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Abstract: Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in
protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal
ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli
cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered
that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of
gold nanoparticles, compared to that from the control cells. The compositional and morphological
properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells
and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced
purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole
cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the
efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the
potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large
quantity and pure form is worth further investigation.

Keywords: gold nanoparticles; extracellular nanoparticle synthesis; recombinant Escherichia coli;
phytochelatin synthase; phytochelatins

1. Introduction

Nanoparticles have diverse applications in various fields, including, but not limited to,
serving as carriers for drug delivery, new materials for pathogen detection or food preser-
vation, prevention and remediation of heavy metal contaminants, as well as generation
of renewable energy production [1]. Microbial synthesis of nanoparticles is increasingly
becoming the focus for the development of new methods for nanoparticle production
due to its low cost, environmental friendliness and potential to upgrade for large scale
production. Microorganisms, such as bacteria and fungi, possess metal ion regulators,
transporters, ligands, metal-dependent reductases, metal binding and reducing agents
that are natural and essential for the process of biological synthesis of nanoparticles, from
reducing metal ions into elemental metal, to further binding, capping and stabilizing the
metal elements as nanoparticles [1–3].

We are interested in exploring the contribution of a group of metal-binding peptides,
phytochelatins, to the bacteria nanoparticle synthesis. The production of phytochelatins is
catalyzed by phytochelatin synthase in plants, and recently also found in prokaryotes [4–7].
The role of phytochelatins in prokaryotes is not completely elucidated, but it is well ac-
cepted that phytochelatins play a principal role in protecting plants from heavy metal
and metalloid toxicity [4,5,8–12], due to the presence of clusters of cysteine residues that
can bind to metal ions. The phytochelatins are short peptides that have a general struc-
ture of (γ-Glu-Cys)n-Gly, where n is usually no more than 5, but can be between 2 and
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11 [4,5,11]. The thiols of cysteine residues in phytochelatins interact with metals with high
affinity and form the phytochelatin-metal complex during detoxification of metals and
metalloids in plants [4,8,11]. The contribution of phytochelatins to nanoparticle synthesis
has been investigated [13–15]. We also developed a recombinant E. coli bacterium that
expresses R. tropici phytochelatin synthase, and discovered that overexpression of R. trop-
ici phytochelatin synthase in E. coli cells improved the bacterial heavy metal resistance,
and increased yield of selenium nanoparticles when whole cells were used to synthesize
nanoparticles [16]. Nevertheless, one challenge associated with whole cell nanoparticle
synthesis in our previous studies was the isolation of nanoparticles from cellular debris to
obtain pure nanoparticles. Thus, one goal of the present study was to tackle this issue by
utilizing the intracellular soluble components from the E. coli cells as reaction media for
nanoparticle synthesis; additionally, we further examined the impacts of phytochelatins on
nanoparticle production via the extracellular nanoparticle synthesis method.

Nanoparticle synthesis mediated by soluble extracts from microorganisms have been
explored [1,17–20]; however, the exact mechanisms are not well elucidated. It is generally
agreed that the nanoparticles are formed through two important steps: metal or metalloid
ions are first trapped on the surface or transported into the microbial cells. The trapped
ions are then reduced to nanoparticles in the presence of enzymes [21]. Thus, the enzymes
and functional groups of biomolecules present either in the cell walls or inside the cells
are essential for the reduction of metal ions, nucleation, capping, stabilization of nanopar-
ticles [21,22]. These agents include large molecules, such as reductases, other enzymes,
proteins, cofactors and polysaccharides [18,23–29], as well as small ones, such as peptides,
glucose and amino acids [19,22,29–32]. For an example, Vetchinkina et al showed that
some enzymes, such as Mn-peroxidases, laccases, tyrosinases and phenol oxidase from
basidiomycetes, were involved in the reduction of metal ions and the formation of the
nanoparticles [18]. Particularly, Zsófa Molnár explored the role of various components of
thermophilic flamentous fungi in gold nanoparticle synthesis and revealed that different
cellular components (intracellular soluble molecules, components released to extracellular
environment, and whole cellular lysate) were able to produce gold nanoparticles; however,
the formation of nanoparticles with different sizes and nanoparticle size distributions
depends on the fungi strain and experimental conditions [19]. Interestingly, they found
that the size of reducing agents was less than 3 kDa, but the size of molecules that can
efficiently stabilize nanoparticles was greater than 3 kDa [19].

The majority of these biological molecules are soluble and some of them are even
released to the extracellular growth medium. In principle, employing the soluble intra-
cellular extracts as a reaction medium for nanoparticle synthesis can avoid the tedious
and nearly impossible isolation of nanoparticles from cellular debris. In our previous
study, the recombinant E. coli DH5a cells that express R. tropici phytochelatin synthase
showed increased efficiency in selenium nanoparticle synthesis [16]. We postulated that
the enhanced capacity of these recombinant bacteria for nanoparticle synthesis was re-
sulted from the increased phytochelatin production upon the overexpression of R. tropici
phytochelatin synthase. Thus, we proposed that the soluble extracts from E. coli DH5a
cells transformed with R. tropici phytochelatin synthase gene should be able to improve
nanoparticle synthesis due to the increase in phytochelatin level.

Gold nanoparticles have the potential applications in diverse fields, including optics,
electronics, medicine and biotechnology, due to their stable chemical properties and good
biocompatibility [18,33]. Thus, we specifically evaluated how overexpression of the R.
tropici phytochelatin synthase in E. coli would impact extracellular gold nanoparticle
synthesis when soluble intracellular extracts are used as reaction media.

2. Materials and Methods
2.1. Determination of R. tropici Phytochelatin Synthase Protein Expression in Recombinant E

The assembly of the R. tropici phytochelatin synthase gene was carried out as described
by D. Marsc and Q. Yuan [16,34,35]. Glycerol stocks of E. coli DH5α cells transformed
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with plasmid containing the sequence-verified phytochelatin synthase gene were prepared
for protein expression evaluation and nanoparticle synthesis as previously described [16].
All chemicals and reagents were purchased from Fisher Scientific (Pittsburgh, PA, USA)
unless specified.

Preparation of E. coli DH5α cells for determining protein expression was carried out as
described in reference [16]. Cell pellets were resuspended in lysis buffer containing 50 mM
Tris-HCl (pH 8), 50 mM NaCl and sonicated to break apart the cells. The whole lysate was
centrifuge at 15,000× g for 30 min to separate the soluble proteins from the cell membrane
debris. Level of protein expression was examined as described in reference [16]. Briefly,
10µL of the supernatant was loaded to 10% SDS-PAGE gel and proteins were separated
by electrophoresis. Proteins were stained with Coomassie blue staining. Gel picture was
taken using Gel Doc EZ Gel Documentation System (Biorad, Hercules, CA, USA).

2.2. Synthesis of Gold Nanoparticles

The preparation of overnight culture for extracellular gold nanoparticle synthesis was
carried out as described in reference [16]. The overnight cell culture was centrifuged and
cells were resuspended in 100 mL of LB in the presence of carbenicillin and cultivated
at 37 ◦C. When OD600nm of control group reached around 0.8, cells were centrifuged at
4500× g for 15 min, then the cell pellet was washed with 25 mL of 50 mM sodium phosphate
buffer pH7.5 and further resuspended in 2 mL of 50 mM sodium phosphate buffer, pH7.5.
Subsequently, cells were sonicated on ice for three cycles of 60 pulses at an output of 20%,
with a 1-min interval between each cycle. The lysate was spun down to remove the cell
debris. The soluble intracellular extract was added to 100 mL of 50 mM sodium phosphate
buffer, pH7.5, containing 2 mM HAuCl4. This cell-free reaction mix was incubated at 37 ◦C
with continuous shake at 250 rpm for 7 days.

An additional objective of this study was to find out whether extracellular nanoparticle
synthesis would facilitate the removal of cellular debris and produce purer nanoparticles,
compared to the whole-cell synthesis platform. To simplify the experiments, we only chose
recombinant E. coli cells as the source for reaction media. Whole-cell synthesis was carried
out by adding HAuCl4 to the cell culture at 2 mM when OD600nm of the bacteria reached
around 1. The whole-cell reaction mix was maintained at the same conditions for soluble
intracellular extract-mediated reactions.

2.3. UV–Vis Spectroscopy

To observe the optical property of gold nanoparticles, samples from the reaction mix
or supernatant after centrifugation at 3000× g were analyzed using UV–vis spectroscopy
(Genesys 10 S UV-Vis spectrophotometer; Fisher Scientific, Pittsburgh, PA, USA) operated
at a resolution of 1 nm ranging from 200 to 800 nm at room temperature.

2.4. Collection of Nanoparticles

After 7 days of incubation in the presence of 2 mM HAuCl4, the nanoparticles were
first collected by centrifugation at 3000× g for 5 min. The purpose of this low-speed
centrifugation was to remove possible protein or other biological molecular precipitates
after a week of incubation and acquire nanoparticles with minimum contamination of
insoluble cellular components. The supernatant after low-speed centrifugation was further
spun for 30 min at 17,000× g to extract the remaining gold nanoparticles. After supernatant
was carefully removed and the gold nanoparticles were dried at 37 ◦C in a drying oven
(Isotemp™ General Purpose Heating and Drying Oven, Fisher Scientific, Pittsburgh, PA,
USA). The dry weight of the nanoparticle pellet was measured and the gold nanoparticles
were stored at −20 ◦C. To collect the nanoparticles synthesized by whole cells, we cen-
trifuged the reaction mix at 4500× g for 15 min. Then, the pellets were resuspended in 8 M
urea, sonicated and centrifuged to remove any soluble contents. The process was repeated
three times and followed by two more washes with sterile deionized water. The samples
were resuspended in sterile deionized water for electron microscopic analysis.
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2.5. Characterization of Gold Nanoparticles Using Energy-Dispersive X-ray Spectroscopy and
Transmission Electron Microscopy

We used transmission electron microscopy (TEM) to determine the morphological
properties of the biologically synthesized gold nanoparticles and energy-dispersive X-ray
spectroscopy (EDS) to identify the elemental composition of the nanoparticles. The samples
for the TEM and EDS analysis were prepared similarly as described in Section 2.4 with
some modifications at the end. The final gold nanoparticles were resuspended in sterile
deionized water by sonication without the drying step.

An FEI Tecnai F30 super-twin field-emission-gun transmission electron microscope
(TEM) (manufactured by the FEI Company in Hillsboro, OR, USA) operating at 300 kV
was used to acquire the TEM images. A Hitachi HD2700 aberration-corrected scanning
transmission electron microscope (manufactured by the Hitachi Company in Hillsboro in
Chiyoda, Tokyo, Japan) was used to record the high-angle annular dark-field (HAADF)
STEM images and to acquire the X-ray energy dispersive spectroscopy (EDS) spectra. The
size of gold nanoparticles was analyzed using ImageJ Software.

2.6. Zeta Potential Analysis of Gold Nanoparticles

To estimate the stability of the nanoparticles, zeta potential of the gold nanoparticles
generated by soluble extracts from the recombinant cells collected after high speed cen-
trifugation was measured. The nanoparticles for zeta potential analysis were prepared in
the same way as for TEM analysis. The nanoparticles were dispersed in sterile deionized
water and zeta potential was recorded using Malvern Zetasizer Nano ZS system at pH of
6.48 and temperature of 25 ◦C (Particle Technology Labs, Downers Grove, IL 60515, USA).

2.7. Statistical Analysis

All data are expressed as mean ± SD. Comparison between groups was evaluated
with the Student t test. Probability values of <0.05 were considered significant.

3. Results
3.1. Expression of R. tropici Phytochelatin Synthase in E. coli DH5α Cells

The expression of R. tropici phytochelatin synthase protein in E. coli was analyzed
using SDS-PAGE. The soluble lysate of E. coli was separated by 10% SDS-PAGE gel and
visualized using coomassie blue staining. Figure 1 shows that the intensity of a band with
a size above 25 kD in the recombinant bacteria (pUC-Syn) was increased, compared to that
of the endogenous band in the control cells (pUC19-Vec). The position of the band matched
well with the predicted molecular weight of 28.95 kD of this protein [16]. Furthermore,
we confirmed that the band did contain the R. tropici phytochelatin synthase using mass
spectrum analysis in our previous study [16].

3.2. Synthesis and Yield of Nanoparticles by Soluble Intracellular Extracts

We reported that the recombinant E. coli cells showed faster growth under simi-
lar cultivation conditions, had stronger tolerance to heavy metal ions and an increased
yield of selenium nanoparticles [16]. In this study, we revealed that the bacterial soluble
extract-mediated reaction solution displayed a red wine color (Figure 2A,B), an indicator
of successful gold nanoparticle synthesis [20,24]. To exclude the possibility that the intra-
cellular contents could denature and precipitate during the 7-day reaction, creating a false
increase in nanoparticle yield, we first centrifuged the reaction solution at 3000× g for
5 min to remove possible precipitated biomolecules. After this low-speed centrifugation,
the supernatant was clear but maintained the red color, implying that biomolecule precipi-
tates were removed, but it still contained high level gold nanoparticles (Figures 2B and 3B).
Further centrifugation of the supernatant shown in Figure 2B at 17,000× g for 30 min
allowed us to collect the remaining nanoparticles. In addition, the reaction containing
intracellular extracts from pUC-Syn cells yielded a larger wet pellet than that of the control
pUC19-Vec cells (Figure 2C). The dry weight of nanoparticle pellets synthesized by recom-
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binant intracellular extracts and collected after low-speed isolation was greater, compared
to the control group (3.5 ± 0.4 mg in pUC19-Vec vs. 5.9 ± 1.8 mg in pUC-Syn. Figure 2D).
Importantly, the dry weight of the nanoparticles collected after high-speed centrifugation
was also greater in pUC-Syn group (2.8 ± 0.6 mg in pUC19-Vec vs. 4.6 ± 1 mg in pUC-Syn.
Figure 2D). Thus, our results identified that reaction using soluble intracellular extracts
of the recombinant cells produced more gold nanoparticles, compared to those of the
control cells.
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Figure 2. Synthesis and yield of gold nanoparticles by soluble intracellular extracts from bacteria. (A). Soluble intracellular
reaction mix after 7 days of incubation with 2 mM HAuCl4. (B). Supernatant collected after centrifugation of the reaction
mix in A at 3000 g for 5 min. (C). Nanoparticle pellets obtained after further centrifuging the supernatant in (B) at 17,000× g.
(D). Dry weight of nanoparticle pellets collected from 100 mL cell-free reaction mix after centrifugation at 3000 g and
17,000 g, respectively. n = 4. *: p < 0.05.
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3.3. UV-Vis Spectral Characterization of Nanoparticles

UV-vis spectral analysis of the reaction mix before centrifugation or of the supernatant
after centrifugation at 3000× g detected an absorbance band between 500 and 600 nm in
both pUC19-Vec and pUC-Syn cells (Figure 3A,B). The wavelength at which absorption
maximum was observed was similar between the two groups, suggesting that the physical
and chemical properties of the particles were probably similar (Figure 3A,B). The absorption
peak of the reaction mix is consistent with what has been reported for gold nanoparticles
with a small size and spherical shape [36,37]. However, the amplitude of the absorption
maximum of the nanoparticles from pUC-Syn group was higher than that of the pUC19-Vec
group (Figure 3A,B), indicating that there may be a higher density of gold nanoparticles
in the reaction mediated by recombinant intracellular components, due to the formation
of more gold nanoparticles. The UV-vis spectral results indicated that the low-speed
centrifugation step might have helped improve the purity and quality of the nanoparticles,
but at the cost of losing some nanoparticles. The absorption peak of the UV-Vis spectra
was slightly reduced in both groups after low-speed centrifugation (Figure 3B).

3.4. Characterization of Gold Nanoparticles Using TEM

To characterize morphological properties of the nanoparticles, we examined the
nanoparticles using TEM. The nanoparticles synthesized by extracellular method shared
similar morphology and size among all groups (Figure 4A–F). The majority of the nanopar-
ticles exhibited a sphere-like shape, while irregular-shape or cylindrical nanoparticles
were also observed occasionally (marked by * in Figure 4A,B,D,E). The TEM images of
nanoparticles under high resolution revealed more details on the nanoparticles’ structures.
Crystallographic planes of metal deposition could be seen in nanoparticles, and it appeared
that the patterns of gold lattices were similar in nanoparticles made by soluble extracts
from both cell groups (Figure 4C,F). The size of the nanoparticles from both groups varied
within a similar range between 5–50 nm (Figure 4A,B,D,E, Table 1). Combination of the
nanoparticles after low-speed and high-speed centrifugation didn’t exhibit much difference
in size between recombinant pUC-Syn and pUC19-Vec control cell group (26.06 ± 11.05 nm
in pUC19-Vec vs. 26.63 ± 12.40 nm in pUC-Syn, p > 0.05, last two columns in Table 1).
However, the low-speed centrifugation may help remove relatively larger nanoparticles
and nanoparticle aggregates (Figure 4A,B and Figure 5B,C). This is more likely the case
in recombinant cell group. The nanoparticles made by recombinant cellular extracts and
collected after centrifugation at 3000× g had a slightly but significantly larger size than
those collected after centrifugation at 17,000× g (Table 1). In general, the low-speed cen-
trifugation at 3000× g probably was not enough to separate nanoparticles ranging between
5–50 nm. In summary, while the extracellular synthesis method using soluble cellular
extracts of recombinant cells produced more nanoparticles, the size, shapes and structure
of these nanoparticles were not significantly different from those generated by the control
pUC19-Vec cells.

Table 1. Comparison of nanoparticle size.

D1 (pUC19-Vec
Cell Group After

Spin at 3000 g)

D2 (pUC19-Vec
Cell Group After
Spin at 17,000 g)

S1 (pUC-Syn
Recombinant Cell
Group After Spin

at 3000 g)

S2 (pUC-Syn
Recombinant Cell
Group After Spin

at 17,000 g)

D1 + D2 S1 + S2

Diameter (nm)
(mean ± SD) 26.49 ± 14.75 25.87 ± 8.95 28.95 ± 12.13 24.72 ± 12.30 26.06 ± 11.05 26.63 ± 12.40

Number of
Nanoparticles 137 309 234 285 446 519

p value
D1 vs. D2, p > 0.05
D1 vs. S1, p > 0.05
D1 vs. S2, p > 0.05

D2 vs. D1, p > 0.05
D2 vs. S1, p < 0.001
D2 vs. S2, p > 0.05

S1 vs. D1, p > 0.05
S1 vs. D2, p < 0.001
S1 vs. S2, p < 0.001

S2 vs. D1, p > 0.05
S2 vs. D2, p > 0.05
S2 vs. S1, p < 0.001

D1+D2 vs.
S1+S2, p > 0.05

D1+D2 vs.
S1+S2, p > 0.05
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Figure 5. TEM images of nanoparticles synthesized by whole recombinant cells and soluble intracellular extracts of
recombinant cells. (A). TEM micrograph of nanoparticles generated by whole cells. (B). TEM micrograph of nanoparticles
synthesized by soluble extracts collected after centrifugation at 3000× g. (C). TEM micrographs of nanoparticles yielded by
soluble extracts collected after further centrifugation at 17,000× g. Arrows indicate cellular debris; arrowheads indicate
nanoparticles. Circles include large aggregates of nanoparticles.

Nevertheless, a comparison of the images of nanoparticles synthesized by whole cells
and soluble intracellular extracts revealed some important differences, even if both reaction
media were from recombinant bacteria. Firstly, and importantly, there was a large amount
of cellular debris in the nanoparticle samples obtained by whole-cell reaction (Figure 5A),
while the background of the images of the nanoparticles formed from soluble intracellular
extract-mediated reaction was clear and lack of such cellular debris (Figure 5B,C). Secondly,
the size and shape of the nanoparticles from whole-cell reaction and extracellular synthesis
method were different. The nanoparticles generated by whole cell-mediated reaction had
irregular shape and formed large aggregates (Figure 4E,F and Figure 5A). Thirdly, the
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yield of nanoparticles by extracellular method was much higher than that of nanoparticles
from whole cell-mediated reaction (Figure 5A–C). The nanoparticles shown in Figure 5A
were isolated from a single 100 mL of whole cell reaction, while nanoparticles in B and
C were collected from a single 100 mL of soluble intracellular extract-mediated reactions,
and resuspended in the same final volume of deionized water for TEM analysis. Thus, the
concentration of nanoparticles was an indicator of the nanoparticle yield, which suggested
that the extracellular synthesis of gold nanoparticles was more efficient and had a higher
yield of nanoparticles. Due to the low yield of nanoparticles by whole-cell reaction and
formation of large nanoparticle aggregates, it was difficult to obtain enough images of
individual nanoparticles for size measurement.

3.5. Compositional Analysis of Nanoparticles Using STEM and EDS

Since the nanoparticles synthesized by soluble intracellular extracts displayed similar
physical characteristics, independent of cell type and centrifugation speed, we proposed
that all of them should have similar elemental compositions. Thus, we only selected the
nanoparticles obtained after high-speed centrifugation for compositional assessment using
EDS coupled with STEM. Our results in Figure 6 demonstrated that the nanoparticles
were indeed gold nanoparticles. Figure 6A shows the high-angle annular dark field
(HAADF) micrograph of the gold nanoparticles synthesized by pUC19-Vec cells collected
after centrifugation at 17,000× g. Figure 6B displays the color-coded EDS elemental map of
the gold nanoparticles, and Figure 6C shows the spectra of EDS with energy peaks of mainly
two elements, gold and copper, in the nanoparticle sample; Figure 6C–F shows similar
results for the gold nanoparticles synthesized by the pUC-Syn recombinant cells. The
signals of copper in Figure 6C,F arose from the TEM grid that supported the nanoparticles.
The energy peak of aluminum in Figure 6 F was from contamination during the preparation
of the STEM sample. These results demonstrated that gold was the only element detected
in the nanoparticles. Therefore, the extracellular method using soluble intracellular extracts
successfully generated gold nanoparticles.
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(D–F) show the same analysis used in (A–C), but of gold nanoparticles from pUC-Syn recombinant cells.



Metals 2021, 11, 472 9 of 13

3.6. Measurement of Zeta Potential of Gold Nanoparticles

Zeta potential measurement can assess the surface charges of nanoparticles and es-
timate the degree of repulsion between the charged particles in colloid status. A zeta
potential lower than −30 mV or higher than +30 mV usually suggests good colloid stability
of nanoparticles due to the electrostatic repulsion between individual particles [38]. In this
study, zeta potential was determined using Malvern Zetasizer Nano ZS system (Particle
Technology Labs, Downers Grove, IL 60515, USA). Since the TEM and EDS analysis identi-
fied that nanoparticles produced by recombinant and control soluble intracellular extracts
had similar physical properties, we only measured the zeta potential of nanoparticles from
recombinant cells. When the nanoparticles were dispersed in deionized water at 25 ◦C and
a pH of 6.48, two peaks were identified. Peak one had an average of −41.5 ± 6.92 mV, and
its area contributed to 98% of the potential distributions. The average zeta potential of peak
two was 21.8 ± 2.72 mV; however, it only accounted for 2% of the potential distributions
(Figure 7). The average zeta potential of all the analyzed nanoparticles was 41.2 ± 7.29 mV
(Figure 7). These results indicated that the gold nanoparticles synthesized by the soluble
extracts from recombinant E. coli cells were very stable.
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4. Discussion

Herein, we tested the capacity of the soluble intracellular extracts from E. coli cells as
reaction media to synthesize gold nanoparticles. We revealed that the soluble intracellular
extracts were able to synthesize gold nanoparticles with a spherical shape and a size
ranging from 5 to 50 nm (Figure 2A,B Figure 3A,B, Figures 4 and 6, Table 1). Notably, the
yield of gold nanoparticles produced by reaction containing soluble components from
recombinant cells transformed with R. tropici phytochelatin synthase was increased by
more than 60%, compared to that from the cells only transformed with empty plasmid
vector (Figure 2C,D).

Phytochelatins, the enzymatic products of phytochelatin synthase, are small soluble
peptides that play an essential role in resisting heavy metal toxicity in plants [8–11]. Their
potential role in nanoparticle synthesis has been reported [13–16]. In the present study, we
proposed that the overexpression of the enzyme promoted the synthesis of phytochelatins
in the host E. coli cells based on literature review and our own observations, although we
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didn’t measure the phytochelatin synthase activity or the level of phytochelatins in the cells.
It was recently found out that the prokaryotic phtyochelatin synthase in cyanobacterium
Geitlerinema sp. showed basal phytochelatin synthesis activity [7]. Importantly, its activity
was further enhanced when the cyanobacterium Geitlerinema sp. were exposed to cadmium
as evidenced by the increase in the production of phytochelatin in these cells [7]. We
also reported that the recombinant E. coli cells transformed with R. tropici phytochelatin
synthase gene displayed a better basal growth and an enhanced tolerance to a few heavy
metals [16], indicating that the enzyme was active and generated phytochelatins that
facilitate the survival of host cells upon heavy metal challenges. Thus, we believe that the
soluble extracts of these recombinant cells should contain a higher level of phytochaltins,
which played an important role in improving the capacity of nanoparticle synthesis when
only intracellular extracts were used as reaction media (Figure 2C,D). Since the repeats
of glutamate and cysteine in phytochelatins usually are no more than 5, which give a
molecular weight less than 3 Kd; therefore, the increase in these short peptides most
likely enhanced the reduction of gold ions, according to a recent report showing that the
molecules smaller than 3 kD were able to reduce gold ions [19].

Many other cellular components, such as enzymes, functional groups of proteins, and
amino acids, are involved in the reduction of metal ions, nucleation, growth, capping and
stabilization of gold nanoparticles [19,24–32,39]. Therefore, a faster growth resulting in
yield of a greater cell mass and a larger amount of cellular components further augmented
the efficiency of nanoparticle production mediated by cell-free intracellular contents.

While overexpression of phytochelatin synthase enhanced gold nanoparticle synthe-
sis, the physical and chemical properties of these nanoparticles synthesized by soluble
intracellular extracts from either recombinant cells or control cells were not significantly
different (Figure 3A,B and Figure 4, Table 1). The size variation and morphology of these
nanoparticles were largely similar. Particularly, the nanoparticles showed very similar
pattern of gold lattices in high-resolution images obtained by TEM (Figure 4C,F). These
revelations implied that the mechanism and pathway of nanoparticle formation could be
the same in the two cell groups when soluble intracellular extracts were used as reaction
media, since the physical and chemical properties of biologically synthesized nanoparti-
cles are largely determined by the components of the reaction solution and the reaction
conditions to form nanoparticles [19,39].

The extracellular synthesis platform using soluble intracellular extracts not only suc-
cessfully produced gold nanoparticles, but also aided in removing the cellular debris
encountered in whole-cell synthesis. TEM images of nanoparticles uncovered many large
insoluble fragments of cellular debris in the nanoparticle samples synthesized by whole-
cell method (Figure 5A), which were not seen in the images of nanoparticles made by
extracellular method (Figure 5B,C). One of the challenges to the application of bacteria for
producing nanoparticles in large quantity and pure form is the isolation of nanoparticles
from insoluble cellular components. Thus, our findings suggested that extracellular synthe-
sis of nanoparticles is a promising platform to produce pure nanoparticles for their diverse
applications. Engineering E. coli cells so that they carry critical components for successful
formation of different nanoparticles has the potential to enable E. coli to serve as a platform
for production of various nanoparticles.

Furthermore, it is interesting that the whole-cell method appeared to also have a lower
capacity to synthesize gold nanoparticles. The gold nanoparticles and nanoparticle aggre-
gates were sparsely dispersed among debris (Figure 5A). The difference in morphology,
size and yield between nanoparticles produced by whole cells and soluble intracellular
components indicated that they have used a different mechanism to form gold nanoparti-
cles. The pathway and mechanism of gold nanoparticle formation in both cases are not
clear and need further investigations.

Gold nanoparticles have the potential for application in many aspects of nanotech-
nology; for an example, serving as vehicles for drug delivery, production of materials for
photothermal conversion in light therapy, development of diagnostic instruments, cancer
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treatment, antibacterial agents in infection control, as well as building blocks for nano-
electronics, colorimetric sensing, surface-enhanced Raman scattering (SERS) and localized
surface plasmon resonance (LSPR) [33,40–42]. An important prerequisite for these applica-
tions is that the nanoparticles should be stable in colloidal status, since aggregation of the
nanoparticles will significantly impair their behavior and functional activity. Measurement
of zeta potential of the extracellular method synthesized gold nanoparticles suggested that
these nanoparticles had relatively high stability (Figure 7), which will allow us to further
purse their applications, particularly in biological systems.

5. Conclusions

In summary, we demonstrated that overexpression of a prokaryotic phytochelatin
synthase in E. coli improved the efficiency of extracellular gold nanoparticle synthesis
mediated by soluble cellular extracts. Moreover, the extracellular nanoparticle synthesis
platform helped omit the separation of nanoparticles from cellular debris when whole cells
are used as nanoparticle biofactories. Our results suggested that genetic modification of
bacteria that carry essential components in pathways of nanoparticle formation may help
expand the extracellular method to produce diverse nanoparticles in large quantity for
their applications in nanotechnology.
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