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Abstract: Advanced high strength dual-phase steels are one of the most widely sought-after structural
materials for automotive applications. These high strength steels, however, are prone to fracture
under bending-dominated manufacturing processes. Experimental observations suggest that the
bendability of these steels is sensitive to the presence of subsurface non-metallic inclusions and
the inclusions exhibit a rather discrete size effect on the bendability of these steels. Following this,
we have carried out a series of microstructure-based finite element calculations of ductile fracture
in an advanced high strength dual-phase steel under bending. In the calculations, both the dual-
phase microstructure and inclusion are discretely modeled. To gain additional insight, we have
also analyzed the effect of an inclusion on the bendability of a single-phase material. In line with
the experimental observations, strong inclusion size effect on the bendability of the dual-phase
steel naturally emerge in the calculations. Furthermore, supervised machine learning is used to
quantify the effects of the multivariable input space associated with the dual-phase microstructure
and inclusion on the bendability of the steel. The results of the supervised machine learning are then
used to identify the contributions of individual features and isolate critical features that control the
bendability of dual-phase steels.

Keywords: ductile fracture; microstructure; inclusion; finite element; machine learning

1. Introduction

A 10% reduction in the weight of an automobile results in a 6–8% increase in its fuel
efficiency [1]. One of the primary approaches to reduce weight is through increased use of
materials with relatively high specific strength such as advanced high strength steels [2].
The potential of weight reduction through increased use of advanced high strength steels
in automobiles has been estimated to be as high as 25% [3]. Advanced high strength
steels derive their exceptional mechanical properties from a well-engineered complex,
heterogeneous microstructure. With a few exceptions, most advanced high strength steels
comprise two or more phases (a combination of martensite, ferrite, retained austenite or
bainite) which help achieve desired properties [2]. Of the various advanced high strength
steels, dual-phase steels [4] are one of the most widely sought after materials for auto-
motive applications as they provide adequate compromises on strength and ductility [5].
The microstructure of advanced high strength dual-phase steels primarily consists of hard
martensite phase islands dispersed in comparatively softer ferrite phase matrix, together
with a small amount of process induced non-metallic inclusions [6].

The influence of the ‘intended’ ferritic-martensitic microstructure on the deformation
and fracture response of dual-phase steels has been a topic of numerous experimental [7–18]
and 2D [10,12,15,18–24] or 3D [14,17,25–28] microstructure-based computational studies.
These studies have shown that the deformation and fracture characteristics of dual-phase
steels, particularly those with high martensite content and tensile strength of order 1.0 GPa,
are quite complex. The macroscopic flow behavior of these dual-phase steels exhibits
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low initial yield strength due to early yielding in the ferrite phase, followed by steep
strain-hardening while the martensite phase is still elastic and finally significant reduction
in strain-hardening post yielding in the martensite phase [14,27]. In high strength dual-
phase steels decohesion at the ferrite/martensite interface and separation of the adjacent
martensite particles result in damage nucleation; while damage evolution depends on the
volume fraction, morphology and distribution of martensite islands, and the difference
between the mechanical properties of the two phases [7,8,10–13,15–18].

In contrast to damage evolution (void growth) in a homogeneous material, void growth
along an interface of two elastic-plastic phase (as in dual-phase steels) is much more severe [29]
because the coalescence of adjacent voids along the ferrite/martensite interface in the dual-
phase steel preferential occurs in the softer ferrite phase and close to the interface [17,24]. This
in turn increases the susceptibility of crack nucleation and propagation in high strength dual-
phase steels and limits their crashworthiness [30]. The high strength dual-phase steels (with
high martensite content and tensile strength of order 1.0 GPa) are also prone to fracture under
bending dominated manufacturing processes [31,32]. At the industrial scale, the bendability
of a sheet metal is in general characterized by 90◦ V-bend test (see Section 2). A series of
90◦ V-bend tests of a galvannealed dual-phase DP1000 steel sheet revealed significant sample
to sample variation in the bendability of the steel. The root cause of the sample to sample
variation in the bendability of the steel, through detailed fractographic investigations, was
associated with the presence of ‘unintended’ subsurface non-metallic inclusions. Furthermore,
it was found that the inclusions in the high strength dual-phase steel exhibit strong size effect
on the bendability of the steel sheet.

It is extremely difficult and expensive, if not impossible, to produce inclusion-free
steels. Nonetheless, the well-engineered microstructure of advanced high strength dual-
phase steels does not contain large amounts of inclusions. Also, the small amount of
inclusions in dual-phase steels are in general assumed to have insignificant effect on the
mechanical response of the material under simple uniaxial tensile loading condition [33,34].
However, the mechanical response of a dual-phase material in an imposed deformation
field that is homogeneous, such as those under uniaxial tension, is different from the
response in an imposed deformation field that is heterogeneous, such as those under
bending [24]. This is because, in the latter, damage nucleation and evolution involves the
interaction of the length-scales induced by both bending and material microstructure. So
that, even a subtle difference in the material microstructure is exacerbated under bending.
For example, in ref. [24] it was shown that a dual-phase steel which under uniaxial tension
exhibits similar mechanical response along the rolling and transverse directions, can exhibit
very different mechanical response along the two directions under bending.

The objective of this work is to understand the effects of the length-scales induced
by the mode of deformation, i.e., bending, ‘intended’ dual-phase microstructure, and size,
shape, location and properties of ‘unintended’ microstructural features, i.e., inclusions,
on crack nucleation and early stage crack growth in advanced high strength dual-phase
steels. To this end, we have carried out a series of microstructure-based finite element
calculations of ductile crack nucleation and early stage crack growth in a dual-phase steel
under 90◦ V-bend loading condition. The microstructure-based finite element modeling
in this work builds on our recent work [24] on ductile fracture of dual-phase steels under
bending. In the calculations here, not only the ‘intended’ microstructure of an industrially
produced dual-phase steel, DP1000, as in ref. [24] but also the ‘unintended’ inclusions are
discretely modeled in a thin slice of a bend specimen. To gain additional insight, we have
also analyzed the effect of an inclusion on the bendability of a single-phase material with
material properties corresponding to the overall mechanical response of the dual-phase
steel under consideration.

Our results show that the presence of a subsurface inclusion in the bend specimens
leads to subsurface micro-void/crack nucleation under bending that can accelerate the
localization of plastic strain in the material. In line with the experimental observations,
strong inclusion size effect on the bendability of the dual-phase steels naturally emerge
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in our calculations. Furthermore, we have also carried out supervised machine learning
to quantify the effects of the multivariable input space associated with the ‘intended’ and
‘unintended’ microstructural features on the bendability of the advanced high strength
dual-phase steel. The supervised machine learning approach used here utilizes an en-
semble learning method for regression analysis. The results of the supervised machine
learning are then used to identify the contribution of individual features and isolate crit-
ical features that control the bendability of the advanced high strength dual-phase steel.
Specifically, the machine learning based analysis shows that unlike a single-phase material,
the bendability of a dual-phase steel is not only affected by the features associated with the
subsurface inclusion but it is also affected by the underlying dual-phase microstructure.

2. Ninety-Degree V-Bend Tests and Fractographic Analysis

Industrial scale 90◦ V-bend tests of galvannealed dual-phase DP1000 steel sheets were
carried out at ArcelorMittal Global R&D. For the bend tests, 35× 100 mm coupons were cut
from steel coils of thickness≈1.6 mm and were placed in the bend tester where a 90◦ V-bend
punch pushed the coupon into the die at a constant speed. The bent sample was then held
under a small load for 5 seconds before the punch was retracted. In all the tests the bend
axis was along the rolling direction of the steel sheet and the punch speed was 45 mm/min.
Next, the bent coupon was taken out of the fixture and visually examined for cracking on the
tension side of the bent specimen. If a bend crack was observed, the specimen was labeled
‘failed’ and the cracked area was marked; otherwise, the specimen was labeled ‘passed’.
In either case, the 90◦ V-bent samples were then manually bent to complete fracture along
the bend axis for further examination. The resulting fracture surfaces were examined
using scanning electron microscopy (SEM), cathodoluminescence microscopy (CLM) and
energy dispersive spectroscopy (EDS) as in ref. [32]. During the fractographic analysis,
the distance of the inclusions from the bent surface as well as the size and composition of
the inclusions close to bent surface were recorded for both ‘failed’ and ‘passed’ specimens.
The microstructure of the undeformed galvannealed dual-phase DP1000 steel sheets were
also thoroughly characterized using SEM, CLM and EDS.

The microstructure of the DP1000 dual-phase steel consists of martensite phase islands
dispersed in the ferrite phase matrix, together with a small amount of non-metallic inclu-
sions as shown in Figure 1a,b. A cross-section of the surface crack nucleated in a 90◦ V-bent
coupon is also shown in Figure 1c. The influence of the distance of the inclusions from the
bent surface (Location) and the size of the inclusions on the nucleation of a surface crack
in the bent coupons is shown in Figure 1d. As can be seen in the figure, the inclusions in
the high strength dual-phase steel exhibit strong size effect on the bendability (or crack
nucleation propensity) of the sheet metal.
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(a) (b)

(c) (d)

Figure 1. SEM images of an advanced high strength dual-phase, DP1000, steel specimens showing (a,b) the ‘intended’ ferritic
(F)-martensitic (M) microstructure and ‘unintended’ subsurface inclusions in the undeformed material and (c) cross-section
of a deep surface crack formed during 90◦ V-bending. (d) Experimental results showing the effects of the location (distance
from the tension side free surface) and size of subsurface inclusions on the bendability of DP1000 steel sheets.

3. Problem Formulation and Numerical Method

As in ref. [24], microstructure-based finite element modeling of deformation and
fracture of a dual-phase steel sheet subjected to 90◦ V-bend loading condition are carried
out for a thin slice of material with dimension along z-axis, i.e., W = 0.01 mm, and other
dimensions and details shown in Figure 2. Note that the dimensions of the specimen
modeled, except the thickness (dimension along y-axis), is smaller than the dimension of the
specimens employed in the industrial scale 90◦ V-bend tests, Section 2. This is to decrease
the computational time of the finite element calculations. The finite element calculations
are carried out using our in-house data parallel finite element code [24,35–37], which is
based on the dynamic principle of virtual work using a finite deformation Lagrangian
convected coordinate formulation. More complete description of the finite element method
is given in the references cited. For the finite element mesh, a single element through
the width, W, of the specimen is used and overall plane strain conditions are imposed
on z = 0 and z = W surfaces. A very fine uniform in-plane (x − y plane) mesh is used
in a 1.6× 0.8 mm region (marked as ABCD in Figure 2) near the free surface of the bend
specimen with in-plane element dimension 10× 10 µm. The element dimension in the fine
mesh region, e = 10 µm, serves as a normalization length-scale. The finite element mesh of
the entire specimen consists of 22,920 twenty-node brick elements. A mesh convergence
study in ref. [24] showed that for the mesh size considered in the fine mesh region, the effect
of the mesh size is not dominant on the predictions of these microstructure-based finite
element calculations.
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Figure 2. (top) A schematic of the bend specimen together with imposed constraint and loading conditions. (bottom left)
A zoomed view of the finite element mesh near the free surface of the bend specimen of a dual-phase steel showing the
discretely modeled ferrite (F) and martensite (M) phases, and an inclusion (I). (bottom right) A zoomed view of the finite
element mesh near the free surface of the bend specimen of a single-phase material with an inclusion (I).

The imposed boundary and loading conditions follows the configuration shown
schematically in Figure 2. As shown in the figure, in the reference configuration, the y-
displacement of the specimen is constrained at locations, y = 0, x = 0.5 mm and y = 0,
x = 15.5 mm, and the tip of the punch is in contact with the specimen at y = 1.6 mm,
x = 8 mm. A time varying velocity, Vy(t), in the negative y direction is imposed on the tip
of the punch that follows the relation:

Vy(t) =

{
V0

y t/tr if t ≤ tr

V0
y if t > tr

(1)

where t is the analysis time, tr is the rise time and V0
y is the final velocity of the punch.

In the calculations, tr = 1.0× 10−4 s and V0
y = 3.0× 103 mm/s is used. A rather high value

of the final velocity, V0
y , is chosen to reduce the computational time of the finite element

calculations, while the time varying velocity, Vy(t), is applied to minimize the wave effect
in the dynamic calculations, since the focus here is on the quasi-static response. As the tip
of the punch moves in the negative y direction, additional nodes on the specimen surface
comes in contact with the 90◦ V-bend punch and these nodes are also assigned the value
of Vy which is equal to the velocity of the tip at the time of contact and Vx = 0, which
corresponds to perfect sticking of the material to the punch.

3.1. Microstructure Modeling

As shown in Figure 2, we discretely model the material microstructure in a small but
large enough region to capture the nucleation and coalescence of micro-cracks near the
free surface of the specimen. To this end, 2D SEM images of the microstructure of the
material are digitized via Marker-Controlled Watershed Segmentation method [38]. The
average size of the ferrite and martensite phases in the as-produced steel are 2.09 µm and
1.76 µm. Next, the SEM image is magnified by 20X to ‘artificially’ increase the feature
sizes to allow us to choose a reasonable mesh size to resolve the details of the dual-phase
microstructure. The 20X magnification increases an actual length of 1 µm to 20 µm or in
terms of the element dimension, e, it is simply 2e, while keeping the overall volume fraction
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of the phases fixed. The average size of the ferrite and martensite phases modeled in terms
of the element dimension are (2× rF =) 4.18e and (2× rM =) 3.52e, respectively. Finally,
an inclusion of radius, rI , is introduced in the digitized and magnified microstructure in
the center along the length of the bend coupon (marked as ‘I’ in Figure 2) at a distance
dy from the free surface on the tension side. Note that we only model a single inclusion,
however, given the extremely small amount of overall inclusions in the well-engineered
microstructure of the advanced high strength dual-phase steel, any inclusion-inclusion
interaction can be neglected. Also note that this single inclusion is always assumed to be
present in the center along the length of the bend coupon which constitutes a worst-case
scenario. The dual-phase microstructure together with the inclusion are then superimposed
on the finite element mesh in the region marked as ABCD in Figure 2, and material
properties corresponding to the respective microstructural features are assigned based
on material (Gaussian) integration points rather than the finite elements. This allows us
to smoothly resolve the interphase boundaries. The region outside ABCD in the bend
specimen are assigned the material properties corresponding to the overall mechanical
response of the dual-phase steel under consideration. To gain additional insight, we have
also analyzed the effect of an inclusion on the bendability of a single-phase material,
Figure 2, with constitutive parameters corresponding to the overall ‘homogenized’ dual-
phase steel under consideration.

3.2. Constitutive Framework

The constitutive framework for a progressively cavitating ductile solid is used in the
form of a modified Gurson constitutive relation [39–41], with the flow potential

φ =
σ2

e
σ̄2 + 2q1 f ∗ cosh

(
3q2σh

2σ̄

)
− 1− (q1 f ∗)2 (2)

where q1 = 1.5, q2 = 1.0 are parameters introduced in refs. [42,43]. In Equation (2), σ̄ is the
matrix flow strength, σe is the Mises effective stress, σh is the hydrostatic stress and f ∗ is
the effective void volume fraction given by

f ∗ =
{

f , f < fc
fc + (1/q1 − fc)( f − fc)/( f f − fc), f ≥ fc

(3)

where, f is the void volume fraction, fc is the critical void volume fraction to void coales-
cence and f f is the void volume fraction at failure.

The rate of deformation tensor, d, is taken as the sum of an elastic part, de, and a
viscoplastic part, dp. The elastic part is de = C−1 : σ̂, where σ̂ is the Jaumann rate of
Cauchy stress and C is the tensor of isotropic elastic moduli as characterized by the Young’s
modulus, E, and Poisson’s ratio, ν. The viscoplastic part, dp, is given as [44]

dp =

[
(1− f )σ̄ ˙̄ε

σ : ∂φ
∂σ

]
∂φ

∂σ
(4)

with the matrix plastic strain rate, ˙̄ε, having the form

˙̄ε = ε̇0

[
σ̄

g(ε̄)

]1/m
, g(ε̄) = σ0[1 + ε̄/ε0]

N (5)

where ε̄ =
∫

˙̄εdt, ε̇0 is the reference strain rate, m is the strain rate sensitivity exponent, σ0 is
the reference flow strength, ε0 is a reference strain and N is the strain hardening exponent.

The evolution of the void volume fraction, f , is governed by

ḟ = (1− f )dp : I + ḟnucl (6)
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where the first term on the right hand side of Equation (6) accounts for void growth and the
second term accounts for void nucleation. The value of f in the undeformed configuration,
i.e., value of f at time, t = 0, represents the initial void volume fraction, f0. The void
nucleation in the ferrite and martensite phases is assumed to follow strain-controlled
nucleation given as [41]

ḟnucl =
f ε
N

sε
N

√
2π

exp

[
−1

2

(
ε̄− εN

sε
N

)2
]

˙̄ε (7)

whereas, the void nucleation due to non-metallic inclusions is considered to follow stress-
controlled nucleation given as [41]

ḟnucl =
f σ
N

sσ
N

√
2π

exp

[
−1

2

(
σ̄ + σh − σN

sσ
N

)2
]
[ ˙̄σ + σ̇h] (8)

if (σ̄ + σh) ≥ (σ̄ + σh)max, where the maximum is taken over the previous deformation
history, and ∂(σ̄ + σh)/∂t > 0, else ḟnucl = 0. In Equations (7) and (8), f ε

N , sε
N , εN , f σ

N , sσ
N

and σN are the constitutive parameters.

3.3. Constitutive Parameter Identification

The constitutive framework described in Section 3.2 contains several constitutive
(material) parameters that need to be determined. The values of the constitutive parameters
associated with the elastic-viscoplastic response of the fully dense ( f = 0 throughout
the deformation) ‘homogenized’ dual-phase microstructure and that of the individual
constituent phases, ferrite and martensite, of the DP1000 steel under consideration were
determined in ref. [24] by employing an iterative optimization scheme to minimize the
mean squared error between the stress-strain response (prior to the onset of necking)
obtained from uniaxial tension tests and microstructure-based finite element calculations
of 3D representative volume elements subjected to uniaxial tension. The values of all the
parameters obtained in ref. [24] are given in Table 1. Since the values of the parameters
in ref. [24] were obtained for uniaxial tension so the question arises to what extent these
parameters can approximate the flexural stress-strain response of the material under 90◦ V-
bending. A comparison of the early stage macroscopic flexural stress (σF)-plastic strain (ε̄F)
response of the DP1000 steel sheets obtained from 90◦ V-bend tests and microstructure-
based finite element calculation using the values of the parameters given in Table 1 are
shown in Figure 3. The values of the macroscopic flexural stress and total flexural strain
(εF) are estimated as,

σF =
3FyL
2Wd2 , εF =

6δyd
L2 (9)

where, Fy is the reaction force on the punch and δy is the deflection of the tip of the
punch along the loading direction. For the microstructure-based finite element calculation
in Figure 3 only the dual-phase microstructure of the steel (without any inclusion) is
considered, and the calculations are carried out with f = 0 throughout the deformation
history, i.e., the initiation and evolution of ductile damage is suppressed. Despite the
various simplifying assumptions in the numerical method such as, considering only a 2D
slice of the microstructure, difference in the specimen geometry and loading rate as well as
the fact that the parameters were obtained from a tension test, a rather good agreement
between the calculated and the experimentally obtained early stage deformation response
of the DP1000 steel sheet under 90◦ V-bending in Figure 3 is noted.
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Table 1. The values of the constitutive parameters for the overall (homogenized) dual-phase (DP) steel [24], the individual
constituent phases (ferrite and martensite) [24] and the non-metallic inclusion.

Parameters DP Ferrite Martensite Inclusion

Young’s modulus, E (GPa) 200 200 200 300
Poisson’s ratio, ν 0.3 0.3 0.3 0.2
Initial flow strength, σ0 (MPa) 610 430 1450 1.1σN
Strain hardening exponent, N 0.14 0.35 0.06 0.001
Reference strain, ε0 0.00175 0.06 0.006 σ0/E
Strain rate sensitivity exponent, m 0.01 0.01 0.01 0.01
Reference strain rate, ε̇0 (s−1) 0.1 0.01 0.01 0.1

Figure 3. Comparison of the early stage macroscopic flexural stress (σF)-plastic strain (ε̄F) response
of the DP1000 steel sheets obtained from 90◦ V-bend tests (Exp) and microstructure-based finite
element calculation (Cal). In the microstructure-based finite element calculation the dual-phase
microstructure of the steel without any inclusion is discretely modeled in the bend specimen, see
Figure 2.

Next, the values of the constitutive parameters associated with the elastic-viscoplastic
response of the inclusion in Table 1 are chosen to represent generic non-metallic inclusions
such as, spinels, calcium aluminates, silicates, titanium nitride and alumina, that undergo
linear elastic deformation up until the onset of damage nucleation, note for the inclusion
σ0 = 1.1σN , where σN is the damage nucleation strength of the inclusion defined in
Equation (8). As modeled, any inelastic deformation that occurs in the inclusions, occurs
post damage nucleation and are modeled to allow graceful fracture of the inclusion for
numerical convenience.

Apart from the constitutive parameters needed to model the mechanical response of
the fully dense material that are given in Table 1, the constitutive framework detailed in
Section 3.2 also contains parameters associated with the modified Gurson model. These
parameters for the ferrite and martensite phases, and for the ‘homogenized’ dual-phase
steel are, initial void volume fraction, f0, critical void volume fraction to void coalescence,
fc, void volume fraction at failure, f f , and the three parameters, f ε

N , sε
N , εN associated

with the void nucleation criteria in Equation (7). Following the work of ref. [24], we take,
f0 = 0 for the ferrite phase, f0 = 0.002 for the martensite phase, and f0 = 0.001 for the

‘homogenized’ dual-phase, while fc = 0.1, f f = 0.2, f ε
N = 0.04, sε

N = 0.01, and εN = 0.2 are
taken to be the same for all three. For the non-metallic inclusion, f0 = 0, fc = 0.1, f f = 0.12,
and the two parameters associated with Equation (8), f σ

N = 0.1 and sσ
N = 0.1σ0 = 0.11σN
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are used in the calculations. Parametric studies are carried out to explore the effect of σN ,
i.e., the strength of the inclusion on the bendability of the steel sheets.

4. Numerical Results

Our objective is to understand the effects of the length-scales induced by 90◦ V-
bending, ‘intended’ dual-phase microstructure, and ‘unintended’ inclusions, on crack
nucleation and early stage crack growth in advanced high strength dual-phase steels.
For the purpose of comparison and to gain additional insight, we have also analyzed the
effect of an inclusion on the bendability of a single-phase material with constitutive param-
eters corresponding to the overall ‘homogenized’ dual-phase steel under consideration.
Herein, we first present the key results of the finite element calculations of ductile fracture
under 90◦ V-bending in a single-phase material with an inclusion which is followed by the
results of the calculations for the dual-phase steel, i.e., discretely modeled microstructure
and inclusion.

4.1. Effect of an Inclusion on the Bendability of a Single-Phase Material

The near surface distribution of equivalent plastic strain, ε̄, on the tension side (in
the region labeled as ABCD in Figure 2) of a 90◦ V-bend specimen of a single-phase
material with an inclusion at four macroscopic flexural strain (εF) levels together with the
macroscopic flexural stress (σF)-strain response are shown in Figure 4. For the specimen in
Figure 4, inclusion size, rI ≈ 3e (e is a normalization length-scale introduced in Section 3),
strength, σN ≈ 0.5× σ0 (σN is defined in Equation (8) and σ0 is the initial flow strength
of the ‘homogenized’ dual-phase or simply single-phase material given in Table 1) and is
located at a distance, dy = 0.125× d (dy is the distance from the free surface and d is the
thickness of the specimen, Figure 2).

As shown in Figure 4a–c, in a single-phase material, subsurface void nucleation
(‘white’ region in the figures) due to the presence of a subsurface inclusion results in the
localization of ε̄ in bands emanating from the subsurface void that are oriented at≈45◦ with
respect to the loading axis. As also shown in Figure 4a–c, the intensity of the localization of
ε̄ increases with progressive bending. Next, with continued bending, the ligament between
the surface and the subsurface micro-crack parallel to the loading direction undergoes
slight localized thinning that results in an increase in the value of the stress triaxiality in
the thinned ligament. Subsequently, nucleation and propagation of a crack connecting
the surface and the subsurface void, Figure 4d, results in the final fracture, i.e., loss of
the load bearing capacity of the specimen which is marked by a drop in the value of σF,
Figure 4e. The ductile fracture mechanism of the single-phase material with an inclusion
under bending shown in Figure 4 is qualitatively the same for the range of inclusion size,
1e ≤ rI ≤ 5e, and location, 0.0625 ≤ dy/d ≤ 0.3125, considered in this work.

The effects of the inclusion size, rI , location, dy/d, and strength, σN , on the bendability
of a single-phase material with a subsurface inclusion are shown in Figure 5. The bendabil-
ity of a specimen is characterized by the value of the macroscopic flexural strain to failure,
ε f , which is the value of εF that corresponds to the drop in the value of σF. As shown in
Figure 5a, for an inclusion of strength, σN = 300 MPa, which is less than the initial flow
strength, σ0, of the material, the value of ε f increases roughly linearly with increasing
distance, dy/d, of the inclusion from the surface, for all three values of rI considered in this
work. While for a fixed value of dy/d, the value of ε f decreases with increasing value of rI .
The effects of the inclusion size and location on the bendability of a single-phase material
shown in Figure 5a is unaffected by an increase in the value of the inclusion strength
from σN = 300 MPa ≈ 0.5 × σ0 to σN = 800 MPa ≈ 1.3 × σ0, as shown in Figure 5b.
Although, not presented here, we have also analyzed the effect of an inclusion of strength,
σN ≈ 2.6× σ0. Our results show that a significant increase in the strength of the inclusion
above the initial flow strength of the material improves the bendability of the material for a
fixed inclusion size and location.



Metals 2021, 11, 431 10 of 25

(a) (b)

(c) (d)

(e)

Figure 4. (a–d) The distribution of equivalent plastic strain, ε̄, in the near surface region on the tension side of a deformed
90◦ V-bend specimen of a single-phase material with an inclusion of size, rI ≈ 3e, strength, σN = 300 MPa (σN/σ0 ≈ 0.5)
and location, dy/d = 0.125, at four macroscopic flexural strain, εF, levels marked as, a-d, on the macroscopic flexural stress
(σF)-εF curve in (e).

(a) (b)

Figure 5. Effect of the size, rI , and location, dy/d, of an inclusion of strength (a) σN = 300 MPa (σN/σ0 ≈ 0.5) and
(b) σN = 800 MPa (σN/σ0 ≈ 1.3) on the flexural strain to failure, ε f , (i.e. bendability) of a single-phase material.
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4.2. Effect of an Inclusion on the Bendability of a Dual-Phase Material

The near surface distribution of ε̄ on the tension side of a 90◦ V-bend specimen of the
dual-phase steel with an inclusion of size, rI ≈ 1.7× rM, strength, σN ≈ 0.7× σF

0 (σF
0 is

the initial flow strength of the ferrite phase) and location, dy = 0.125× d, at four values
of εF together with the σF - εF response are shown in Figure 6. As shown in Figure 6a–c,
the presence of an inclusion results in a subsurface void nucleation (‘white’ region in the
figures) and with progressive deformation ε̄ localizes in a band emanating from the free
surface that is oriented at an angle close to (but not at) 45◦ with respect to the loading axis.
Also, with continued bending, the intensity of the localization of ε̄ in the band increases,
the subsurface void starts to grow and a micro-crack nucleate at the free surface, Figure 6b.
Subsequently, the subsurface micro-crack connects with the surface micro-crack along the
localization band of ε̄, Figure 6c,d, resulting in final fracture at a distance dx from the center
of the specimen. The final fracture of the specimen leads to a drop in the value of σF,
Figure 6e.

(a) (b)

(c) (d)

(e)

Figure 6. (a–d) The distribution of equivalent plastic strain, ε̄, in the near surface region on the tension side of a deformed
90◦ V-bend specimen with ‘discrete’ dual-phase microstructure and an inclusion of size, rI ≈ 3e (rI/rM ≈ 1.7), strength,
σN = 300 MPa (σN/σF

0 ≈ 0.7) and location, dy/d = 0.125, at four macroscopic flexural strain, εF, levels marked as, a-d,
on the macroscopic flexural stress (σF)-εF curve in (e).
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Next, we consider a specimen with everything being the same as the specimen in
Figure 6 but with an inclusion of size, rI ≈ 0.6× rM. The near surface distribution of ε̄ on
the tension side of this specimen at four values of εF together with the σF - εF response are
shown in Figure 7. As shown in Figure 7a, here as well, the subsurface inclusion results
in subsurface void nucleation. However, the nucleated void does not significantly affect
the localization of ε̄ and the localization of ε̄ predominantly depends on the interlacing of
the length-scales induced by bending and the discreteness of the underlying dual-phase
microstructure. With progressive deformation, the intensity of the localization of ε̄ in the
band increases and a surface micro-crack nucleates, while the inclusion induced subsurface
void does not grow significantly, Figure 7b,c. Subsequently, the surface micro-crack grows
inwards while completely ignoring the inclusion induced subsurface void, Figure 7d.
The growth of the surface micro-crack results in final fracture, i.e., drop in the value of σF,
Figure 7e.

(a) (b)

(c) (d)

(e)

Figure 7. (a–d) The distribution of equivalent plastic strain, ε̄, in the near surface region on the tension side of a deformed
90◦ V-bend specimen with ‘discrete’ dual-phase microstructure and an inclusion of size, rI ≈ 1e (rI/rM ≈ 0.6), strength,
σN = 300 MPa (σN/σF

0 ≈ 0.7) and location, dy/d = 0.125, at four macroscopic flexural strain, εF, levels marked as, a-d,
on the macroscopic flexural stress (σF)-εF curve in (e).

The effects of the inclusion size, rI , location, dy/d, and strength, σN , on the bendability
of the dual-phase steel with a subsurface inclusion are shown in Figure 8. As in Figure 5,
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the bendability of the dual-phase specimen is also characterized by the value of εF at
failure, ε f . The values of ε f in Figure 8 are normalized by the values of the macroscopic
flexural strain to failure of the underlying inclusion free dual-phase steel microstructure,
ε0

f . For a fixed value of rI , dy/d and σN of the inclusion, calculations are carried out for
five underlying dual-phase steel microstructures taken from different locations of the
dual-phase steel under consideration. The error bars in Figure 8 are the standard error for
five realizations of the underlying dual-phase steel microstructure.

(a) (b)

(c)

Figure 8. Effect of the size, rI , and location, dy/d, of an inclusion of strength (a) σN = 300 MPa (σN/σF
0 ≈ 0.7 and

σN/σM
0 ≈ 0.2), (b) σN = 800 MPa (σN/σF

0 ≈ 1.9 and σN/σM
0 ≈ 0.6) and (c) σN = 1600 MPa (σN/σF

0 ≈ 3.7 and
σN/σM

0 ≈ 1.1) on the flexural strain to failure, ε f , (i.e., bendability) of the dual-phase steel.

As shown in Figure 8a, for an inclusion of strength, σN = 300 MPa, which is less than
the initial flow strength of both the ferrite and martensite phases, and a fixed size, the value
of ε f first increases with increasing value of dy/d and then tends to saturate. The saturation
in the value of ε f corresponds to ε f → ε0

f , implying that the detrimental effect of the
inclusion on the bendability of the dual-phase steel vanishes. The value of dy/d for which
ε f → ε0

f strongly depends on the inclusion size relative to the size of the martensite phase.
For example, for inclusions of size, rI ≈ 1.7× rM and 2.8× rM, the values of dy/d for
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which ε f → ε0
f are≈ 0.3 and 0.44, respectively. While for an inclusion of size, rI ≈ 0.6× rM,

the value of dy/d for which ε f → ε0
f is ≈ 0.125. The effects of the inclusion size and

location on the bendability of a dual-phase steel shown in Figure 8a is not significantly
affected by an increase in the value of the inclusion strength from σN = 300 MPa to
σN = 800 MPa, as shown in Figure 8b. The value of inclusion strength, σN = 800 MPa,
is greater than the initial flow strength of the ferrite phase but is less than the initial
flow strength of the martensite phase. However, a further increase in the value of the
inclusion strength such that the inclusion is stronger than the martensite phase significantly
improves the bendability of the dual-phase steel sheet for a fixed inclusion size and location,
Figure 8c. A notable observation from Figure 8c is that the detrimental effect of an inclusion
which is smaller but stronger than the martensite phase on the bendability of a dual-phase
steel is negligible. Finally, the error bars on the values of ε f /ε0

f for a fixed inclusion size,
location and strength in Figure 8 highlight that the detrimental effect of an inclusion on the
bendability of a dual-phase material is also sensitive to the variations in the underlying
dual-phase microstructure.

We also carried out limited analyses of the effect of the shape of an inclusion on the
bendability of the dual-phase steel. To this end, we modeled an elliptical inclusion of
size, rx

I along the length and ry
I along the thickness (loading direction) of the specimen.

The cross-sectional area, A = πrx
I ry

I , of all the elliptical inclusions are taken to be 25πe2

(giving,
√

A/2rM ≈ 2.5) while their aspect ratio, rx
I /ry

I are varied. The effect of the aspect
ratio of an inclusion center located at dy/d = 0.125 on the normalized macroscopic flexural
strain to failure, ε f /ε0

f , for three inclusion strength levels together with schematics of
elliptical inclusions modeled are shown in Figure 9. As shown in the figure, for all three
inclusion strengths, the value of macroscopic flexural strain to failure, ε f , increases with
increasing aspect ratio of the elliptical inclusion for aspect ratios less than 4. While the
detrimental effect of the aspect ratio of the elliptical inclusion on the bendability of the
dual-phase steel vanishes for aspect ratios greater than 4. Similar to the results presented in
Figure 8, here as well, increasing the inclusion strength such that the inclusion is stronger
than the martensite phase (σN/σF

0 ≈ 3.7, i.e., σN/σM
0 ≈ 1.1) improves the bendability of

the dual-phase steel especially when the aspect ratio of the elliptical inclusion is less than 4.

(a) (b)

Figure 9. (a) Effect of the aspect ratio (AR) of an elliptical inclusion on the flexural strain to failure, ε f , (i.e., bendability) of
the dual-phase steel. The cross-section area of the inclusion, A ≈ 25πe2 (giving

√
A/2rM ≈ 2.5), and the location of the

inclusion center, dy/d = 0.125, is fixed in all the calculations. (b) Schematic of elliptical inclusions with aspect ratio (AR)
greater than (top) and less than (bottom) one.
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5. Supervised Machine Learning Approach and Predictions

We first present the supervised machine learning approach and predictions of the
effect of an inclusion on the bendability of the simple single-phase material in Section 5.1.
The approach and results of the supervised machine learning on the effect of an inclusion
on the bendability of more complex dual-phase material is presented in Section 5.2.

5.1. Effect of an Inclusion on the Bendability of a Single-Phase Material

For the simple single-phase material with a subsurface inclusion, we consider inclusion
size, rI , location, dy/d, and strength, σN , as the input space while the macroscopic flexural
strain to failure, ε f , is the target or the output space. The goal is to quantify the effect
of the individual input variables on the response. To this end, we choose the simplest
supervised machine learning approach, linear regression analysis. The accuracy of the
regression analysis is evaluated by the widely used performance measure, coefficient of
determination, R2 [45]. The R2 is the proportion of the variance in the dependent variable
that is predictable from the independent variable and is a statistical measure of how well
the regression predictions approximate the actual data. The value, R2 = 1, indicates that
the regression model explains all the variability in the response data around its mean.

The results of the linear regression analysis are shown in Figure 10. The correlation
matrix of the three input variables, rI , dy/d and σN in Figure 10a clearly shows that these
three input variables are not highly correlated. A comparison of the predictions of the linear
regression analysis and the results of the microstructure-based finite element calculations
are shown in Figure 10b. As shown in the figure, the two predictions are in very good
agreement and the value of R2 ≈ 0.93. The final calibrated linear regression model follows:

ε f = 6× 10−2 − 1.25× 10−2rI + 2.11× 10−1 dy
d

+ 8.7× 10−6σN (10)

(a)
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(b)

Figure 10. (a) Correlation matrix of variables in analyzing the effect of an inclusion on the bendability of the single-phase
material. (b) Comparison of the macroscopic flexural strain to failure, ε f , predicted using linear regression (LR) analysis
and microstructure-based finite element (FE) calculations.

The calibrated linear regression model in Equation (10) shows that the inclusion size
and location are the two important features that greatly affect the bendability of the simple
single-phase material with a subsurface inclusion. While the inclusion strength (as long as
the strength of the inclusion is less than or comparable to the initial flow strength of the
material) has a small effect on the bendability of the single-phase material.
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5.2. Effect of an Inclusion on the Bendability of a Dual-Phase Material

The results of the microstructure-based finite element calculations in Section 4.2 sug-
gest that there are several features associated with an inclusion that affect the bendability
of the dual-phase steel. While the results of the microstructure-based finite element calcula-
tions of the bendability of the dual-phase steel without any inclusion in ref. [24] suggest
that there are several additional features associated with the underlying dual-phase mi-
crostructure that also affect the bendability of the material. In particular, in ref. [24], it
was found that the intrinsic bendability of the dual-phase steel (i.e., without inclusion)
depends on the volume fraction of the martensite in a small region in the center of the
specimen on the tension side, the volume fraction of the martensite in a small region at
the fracture initiation site, and the distance between the center of the bend specimen and
the fracture initiation site. Apart from these the effect of an inclusion, especially that of
smaller sizes, on the bendability of the dual-phase steel may also depend on its neighboring
phase, i.e., does the inclusion entirely lie in the ferrite phase, martensite phase or it extends
over both the phases. All the possible features associated with both the ‘unintended’ and
‘intended’ microstructural features that may affect the bendability of a dual-phase steel are
given in Table 2.

We first followed the simple supervised machine learning approach, linear regression
analysis, as in Section 5.1 to quantify the effects of all the input variables in Table 2 on the
response, i.e., normalized macroscopic flexural strain to failure, ε f /ε0

f , and identify any
redundancy in the input space. To this end, the results of 80% of ≈ 400 microstructural-
based finite element calculations carried out in this work were randomly selected to
train the linear regression model. The trained linear regression model was then tested
on remaining 20% of the data set. The accuracy of the regression analysis was evaluated
by two performance measures [45], coefficient of determination, R2, as in Section 5.1 and
mean squared error, MSE. MSE is the average of the squares of the errors and MSE = 0
indicates that the estimator predicts observations with perfect accuracy. However, not
only the input space for the dual-phase steel is significantly greater than the single-phase
material, the effect of inclusion on the bendability of the dual-phase steel is also extremely
non-linear. Thus, due to these complexities, the trained linear regression model failed to
reasonably predict the bendability of the test cases. The values of R2 and MSE for the test
cases were found to be 0.75 and 0.011, respectively.

Table 2. All the possible features identified from microstructure-based finite element calculations that may affect the
bendability of the dual-phase steel with (in this work) and without (in ref. [24]) an inclusion.

Category Features Details

Inclusion

rx
I Size of inclusion along x-axis (length)

ry
I Size of inclusion along y-axis (thickness)

σN Inclusion strength
dy/d Location of inclusion

AI Area of inclusion (AI = πrx
I · r

y
I )

Dual-phase
microstructure

(VM
f )N

Volume fraction of the martensite phase in a small box of area
≈ 8r2

M at the fracture initiation site

(VM
f )CS

Volume fraction of the martensite phase in a small box of area
≈ 8r2

M in the center of the specimen

(VM
f )CL

Volume fraction of the martensite phase in a slightly larger box
of area ≈ 32r2

M in the center of the specimen
Neighbor Neighboring phase of the inclusion (ferrite, martensite or both)

dx
Projected distance between the center of the specimen and the
location of crack initiation site
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Next, we chose a more sophisticated supervised machine learning approach, random
forest regression analysis. The random forest supervised machine learning approach has
been extensively applied for predictive analytics and is a type of additive model that
makes predictions by combining decisions from a sequence of base models. In addition,
the feature importance can be obtained by permuting the values of the input variables and
measuring their impact on prediction accuracy. For regression, the variance of random
forest model is the measure of impurity. Thus, when training a tree, it is possible to compute
how much each feature decreases the impurity. The more a feature decreases the impurity,
the more important is the feature. In random forests, the impact on impurity of each feature
can be averaged across trees to determine the final importance of the variable. To avoid
over-fitting and minimize selection bias, 10-fold cross-validation scheme was chosen for
regression analysis. While grid-search was used to find the optimal hyper-parameters of
the random forest model that results in the most accurate predictions.

At first we build a random forest model with all 10 features listed in Table 2 and
their importance is shown in Figure 11a. As shown in the figure, not all features have
the same impact on the bendability of the dual-phase steel. The two most important
features that greatly affect the bendability of the dual-phase steel are the inclusion size
along the thickness of the sheet, ry

I , and the location of the inclusion, dy/d. These two
features are also the most important features that affect the bendability of the single-phase
material. However, there are features associated with the ‘intended’ dual-microstructure
such as projected distance between the center of the specimen and the location of the crack
initiation site, dx, and the volume fraction of the martensite in a small box in the center
of the specimen,

(
VM

f

)
CS

, that have small but significant impact on the bendability of
the dual-phase steel. Thus, we carried out feature reduction by building random forest
models using a sub-set of the features in Table 2 and rigorously testing their performance.
The performance of the random forest model based on all the features as well as four
example sub-sets of features are given in Table 3. As shown in Table 3, the performance
of a random forest model built using the seven most important features, set 2, is the best.
Among the seven features, five of them are associated with the inclusion and two are
associated with the underlying dual-phase microstructure. Note, that the performance of
a random forest model built using only the features associated with the inclusion, set 5,
is the worst. A comparison of the bendability, normalized macroscopic flexural strain to
failure, ε f /ε0

f , obtained from the random forest model built using the feature set 2 in Table 3
and microstructure-based finite element calculations of 90◦ V-bending of the dual-phase
steel is shown in Figure 11b. A good correlation between the predictions of the random
forest machine learning model and the microstructure-based finite element calculations in
Figure 11b is noted.

With the trained random forest machine learning model (with feature set 2 in Table 3
as input space and corresponding values of ε f /ε0

f as output space) at hand, we now analyze

the partial dependence of few key features on the bendability (ε f /ε0
f ) of the dual-phase

steel. The partial dependence plots allow us to visualize the marginal effects of select
features at a time on the predicted outcome [46]. The partial dependence function is
given as:

f̂xS(xS) = ExC

[
f̂ (xS, xC)

]
=
∫

f̂ (xS, xC)dP(xC) (11)

with xS being the features for which the partial dependence function is sought and xC are
the other features of the input space used in the machine learning model, f̂ . The partial
dependence works by marginalizing the output of the machine learning model over the
distribution of the features in the set xC, so that the function highlights the correlation
between the features of interest, i.e., the feature set xS and the predictions. The partial
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function, f̂xS , is estimated by calculating averages in the training data (also referred to as
Monte Carlo Method):

f̂xS(xS) =
1
n

n

∑
i=1

f̂ (xS, x(i)C ) (12)

where x(i)C are the values of the features from the data set and n is the number of instances
in the data set.
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Figure 11. (a) Feature importance obtained from the random forest regression analysis of the effect of an inclusion on
the bendability of the dual-phase steel. (b) A comparison of the bendability, normalized macroscopic flexural strain to
failure, ε f /ε0

f , obtained from random forest regression analysis using feature set 2 in Table 3 and microstructure-based finite
element calculations of 90◦ V-bending of the dual-phase steel.

Table 3. Feature reduction using random forest regression analysis of the effect of an inclusion on the bendability of the
dual-phase steel. The description of all the features are given in Table 2. The value of R2 is the coefficient of determination
of the fit, MSE(CV) is the mean squared error of the cross-validation predictions, and MSE(Test) is the mean squared error
of the test data.

Set Features R2 MSE (CV) MSE (Test)

1 All features 0.915 0.004 0.004
2 rx

I , ry
I , σN , dy/d, AI , dx, (VM

f )CS 0.919 0.004 0.004
3 rx

I , ry
I , σN , dy/d, AI , dx 0.909 0.004 0.004

4 rx
I , ry

I , σN , dy/d, AI , (VM
f )CS 0.915 0.004 0.005

5 rx
I , ry

I , σN , dy/d, AI 0.813 0.009 0.008

The partial dependence plots visualizing the effects of a combination of two features
associated with the inclusion on the bendability (values of ε f /ε0

f ) of the dual-phase steel are
shown in Figure 12. These plots clearly highlight the extremely non-linear and oftentimes
discrete effect of individual features associated with the inclusion on the bendability of the
dual-phase steel. The partial dependence plot in Figure 12a shows that the detrimental
effect of a smaller inclusion decreases rapidly as the distance of the inclusion from the
free surface increases. However, the detrimental effect of a relatively larger inclusion is
rather insensitive to its location. The partial dependence plot in Figure 12b shows that the
detrimental effect of an inclusion that is close to the free surface decreases with increasing
inclusion strength for inclusion strength sufficiently greater than the strength of the ferrite
phase. While the effect of an inclusion that is located far away from the free surface is rather
insensitive to the inclusion strength. Similarly, the partial dependence plot in Figure 12c
shows that the detrimental effect of a large inclusion decreases with increasing inclusion
strength but that of a small inclusion is relatively insensitive to the inclusion strength.
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(a) (b)

(c)

Figure 12. Partial dependence plots showing the effects of (a) normalized location, dy/d, and size, ry
I /rM, (b) normalized

location, dy/d, and strength, σN/σF
0 , and (c) normalized strength, σN/σF

0 , and size, ry
I /rM, of the inclusion on the bendability,

i.e., the normalized macroscopic flexural strain to failure, ε f /ε0
f , of the dual-phase steel.

6. Discussion

An imposed three-point bending like deformation, such as 90◦ V-bending on the
specimen of a single-phase isotropic elastic-plastic material induces a single length-scale.
This results in a smooth gradient in the distribution of the equivalent plastic strain, ε̄,
with the value of ε̄ being greater at the free surface close to the center of the specimen along
the length direction [24]. Even in this simple problem, introducing a single subsurface
inclusion in the material induces another (microstructure-based) length-scale. The inter-
action of the length-scales induced by the mode of deformation and the microstructure
greatly affects the deformation pattern as well as damage nucleation and evolution in
the material. Our results show that the subsurface void nucleation due to the presence
of the inclusion in a single-phase material under 90◦ V-bending results in plastic strain
localization in bands. These bands emanate from the subsurface void and are oriented at
≈45◦ with respect to the loading axis. Next, with continued bending the ligament between
the surface and the subsurface void parallel to the loading axis undergoes ductile fracture
post-localized thinning.

Unlike a single-phase material, in a specimen of a dual-phase steel, 90◦ V-bending
induces one length-scale, while the discreteness of the underlying dual-phase microstruc-
ture induces another length-scale(s). The interlacing of these length-scales results in an



Metals 2021, 11, 431 20 of 25

overall gradient in the distribution of ε̄ with the value of ε̄ being greater at the surface and
within this overall gradient the value of ε̄ is greater in the soft ferrite phase [24]. Also, due
to the local constrained imposed by the distribution of the hard martensite phase, the value
of the stress triaxiality is greater in the soft ferrite phase close to ferrite-martensite inter-
face [17,24]. Next, the presence of a subsurface inclusion in the dual-phase microstructure
may induce yet another length-scale(s) and the interlacing of all these length-scales greatly
affects the distribution of ε̄ as well as the crack nucleation and growth in the specimen.
Specifically, in a bend specimen of a dual-phase steel with a subsurface inclusion of size
sufficiently greater than the martensite phase and/or located rather close to the free-surface,
the distribution of ε̄ localizes in an inclined band emanating from the free-surface towards
the subsurface void nucleated at the inclusion. Finally, with continued bending ductile
fracture occurs along the localization band. However, in a bend specimen of a dual-phase
steel with a subsurface inclusion of size comparable to (or less than) the martensite phase
and/or located sufficiently away from the free-surface, the localization band of ε̄ emanating
from the free-surface ignores the subsurface void nucleated at the inclusion. Under these
circumstances, the detrimental effect of the presence of an inclusion is negligible and the
bendability of the specimen is largely dictated by the underlying dual-phase microstructure
of the material.

The results of our parametric studies show that for a fixed inclusion size and location,
and other material properties, the effect of the strength of the inclusion on the bendability of
both single-phase and dual-phase materials is somewhat discrete. For instance, the strength
of the inclusion does not significantly affect the bendability of a single-phase material as
long as the strength is less than or comparable to the flow strength of the material. Similarly,
the strength of the inclusion does not significantly affect the bendability of a dual-phase
material as long as the strength is less than or comparable to the flow strength of the
(strengthening) martensite phase. As shown in Figure 13, we also carried out parametric
studies to explore the effects of the elastic properties of the inclusion on the bendability of
the dual-phase steel. The inclusions in these dual-phase steels include spinels, calcium alu-
minates, silicates, titanium nitride and alumina, among others, with significantly different
elastic properties. Thus, calculations were carried out for the values of Young’s modulus,
E, ranging from 150–450 GPa and Poisson’s ratio, ν, ranging from 0.2–0.3. Our results show
that for the range of the values of E and ν considered, the elastic properties of an inclusion
of strength less than or comparable to the flow strength of the martensite phase does not
significantly affect the bendability of the dual-phase steel.

Furthermore, our supervised machine learning based analysis helped unravel the
effects of the multivariable input space on the bendability of both single-phase and dual-
phase materials. In particular, the machine learning based analysis shows that the inclusion
size and location, and (to an extent) strength of the inclusion are the key features that
affect the bendability of a simple single-phase material with a subsurface inclusion. On the
contrary, the effect of an inclusion on the bendability of the dual-phase steel is more
complex. The machine learning based analysis clearly highlights the extremely non-linear
and oftentimes discrete effect of the individual features associated with the inclusion on the
bendability of the dual-phase steel. The machine learning based analysis also shows that
the bendability of a dual-phase steel is not only affected by the size, shape, location and
(to an extent) strength of the subsurface inclusion but it is also affected by the underlying
dual-phase microstructure. The latter implies that even for a fixed size, shape, location and
strength of a subsurface inclusion, the sample to sample variation in the size of ferrite and
martensite phases can cause a difference in the fracture response under bending.

The industrial scale 90◦ V-bend tests of the dual-phase steel sheets revealed significant
sample to sample variation in the bendability of the steel which was associated with the
size and location of the sub-surface inclusion in the specimens, Figure 1d. In particular,
a pronounced inclusion size effect on the bendability of the steel sheet was noted. The bend-
ability of the steel sheet in the industrial tests was characterized by the presence or absence
of cracks on the tension side of the 90◦ V-bent specimens, Figure 14a. However, this crite-
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rion cannot be directly applied to our microstructure-based finite element calculations to
analyze the effect of inclusion size and location on the bendability of the dual-phase steel.
This is due to the various simplifying assumptions in our computational method that were
invoked to make these expensive microstructure-based finite element calculations possi-
ble. These simplifying assumptions include, (i) modeling a smaller specimen geometry
and imposing relatively higher loading rate, (ii) modeling only a 2D slice of the material
microstructure, (iii) modeling a single inclusion that is always located in the center along
the length of the bend specimen which constitutes a worst-case scenario, and (iv) choice of
the constitutive parameters associated with the damage model for the constituent phases
that were not calibrated for the steel under consideration but were chosen to artificially
accelerate the damage process in the material. Thus, we simply assume that a dual-phase
steel specimen with an inclusion in the calculations passes the quality control test if the
normalized macroscopic flexural strain to failure, ε f /ε0

f , is greater than or equal to a crit-
ical value, c. In other words, we assume that if the weakening effect of an inclusion on
the bendability of the dual-phase steel is less than 1− c then the steel passes the quality
control test despite the presence of an inclusion. Next, we scale the size of the 2D inclusion
modeled as r∗I = 5× ry

I following the works of refs. [47,48] to approximate the weakening
effect of an equivalent 3D inclusion.

(a) (b)

Figure 13. Effect of the elastic properties, (a) Young’s modulus and (b) Poisson’s ratio, of an inclusion of strength σN = 800 MPa
(σN/σF

0 ≈ 1.9 and σN/σM
0 ≈ 0.6) on the macroscopic flexural stress (σF)-strain (εF) response of the dual-phase steel.

Figure 14b–d show the effects of the normalized location, dy/d, and size, r∗I /rM, of a
subsurface inclusion on the bendability of the dual-phase steel as characterized by 90◦

V-bend tests (Exp) and as predicted by the microstructure-based finite element calculations
(FEA) considering the values of c = 0.6, 0.7 and 0.8, respectively. In Figure 14b–d, finite
element results corresponding to a range of values of the inclusion strength and aspect
ratio, as well as multiple realizations of the underlying dual-phase microstructures are
superimposed on top of each other in the dy/d versus r∗I /rM space. The contour plots in
Figure 14b–d are the probability of survival, Ps, as a function of dy/d and r∗I /rM obtained
from the trained supervised machine learning model. The value of Ps is estimated as,

Ps =
1
N

N

∑
i=1

Pi, Pi =

{
1, ε f /ε0

f > c
0, ε f /ε0

f < c
(13)

where, N is the total number of samples with fixed set of values of dy/d and r∗I /rM. For a
fixed set of values of dy/d and r∗I /rM, N = 5000 random samples are analyzed with the
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values of the remaining parameters of the feature set 2 in Table 3 lying within a lower
and an upper bound (0.7 ≤ σN/σF

0 ≤ 6.7, 0.06 ≤ rx
I /rM ≤ 11.4, 0.05 ≤

√
A/2rM ≤ 10.1,

0 ≤ dx/d ≤ 0.28, 0.4 ≤ (VM
f )CS ≤ 0.6). The results presented in Figure 14b–d, clearly

highlight the strong and somewhat discrete inclusion size effect on the bendability of
the dual-phase advanced high strength steel that naturally emerge in our calculations.
The very good quantitative correlation between the predictions for c = 0.7 and the limited
experimental results in Figure 14c is likely serendipitous as we had no a priori reason to
expect a quantitative correlation between the results of the industrial scale tests and the
microstructure-based finite element calculations. Nevertheless, these results clearly show
that refining the inclusion size relative to the size of the martensite phase can significantly
decrease the detrimental effect of the inclusions on the bendability of the advanced high
strength dual-phase steel sheets.

(a) (b)

(c) (d)

Figure 14. (a) Schematic of a bend specimen, and examples of ‘pass’ and ‘fail’ characterization during 90◦ V-bend tests.
(b–d) The effects of the normalized location, dy/d, and normalized size, r∗I /rM, of the subsurface inclusion on the bendability
of an advanced high strength, DP1000, dual-phase steel as characterized by 90◦ V-bend tests (Exp), and as predicted by
microstructure-based finite element calculations (FEA) and supervised machine learning model (contour plot of the
probability of survival, Ps). In the finite element calculations and machine learning model, a dual-phase steel specimen
with an inclusion passes the bend test if the value of the normalized macroscopic flexural strain to failure, (b) ε f /ε0

f ≥ 0.6,

(c) ε f /ε0
f ≥ 0.7 or (d) ε f /ε0

f ≥ 0.8.
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7. Conclusions

Microstructure-based finite element calculations were carried out to understand the
effects of the length-scales induced by the mode of deformation, i.e., 90◦ V-bending, ‘in-
tended’ dual-phase ferritic-martensitic microstructure, and ‘unintended’ microstructural
features, i.e., inclusions on ductile crack nucleation and early stage crack growth in an
advanced high strength dual-phase steel. In the calculations, the inclusion modeled was
always located in the center along the length of the bend specimens and parametric studies
were carried out to explore the effects of inclusion size, shape, location (along the thick-
ness of the specimen) and properties on the bendability of the dual-phase steel. In line
with the experimental observations, strong inclusion size effect on the bendability of the
dual-phase steel naturally emerge in the calculations. The effects of the multivariable input
space associated with both the ‘intended’ and ‘unintended’ microstructural features on the
bendability of the dual-phase steel were also quantified using supervised machine learn-
ing. The supervised machine learning approach used here utilized an ensemble learning
method for regression analysis. For the purpose of comparison and to gain additional
insight, the effect of an inclusion on the bendability of a single-phase material with con-
stitutive parameters corresponding to the overall ‘homogenized’ dual-phase steel under
consideration were also analyzed.

The key conclusions are as follows:

1. A subsurface void nucleation at an inclusion in a single-phase material under 90◦

V-bending results in plastic strain localization in bands emanating from the subsurface
void that are oriented at≈ 45◦ with respect to the loading axis. Finally, with continued
bending the ligament between the surface and the subsurface void parallel to the
loading axis undergoes ductile fracture post-localized thinning.

2. The micro-mechanism of ductile fracture in a dual-phase steel with a subsurface
inclusion under 90◦ V-bending not only differs from that in a single-phase material
but also strongly depends on the inclusion size and location:

(a) In a dual-phase steel with a subsurface inclusion of size sufficiently greater
than the martensite phase and/or located rather close to the free-surface,
plastic strain localizes in an inclined band emanating from the free-surface
towards the subsurface void nucleated at the inclusion. Finally, with continued
bending, a ductile fracture occurs along the localization band.

(b) In a dual-phase steel with a subsurface inclusion of size comparable to (or
less than) the martensite phase and/or located sufficiently away from the
free-surface, plastic strain localizes in inclined bands emanating from the free-
surface that ignore the subsurface void nucleated at the inclusion. Finally,
with continued bending ductile fracture occurs along the localization band
while ignoring the subsurface void nucleated at the inclusion.

3. The supervised machine learning analysis revealed that, unlike a single-phase ma-
terial, the bendability of a dual-phase steel with a subsurface inclusion is not only
affected by the features associated with the inclusion but also by the features asso-
ciated with the underlying dual-phase microstructure. Thus, efforts to reduce the
sample to sample variation in the bendability of a dual-phase steel should focus on
both the inclusions and the underlying material microstructure.

4. Our results show that there exists a critical size of the inclusion relative to the size
of the martensite phase below which the detrimental effect of the inclusion on the
bendability of the dual-phase steel vanishes. Thus, instead of trying to get rid of every
inclusion from the steel, which is extremely difficult and expensive, efforts can be
directed towards refining the inclusion size.
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