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Abstract: The effect of extrinsic porosity on the reduction behavior of FeO was evaluated by thermo-
gravimetric analysis (TGA), scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller
(BET) technique and analyzed using the labyrinth coefficient of FeO. The extrinsic pore exhibited
an abnormal effect on reduction behavior in the range of less than 50% reduction degree, despite
the increase in apparent porosity. SEM and BET analysis indicated that the abnormal reduction
behavior by extrinsic pores at the initial reduction stage was speculated to be due to the characteristic
of extrinsic pore that is open only at one end. However, the overall porosity and reduction rate after
a 40% reduction revert to the normal relationship. In addition, the experimental results indicated
that the abnormal effect of the extrinsic pores in the initial stage was mitigated by an increase in
the temperature. The abnormal effect of extrinsic porosity on FeO reduction was mathematically
analyzed using the labyrinth coefficient. It can be summarized that not only the number of pores, but
also their quality and distribution are important in determining the reduction rate.

Keywords: FeO; FeCl2; reduction; morphology; porosity

1. Introduction

It has been generally accepted that the reduction rate of iron oxide strongly depends
on its chemical and physical characteristics during the reduction process. The chemical
potential is typically defined by the temperature, oxygen potential, and activity of iron
oxide in an ore. Many researchers [1–10] have generally reported that the reduction rate of
FeO increases as the temperature increases and the oxygen potential decreases. In addition,
El-Geassy and many other researchers [10–15] have reported that when iron oxide reacts
with other oxides to form different phases (magnesioferrite, dolomite, hercynite, SFCA,
and jacobsite), the activity of the iron oxide decreases, and consequently, it has a negative
effect on reduction. As such, the chemical potential for the reduction of iron oxide has been
studied both qualitatively and quantitatively.

Many studies have been conducted on the effect of pores, a major physical property
of iron oxide. Huang et al. [16] and Turkdogan et al. [17] studied the effect of poros-
ity change on the reduction rate during the reduction process. The porosity of the pel-
lets during the reduction process was increased owing to the cracks and morphology
changes of iron oxide, and the pore size increased with increasing reduction temperature.
Matthew et al. [18] reported the morphology and pore shape of reduced iron according to
the reduction condition.

There are many studies on the relationship between the reduction of iron oxide
and the porosity of the initial state of iron oxide. Bahgat et al. [19] and Kim et al. [20]
reported that SiO2 reacts with FeO to form a dense phase (silicates, fayalite) at equilibrium,
thereby reducing the porosity of FeO-SiO2 pellets. Kim et al. [20] and Takahashi et al. [21]
changed the initial state of porosity using CaO, and the corresponding reduction behavior
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was studied. When CaO is added, the porosity of the FeO-CaO pellet increases with its
solubility. However, when the solubility increases (about 2.5 wt% CaO), the equilibrium
phase forms calcium ferrite and the porosity of FeO–CaO decreases, as in the case of
SiO2 addition.

Kaneko [22] proposed that the pores can be classified into intrinsic and extrinsic pores
with respect to their origin and structure. Intrinsic pores are inherently possessed by the
intraparticle arrangement. Extrinsic pores are created during the removal of foreign sub-
stances from the base material through various reactions. However, some studies [16–18]
only measured the change in intrinsic pores during the reduction process of iron oxide,
and there is a limit to extrinsic pore control. In other studies [19–21], pore control was
performed through the addition of other substances; however, it is difficult to confirm the
effect of pores because the activity of iron oxide is simultaneously changed.

According to Rouquerol et al. [23], pores are classified into closed pores and open
pores based their accessibility by to an external fluid. In detail, open pores are again
divided into open only at one end (dead-end or saccafe) and open at two ends (through
pores). Among them, closed pores and open only at one end (dead-end) adversely affect
reduction because the gas flow is not smooth. Meanwhile, the pores that are open at two
ends (through pores) help in the reduction process due to the permeability of the gas. The
results of previous studies indicated the necessary for discussion of such pore quality.

Therefore, the present investigation was carried out to understand the effects of poros-
ity on the reduction rate of FeO by introducing extrinsic pores and taking advantage of the
sublimation property of FeCl2. FeCl2 has a high vapor pressure at high temperatures. The
evaporation behavior of FeCl2 at high temperatures enables the formation of extrinsic pores
in FeO without changing the activity of FeO. Through extrinsic pore control, the effect of the
pore alone on reduction can be confirmed. In addition, for better understanding, the poros-
ity and morphological changes (pore quality) are considered together using the labyrinth
coefficient, which accounts for the porosity and tortuosity during the reduction process.

2. Materials and Methods
2.1. Sample Preparation

FeO powder (GR grade, Junsei, Tokyo, Japan) was crushed to a particle size of less than
100 µm and pressed in a cylindrical mold under a pressure of 6370 kgf/cm2. Standard FeO
pellets were prepared after removing internal moisture for 24 h in an oven at 383 K. FeCl2
(99.99%, Sigma-Aldrich, St.Louis, MI, USA) and standard FeO were crushed together to a
particle size of less than 100 µm. The obtained powder mixture was pressed in a cylindrical
mold under a pressure of 6370 kgf/cm2. Table 1 shows the chemical compositions of the
samples. FeCl2 has high vapor pressure at high temperatures [24], for example, 0.09 atm at
1073 K, 0.3 atm at 1173 K, and approximately 0.93 atm at 1273 K. The prepared pellets were
charged into a vertical tube furnace, set at a temperature corresponding to the reduction
temperature, and FeCl2 was evaporated in FeO under a high-purity Ar gas (99.9999%) for
1 h. Extrinsic pores are produced at the site where FeCl2 is evaporated. The samples were
quenched in an Ar atmosphere. Table 1 also shows the initial contents of FeCl2 and the
corresponding Cl contents after heating at different temperatures. The amount of residual
Cl present in the sample was analyzed using combustion ion chromatography (CIC, AQF-
100, 881 Compact IC pro, Metrohm, Herisau, Switzerland). The amount of residual Cl in the
sample was less than 350 ppm, except for the case of 9 wt% FeCl2 (1836 ppm) evaporated
at 1073 K. It is assumed that there is no change in the chemical potential of FeO due to
the presence of residual FeCl2 in the reduction process. Figure 1 shows the results of the
analysis of FeO morphology by SEM (SM-7001F, JEOL) after extrinsic pore formation with
FeCl2 at 1173 K before reduction. Before (Figure 1a) and after (Figure 1b–d) extrinsic pore
formation, there was a difference in morphology, and it was judged that the quality of the
pores changed accordingly.
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Table 1. Chemical compositions of the sample and the corresponding Cl contents after heating at
different temperatures.

Sample
Name FeO (g) FeCl2 (g)

Initial FeCl2
Contents (Cl2

Contents) (wt%)

Temperature
(K)

Residual Cl
Contents

(ppm)

0FeCl2 1.00 - - - -

2FeCl2 0.98 0.02 2 (1.12)
1073 170
1173 93
1273 70

5FeCl2 0.95 0.05 5 (2.80)
1073 336
1173 232
1273 183

9FeCl2 0.91 0.09 9 (5.03)
1073 1836
1173 332
1273 315
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Figure 1. SEM micrographs of FeO sample with different initial porosity in FeO, obtained at 1173 K,
under inert gas condition; Initial overall porosity in FeO (a) 23.9, (b) 26.6, (c) 31.6, and (d) 35.5.

2.2. Analysis of Reduction Behavior

The sample was charged into a thermogravimetric analyzer (TGA, SETSYS Evolution,
Setaram, Caluire-et-Cuire, France), as shown in Figure 2, and then heated to a target
temperature in a high-purity Ar (99.999%) atmosphere. When the target temperature was
achieved, the Ar gas was replaced with CO gas (99.99%), and the weight changes were
measured every second using TGA. The reduction was carried out in the temperature range
of 1073–1273 K. Based on the experimental data obtained through TGA, the reduction rate
(R) can be defined as follows:

R(%) =
∆Wt

O

Wi
O

× 100, (1)

where Wi
O is the amount of removable oxygen in the initial sample and ∆Wt

O is the weight
of oxygen removed at time t. The porosity of the sample before and after the reaction was
analyzed using a mercury porosimeter (PM33GT, Quamtachrome, Graz, Austria), and the
morphology was analyzed by SEM (SM-7001F, JEOL, Tokyo, Japan).
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Figure 2. Schematic diagram of the thermogravimetry analyzer (TGA).

3. Results and Discussion

The apparent porosity of the initial state of the sample is shown in Table 2. Standard
FeO has a 23.9% (intrinsic pore) volumetric porosity; however, the extrinsic pore introduced
by FeO using the evaporation of FeCl2 has an overall volumetric porosity of up to 36.4%.
As the amount of FeCl2 removed by evaporation increases and the temperature increases,
the amount of the introduced extrinsic pores increases. Herisau

Table 2. Porosity change in FeO sample before the reduction with different initial contents of FeCl2
and different temperatures.

Initial Cl
Contents

(wt%)

Porosity (%)

1073 K 1123 K 1173 K 1223 K 1273 K

0 23.9 23.9 23.9 23.9 23.9

2 25.8 26.0 26.6 28.5 28.4

5 27.5 28.5 31.6 31.6 32.8

9 29.2 32.1 35.5 34.2 36.4

Figure 3 shows reduction behaviors of FeO for various temperatures ranging from
1073–1273 K. As the temperature increases, the reduction rate and the final reduction degree
increase simultaneously in general. There are typical results based on the fundamental
laws of diffusion theory and basic principles of chemical thermodynamics. El-Geassy [25]
has reported that the activation energy is 133.97 kJ/mole when pure FeO is reduced, and
the activation energy based on the results of this experiment shows a similar value of
137.78 kJ/mole.

Figure 4 shows reduction behaviors of FeO with various porosities in the temperature
range of 1073–1273 K. Despite the increase in overall porosity by introducing extrinsic
pores, the initial reduction rate abnormally tends to decrease. The overall porosity and
initial reduction rate followed an inverse relationship, and the trend shows an inflection
point at which the reduction rate increases after approximately 40% of the degree of the
reduction process. The tendency to increase the reduction rate after 40% reduction degree
increased with the extrinsic pores. In addition, this abnormal behavior related to pores
gradually decreased with increasing temperature. Bahgat [19] and Kim [20] reported that
the initial porosity and reduction rate are proportional to each other. The positive effect of
porosity on reduction rate is generally accepted. However, the results of this experiment
show a behavior contrary to the general view of porosity and reduction rate.
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Figure 3. Reduction behaviors of FeO at various temperatures in the range of 1073–1273 K (time τ:
reset the time when reduction starts).
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Figure 4. Reduction behaviors of FeO with various porosities in the temperature range of 1073–1273 K; (a) 1073 K, (b) 1123 K,
(c) 1173 K, (d) 1223 K, and (e) 1273 K (time τ: reset the time when reduction starts).
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The experimental results of this experiment are mathematically analyzed using the
grain model proposed by Szekely [26]. In the heterogeneous gas–solid reaction model of
the cylindrical compact, the interfacial chemical reaction can be expressed as follows:

gFg(X) = 1 − (1 − X)
1
2 = kICR·τ (2)

The gaseous mass transport through the product layer can be expressed as:

pFP = X + (1 − X) ln(1 − X) = kGMT ·τ . (3)

The mixed control can be expressed as follows:

gFg + pFP = kMixed·τ , (4)

where gFg and pFg are the conversion functions and X is the fraction of reduction at a
given time (τ). kICR, kGMT, and kMixed are the apparent rate constants of the interfacial
chemical reaction, gaseous mass transport through the product layer, and mixed control,
respectively. If the correlation of time (τ) in Equations (2)–(4) shows a linear relationship,
the rate constant can be derived from the slope of the straight line. The results of applying
the formulas to the FeO reduction are presented in Figure 5. kFeO introduced pore

Mixed and kpure FeO
Mixed

are the apparent rate constants in the mixed control of FeO introduced by the extrinsic pore
and pure FeO. At the initial stage of reduction, the reduction rate decreases in proportion
to the extrinsic pores. In addition, the dependence of the reduction rate on the extrinsic
pores is relaxed by increasing the temperature. At a later stage of reduction (after the
inflection point), the relationship between the reduction rate and extrinsic pores reverted
to a normal behavior.
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Figure 5. Ratios of apparent reduction rate constants of extrinsic pore introduced FeO and pure FeO for each initial overall
porosity in FeO. (a) Initial stage, (b) Later stage

The dimensionless kinetic parameter, kLater stage/kInitial stage, is shown in Figure 6,
where kLater stage and kInitial stage represent the apparent rate constants in the initial and later
stages, respectively. The rate constants of gaseous mass transport through the product layer
against the interfacial chemical reaction significantly increased after half of the reduction
is complete, compared to those observed for the initial reduction; further, the gaseous
mass transport rate constants increased by 2–7 times after the later stage reduction. The
abnormal reduction behavior is more affected by the diffusion of gas than by the chemical
reaction. In addition, at 1173 K, where abnormal behavior is well confirmed, Figure 7 shows
the apparent gaseous rate constant at the initial and later stages. In the initial stage of
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reduction, although the initial overall porosity in FeO increases, the apparent gaseous rate
constant tends to decrease. However, in the later reduction stage, the apparent gaseous rate
constant tends to increase in proportion to the initial overall porosity. It is believed that the
diffusion behavior of the reducing gas changes because of the change in the morphology of
FeO during the reduction process.
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To confirm the morphology of the sample before reduction at 1173 K, the sample
was analyzed using SEM and the results are shown in Figure 1. In the case of pure FeO
(Figure 1a), it has spherical morphology. On the other hand, in the case of FeO with
extrinsic pores (Figure 1d), the spherical morphology mostly changed to a large plate-like
morphology. In the case of increasing extrinsic pores in FeO, the plate-like morphology
becomes pronounced. The experimental results indicate that the quality of the extrinsic
pores plays an important role in controlling the initial reduction rate. Therefore, it is
necessary to examine the dependency of not only the number of pores, but also other
aspects of the relationship between the pores and the reduction rate.

The relationship between the characteristics of pores and the reducing gas permeability
can be evaluated using the labyrinth coefficient. The labyrinth coefficient represents the
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relationship between pore quantity and tortuosity, and it can be used to evaluate the gas
permeability through the pores. The labyrinth coefficient can be expressed as follows [27]:

Ds =
1 + K

K
·

KD(P)
CO D(P)

CO2

D(P)
CO + KD(P)

CO2

ε·ξ, (5)

where ξ is the labyrinth coefficient, ε is the porosity of the FeO pellet, K is the equilibrium
constant, D(P)

CO and D(P)
CO2

are the diffusion coefficients of CO and CO2 in the pore. In
addition, DS is an effective diffusion coefficient that can be calculated by Ishida-Wen’s
model [28]. A labyrinth coefficient value indicates the gas permeability in the FeO pellet.
Applying this experimental data to Equation (5), it is shown in Figure 8 as a function
of the initial porosity in FeO. The initial reduction stage of porosity in FeO increases,
and the labyrinth coefficient tends to decrease. This means that the extrinsic pores mainly
generated in FeO by the evaporation of FeCl2 are closed or open only at one end, which have
a negative effect on reduction. Therefore, despite the increase in the overall pores, the initial
reduction rate decreases because the formed pores are not suitable for reduction. However,
as the reduction proceeds, the porosity in FeO increases and the labyrinth coefficient also
tends to increase. During the reduction process, the structure of morphology changed in
favor of gas diffusion, thereby increasing the labyrinth coefficient. These results are in good
agreement with Kamijo’s [29] research. Accordingly, it is thought that reduction behavior
exhibits an abnormal behavior that accelerates the reduction rate after half of the reduction
process is complete.
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Figure 9 shows the effect of the initial overall porosity on the morphological change of
reduced iron at 1173 K. For pure FeO with an initial porosity of 23.9%, spherical particles
can be seen at the beginning of the reduction process, and the morphology changes into
the porous state as the reduction progresses. With increasing initial overall porosity, a
large plate-like morphology FeO can be seen at the beginning of the reduction process.
In the initial stage of reduction, the diffusion of the reducing gas decreases due to the
large plate-like morphology of FeO and the labyrinth coefficient decreases. Because of the
difference in density between FeO and reduced iron, the large plate-like morphology FeO
becomes smaller with the reduction procedure, and pores that are open only at one end
evolve into those that are open at the two ends. Owing to the change in the pore shape, the
labyrinth coefficient increases in proportion to the porosity in FeO after half the reduction
process is complete. As a result, the flow of the reducing gas becomes smooth, and the
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reduction rate increases after half of the reduction process is carried out. After complete
reduction, all the samples showed porous morphology, even though the initial porosity
changed by the introduction of FeCl2.
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Figure 9. Morphological changes of FeO samples at 1173 K at different degrees of reduction and
initial overall porosity in FeO.

The effect of temperature on the morphology of FeO is shown in Figure 10. At 1073 K,
FeO showed large plate-like morphology. However, as the temperature increases, FeO
has a morphology similar to that of pure FeO (spherical morphology). Therefore, as the
temperature increases, the initial reduction rate of FeO that formed pores because of the
introduction of FeCl2 is similar to that of pure FeO. However, even at high temperatures,
because of the formation of pores that are open only at one end having a large plate-like
morphology, the initial reduction rate appears to decrease.

The formation of extrinsic pores of the open only at one end by FeCl2 addition, and
their behavior during reduction process is schematically represented in Figure 11. In the
heating stage (Figure 11a), at a relatively low temperature (1173 K), FeCl2 forms a liquid
phase with FeO and then evaporates. As a result, several pores that are open only at one
end are formed. However, at a relatively high temperature (1273 K), many fractions of FeCl2
evaporate without reacting with FeO. As a result, fewer number of pores open only at one
end are produced at lower temperatures. In the reduction stage (Figure 11b), at relatively
low temperatures (1173 K), the reduction rate decreases because of the formation of pores
that are open only at one end, despite the increase in the overall porosity of the sample.
During the reduction process, FeO with a large plate-like morphology is reduced to porous
Fe, leading to the disappearance of pores open only at one end. As a result, the reduction
rate increases after the middle stage of reduction. At a relatively high temperature (1273 K),
the reduction behavior is similar to that at lower temperatures. However, since the number
of open only at one end pore is less, the tendency of unusual behavior at low temperatures
is low. After completion of the reduction process, porous iron with similar morphology is
formed at both high and low temperatures.
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It is generally accepted that the reduction rate of iron oxide is proportional to the
overall porosity [16–21]. However, if the sample has pores open only at one end or closed
pores, the reduction rate is not proportional to the overall porosity. Therefore, while
considering the pores for the reduction rate, the number of pores as well as type and
distribution of pores should be included.

4. Conclusions

To quantify the effect of pores on the reduction rate, pores were artificially created in
FeO using the FeCl2 evaporation technique. Extrinsic pores were successfully created in
FeO using FeCl2. However, the initial reduction rate tended to be inversely proportional
to the overall porosity, and the behavior of the reduction rate increased after half of the
reduction process was complete. The abnormal reduction behavior was confirmed through
mathematical modeling, labyrinth coefficient, and SEM analysis. Extrinsic pores open only
at one end were formed and observed to be directly proportional to the initial content of
FeCl2. Although the overall porosity of the sample increased, the initial reduction rate
decreased because of the pores that are open only at one end. As the reduction progresses,
the pores open only at one end disappear and the reduction rate increases after half the
reduction process. The reduction rate and overall porosity tend to be proportional to each
other. The pores formed at the initial stage of the reduction are retained until the end
of the process. In addition, it is confirmed that not only the number of pores, but also
the characteristics of porosity are important while considering the effect of pores on the
reduction rate.
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