Cu-Gd 4.5 - 2.5 bal.

The as-cast ingots of Al-Cu-Yb and Al-Cu-Gd were homogenized at 590 and 605 ◦C,
respectively, for 1, 3 and 6 h and then quenched in water. The ingots were hot-rolled to
10 mm at 440 ◦C, then cold-rolled to 1 mm. Then, the alloys were annealed at 150, 180,
210 ◦C for 0.5, 1, 2, 3 and 6 h and at 100–600 for 1 h (Figure 1). The microstructures were
characterized using scanning electron microscopy (SEM) Tescan-VEGA 3LMH (Tescan Brno
s.r.o., Kohoutovice, Czech Republic) and Axiovert 200 MMAT (Carl Zeiss, Oberkochen,
Germany) optical light microscope (LM). X-ray diffraction (XRD) data were collected with
the Cu-Kα radiation on a Bruker D8 Advance diffractometer (Bruker, Karlsruheб, Germany)
to identify specific phases in the produced alloys. Labsys Setaram differential scanning
calorimeter (DSC) (SETARAM Instrumentation, Caluire, France) was used to determine the
liquidus and solidus temperatures. Nabertherm furnace (Nabertherm, Lilienthal, Germany)
with an accuracy about 1 K was used to homogenize the as-cast ingot. The Vickers hardness
measurements were performed with a load 5 KgF and a dwell time of 10 s. The tensile tests



Metals 2021, 11, 476 3 of 11

were carried out using a Zwick/Roell Z250 Allround series testing machine (Zwick/Roell,
Kennesaw, GA, USA). The tensile test specimens were cut out from 1 mm thick rolled sheets.
A total of three tensile samples of each alloy were prepared and tested, and the average of
these three data was acted as the re-ported result. The gage length and width of the samples
were 20 and 6 mm, respectively (Figure 1). The strain rate was 4 mm min−1. Ultimate
tensile strength (UTS), yield strength (YS) and elongation (El.) to failure were measured.
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Figure 1. Scheme of the thermo-mechanical treatment of the alloys and tensile test sample.

3. Results and Discussion

This section should provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental conclusions that can be drawn.
Figure 2 shows the microstructure of as-cast alloys of both Al-Cu-Yb and Al-Cu-Gd at
different magnifications. The as-cast microstructure of Al-Cu-Yb (Figure 2a) is represented
by aluminum solid solution, dispersed eutectic and bright inclusions, meanwhile the as-
cast microstructure of Al-Cu-Gd (Figure 2b) is represented by aluminum solid solution and
dispersed eutectic. The four (AlCu)12Yb (τ1), (Al0.47Cu0.53)17Yb2 (τ2), Al2Cu and Al3Yb
phases may be in equilibrium with aluminum solid-solution in to the Al region accordingly
ternary phase diagram [15]. The dispersed eutectic of Al-Cu-Yb consists of aluminum
solid solution and (AlCu)12Yb. Bright inclusions in Al-Cu-Yb are present at the boundaries
between the eutectic and the aluminum dendrites of either Al3Yb or (Al,Cu)17Yb2 phase.
Into the ternary Al-Cu-Gd phase diagram in the equilibrium with aluminum solid-solution
presented Al8Cu4Gd (τ1), Al3.2Cu7.8Gd (τ2), Al2Cu and Al3Gd phases [17]. The dispersed
eutectic in Al-Cu-Gd alloy consists of aluminum solid solution and Al8Cu4Gd phases.
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Figure 2. As cast microstructure of the Al-Cu-Yb (a) and Al-Cu-Gd (b) alloys at different magnification.

Figure 3 displays the XRD patterns of as-cast Al-Cu-Yb and Al-Cu-Gd alloys in
compare with the Al-Cu-Er [29] and Al-Cu-Y [27] alloys phase composition. XRD analysis
of Al-Cu-Yb and Al-Cu-Gd alloys reveals peaks for aluminum and Al8Cu4X similar to
those of Al-Cu-Er and Al-Cu-Y alloys. The most part of the peaks in the alloys in the same
angle corresponds of the Al8Cu4X phase, where X is Yb, Gd, Er, or Y. These peaks rounded
by green oval in the Figure 3. This phase improved the mechanical properties of Al-Cu
alloys, as for the Al-Cu-Y and Al-Cu-Er alloys. Comparison of the literature data [15] and
obtained results allows to conclude that the (AlCu)12Yb (τ1) phase in the Al-Cu-Yb alloy
corresponds of the Al8Cu4Yb phase.
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Al-Cu-Y [27] alloys.

The DSC analysis showed that the liquidus and solidus temperatures for the Al–Cu–
Yb alloy are 635 and 600 ◦C, respectively (Figure 4a), while for the Al–Cu–Gd alloy are
634 and 615 ◦C, respectively (Figure 4b). The solidus temperature was determined on the
cooling curve (bottom curve) and the liquidus temperature on the heating curve (upper
curve). The solidification range of the alloy is about 20–35 ◦C. The wide solidification
range should provide a good castability. In accordance with the solidus temperatures of
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alloys, the temperature of 590 and 605 ◦C were selected as the homogenization temperature
before quenching for Al-Cu-Yb and Al-Cu-Gd alloys, respectively. Figure 5 illustrates the
SEM microstructures of the Al-Cu-Yb and Al-Cu-Gd alloys after homogenization at 590
and 605 ◦C for 1, 3 and 6 h with subsequent water quenching. It can be seen that during
homogenization, there take place processes of fragmentation, spheroidization, and growth
of the Al8Cu4Yb and Al8Cu4Gd eutectic phases. The size of Al8Cu4Yb and Al8Cu4Gd
phases increased from 0.25–0.3 to 1.8–2.4 µm (measured by random secant method) after
homogenization to 6 h. The copper concentration in the solid solution increases from
1.1–1.3 in the as-cast state to 1.7% (point SEM analyze) in both Al-Cu-Yb and Al-Cu-Gd
alloys after 3 h of annealing and remains unchanged as the annealing time increases to 6 h.
Figure 6 illustrates the changes of the intermetallic phase particle size and the concentration
of the copper in the aluminum solid solution depends on the homogenization time.
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Figure 7 shows the hardness of the rolled alloys at different annealing temperatures
150, 180 and 210 ◦C for 0.5, 1, 2, 3 and 6 h (Figure 7a,b). The results showed that the hard-
ness of Al-Cu-Yb and Al-Cu-Gd alloys decreased with increasing annealing temperature
and time, this may be attributed to the decrease in dislocation density, and formation
of subgrains. On the other hand, the hardness of the Al-Cu-Yb rolled alloy was higher
than that of Al-Cu-Gd in the same case of annealing temperatures and time. This may be
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attributed to the presence of either the Al3Yb or (Al,Cu)17Yb2 phase, which increased the
alloy’s mechanical properties.
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Inserts in the Figure 7a,b and Figure 8 show the grain structure of Al-Cu-Yb and
Al-Cu-Gd alloys with different temperature. The microstructure of the alloys at different
annealing temperatures was observed and the results were consistent with the hardness
test results. Regarding the alloys at 250 ◦C, the microstructure is still fiber shaped rolling
deformation; when the annealing temperature is 350 ◦C, the alloys began recrystallization,
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and when the annealing temperature increased to 450 ◦C, the alloy has basically completed
the recrystallization. The hardness of the deformed alloy decreased due to the occurrence
of static recovery and recrystallization. With an increase in the annealing temperature to
450 ◦C, the same restoration processes in the matrix, as well as an increase in the precipitate
sizes, led to an intensive decrease in the alloy hardness in both alloys. At annealing
temperatures exceeding 450 ◦C (above the solvus point), the alloy matrix was usually
saturated with the elements of the main alloys according to the phase diagram, and again
led to the formation of a supersaturated solid solution, accompanied by repeated hardening
of the alloying solution led to increase the hardness [31]. The average grain size of Al-Cu-Yb
and Al-Cu-Gd alloy increased from 8 µm after annealing at 350 ◦C for 1 h to 12 µm at 550 ◦C.

Table 2 and Figure 9 show that the mechanical tensile properties of Al-Cu-Yb and
Al-Cu-Gd alloys reduce by increasing the annealing temperature and time. The results were
consistent with those of the hardness test. On the other hand, Al-Cu-Yb alloy has higher
mechanical tensile properties than Al-Cu-Gd, but the elongation of Al-Cu-Gd alloy after
annealing at 250 ◦C (16%) is higher than that of Al-Cu-Yb (6%). Moreover, the Al-Cu-Yb
rolled-alloy has higher mechanical properties than Al-Cu-Y [26,27] alloy, especially after
annealing at 150 ◦C for 3 h. The as-rolled alloys mechanical tensile properties (150 ◦C, 3 h):
YS = 272 MPa, UTS= 294 MPa and El. = 5.6% for Al-Cu-Yb alloy, while YS = 254 MPa,
UTS = 273 MPa and El. = 2.2% for Al-Cu-Y alloy, and YS = 267 MPa, UTS = 289 MPa and
El. = 2.8% for Al-Cu-Er alloy [26].
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Figure 9. YS and El. dependencies vs. time after annealing at 100, 150 and 180 ◦C for the (a) Al-Cu-Yb and (b) Al-Cu-
Gd alloys.
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Table 2. Tensile properties of the Al-Cu-Yb and Al-Cu-Gd alloys in the as rolled and annealed states.

State YS, MPa UTS, MPa El., %

Al-Cu-Yb

As rolled 303 ± 2 327 ± 2 3.2 ± 0.8
Annealed at 100 ◦C for 1 h 292 ± 3 319 ± 3 3.1 ± 0.8
Annealed at 100 ◦C for 3 h 292 ± 4 318 ± 4 4.5 ± 0.3
Annealed at 150 ◦C for 1 h 280 ± 1 303 ± 1 2.6 ± 0.3
Annealed at 150 ◦C for 3 h 272 ± 2 294 ± 3 5.6 ± 0.2
Annealed at 180 ◦C for 1 h 258 ± 4 276 ± 2 4.6 ± 0.5
Annealed at 180 ◦C for 3 h 252 ± 1 268 ± 1 4.2 ± 1.0
Annealed at 210 ◦C for 1 h 238 ± 2 253 ± 1 5.9 ± 0.1

Annealed at 250 ◦C for 0.5 h 216 ± 2 229 ± 1 6 ± 2

Al-Cu-Gd

As rolled 290 ± 1 315 ± 2 2.1 ± 0.1
Annealed at 100 ◦C for 1 h 266 ± 2 285 ± 3 3.4 ± 1.2
Annealed at 100 ◦C for 3 h 254 ± 3 278 ± 4 4.2 ± 0.6
Annealed at 150 ◦C for 1 h 237 ± 2 253 ± 1 5.5 ± 0.5
Annealed at 150 ◦C for 3 h 227 ± 2 244 ± 2 4.0 ± 1.0
Annealed at 180 ◦C for 1 h 216 ± 1 226 ± 1 0.9 ± 0.1
Annealed at 180 ◦C for 3 h 215 ± 1 225 ± 2 1.8 ± 0.3
Annealed at 210 ◦C for 1 h 202 ± 1 210 ± 1 6.7 ± 0.7

Annealed at 250 ◦C for 0.5 h 175 ± 4 182 ± 3 16.0 ± 1.2

4. Conclusions

1. The microstructure and mechanical properties of Al-4.4Cu-2.5Yb and Al-4.5Cu-2.5Gd
alloys were investigated. The microstructure revealed the presence of the aluminum
solid solution and Al8Cu4Yb and Al8Cu4Gd phases, which play an important role
as recrystallization inhibitor. These also phases improved the mechanical properties
of Al-Cu alloys. Al3Yb or (Al,Cu)17Y2 phase was found in addition in the Al-Cu-Yb
alloy at the boundary between the eutectic and aluminum dendrites.

2. The size of Al8Cu4Yb and Al8Cu4Gd phases increased from 0.25–0.3 to 1.8–2.4 µm
after homogenization at 590 and 605 ◦C for 6 h. The Al8Cu4Yb and Al8Cu4Gd phases
demonstrate a good thermal stability at high temperature homogenization treatment.

3. By increasing the annealing temperature and time after rolling, the hardness and
tensile properties of rolled alloys Al-4.4Cu-2.5Yb and Al-4.5Cu-2.5Gd are reduced.
The mechanical properties of the Al-Cu-Yb rolled alloy were higher than that of
Al-Cu-Gd, Al-Cu-Y and Al-Cu-Er in the same case of annealing temperatures and
time. This may be attributed to the presence of either Al3Yb or (Al,Cu)17Y2 phase,
which increased the alloy’s mechanical properties.

4. The as-rolled and annealed at 150 ◦C for 3 h alloys mechanical tensile properties:
YS = 272 MPa, UTS= 294 MPa and El.= 5.6% for Al-Cu-Yb alloy, while YS = 227 MPa,
UTS = 244 MPa and El. = 2.2% for Al-Cu-Gd alloy.

5. The alloys may be a prospective for the development of novel heat-resistant materials
for the aerospace industry due to the high thermal stability of the eutectic phases and
may be used as a cast and wrought base alloy due to a wide solidification range and
tensile strength.
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