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Abstract: Conventional pipeline corrosion assessment methods result in failure pressure predictions
that are conservative, especially for pipelines that are subjected to internal pressure and axial
compressive stress. Alternatively, numerical methods may be used. However, they are
computationally expensive. This paper proposes an analytical equation based on finite element
analysis (FEA) for the failure pressure prediction of a high toughness corroded pipeline with a single
corrosion defect subjected to internal pressure and axial compressive stress. The equation was
developed based on the weights and biases of an Artificial Neural Network (ANN) model trained
with failure pressure from finite element analysis (FEA) of a high toughness pipeline for various
defect depths, defect lengths, and axial compressive stresses. The proposed model was validated
against actual burst test results for high toughness materials and was found to be capable of making
accurate predictions with a coefficient of determination (R?) of 0.99. An extensive parametric study
using the proposed model was subsequently conducted to determine the effects of defect length,
defect depth, and axial compressive stress on the failure pressure of a corroded pipe with a single
defect. The application of ANN together with FEA has shown promising results in the development
of an empirical solution for the failure pressure prediction of pipes with a single corrosion defect
subjected to internal pressure and axial compressive stress.

Keywords: artificial neural network; finite element analysis; pipeline corrosion assessment method

1. Introduction
1.1. Pipeline Corrosion

In the oil and gas industry, pipelines play a critical role in transporting hydrocarbons
from one location to another. Often, these pipelines are subjected to harsh conditions such
as corrosive environments, causing them to be prone to corrosion [1]. The integrity of a
pipeline is compromised when there is a corrosion defect. Due to the uneven degradation
of the pipe wall, the distribution of hoop stress across the pipeline is nonuniform [2—4].
When this occurs, the pipeline will fail at a pressure lower than the design pressure.

During operations, as fluid flows through a pipeline, pressure is exerted on the
pipeline wall, causing circumferential expansion of the pipeline and strain buildup at the
region of the defect [5]. The largest stress is experienced at the deepest point of the defect
region, leading to premature pipe failure when the stress exceeds the true ultimate tensile
strength of the pipe. Hence it is crucial that the integrity of the pipeline is assessed from
time to time, to prevent disastrous failures.
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1.2. Pipeline Integrity Assessment Methods

Corrosion defects form in various shapes and sizes in a non-uniform manner.
Pipelines of various grades have different tensile properties and therefore differ in their
behaviour when subjected to stresses in the presence of corrosion defects. A general
corrosion assessment method that can be used for all types of corrosion defects and
pipeline grades needs to account for the defect dimensions and configurations, stresses
acting on it, and the material properties of the different pipe grades. Due to this
complexity, various assumptions have to be made to simplify the assessment process [6-
10]. As such, the failure pressure prediction of a pipe for each corrosion assessment
method differs due to the simplifications that were made during their development, as
summarised in Table 1 [11].

Table 1. Comparison of pipe failure pressure assessment methods.

Method Fundam.ental Governing Assumption Material Restriction
Equation
ASME B31G NG-18 Tensile property of a pipe Low toughness
Modified B31G NG-18 determines the mechanism that Low toughness
SHELL 92 NG-18 causes pipe failure. -

A Modified Criterion for Evaluating
the Remaining Strength of Corroded NG-18 -

Pipe (RSTRENG)
DNV RP-F101 NG-18 Pipe failure due to plastic collapse Moderate toughness
ical lastic fl here the ultimat
Pipe Corrosion Criterion (PCORRC) Nume.rlca (P ase ow), where Fae WHMAe -y foderate to high toughness
studies tensile strength is the flow stress.

Failure pressure predictions based on conventional corrosion assessment codes are
conservative, leading to unwarranted repairs and premature replacement of pipeline,
contributing to unnecessary costs [12]. Of all the codes that are being used in the industry
for failure pressure prediction of corrosion defects subjected to internal pressure and axial
compressive stress, the DNV-RP-F101 corrosion assessment code (DNV) is the most
comprehensive [11].

1.3. DNV for Pipeline Failure Pressure Prediction

Pipelines are subjected to both internal pressure and axial compressive stress. Fluid
flow in a pipeline contributes to the internal pressure exerted on the pipeline walls, which
causes the pipe to expand in the circumferential direction, resulting in the contraction of
the pipe in the longitudinal direction due to Poisson’s effect [13-15]. This phenomenon
causes the pipeline to experience axial compressive stress. Studies have shown that the
increase in depth and length of a corrosion defect significantly influences the failure
pressure of the pipeline in the presence of axial compressive stress [16-18].

The DNV code is capable of predicting the failure pressure of a pipe with a single
corrosion defect subjected to both internal pressure and axial compressive stress [7]. The
main equation in DNV RP-F101 for failure pressure prediction of a pipe with a single
corrosion defect subjected to internal pressure is given by Equation (1).

1= yal(@/t)meas + €4StD(d/1)] | :
1 _ Yal(d/Dmeas + €45tD(d/1)] | D

]
]
I
\ \/1 +0.31(1/+/Dt)?

To account for axial compressive stress, a correction factor, Hi, determined using
Equation (2), is required.
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The failure pressure prediction of a pipe with a single corrosion defect subjected to
internal pressure and axial compressive stress is given by Equation (3).

_ 2toyrs\| 1— Vd[(d/t)meas + &5tD(d/t)] |
o = 1 (52F) ol @/ s+ eSD@] | ™ @
\/1 +0.31(1//Dt)?

Despite the comprehensiveness of the DNV code, it is recommended to be used to
assess pipeline materials of medium toughness only and is therefore inaccurate for
pipelines with high toughness. In addition, its predictions are conservative, as it uses the
ultimate tensile strength, ours, rather than the true ultimate tensile strength, ours, of the
material, which represents the actual fracture point of a material [11]. In addition, the
assumptions and simplifications made related to the corrosion defect dimensions, pipe
material properties, and axial compressive stress acting on the pipe add to the
conservatism of the method.

1.4. Finite Element Method (FEM) for Pipeline Failure Pressure Prediction

Due to the conservativeness of the current corrosion assessment codes, Finite
Element Method (FEM) is widely applied and is categorized as a Level 3 assessment
method for evaluating the failure pressure of pipelines [6]. Being the most advanced
assessment level, numerical methods are used in Level 3 evaluation and considers more
information for the prediction of failure pressure compared to Levels 0, 1, and 2. FEM
allows nonlinear structural analysis in with respect to geometric and material
nonlinearity, by considering the uniaxial true stress-strain curve of the material, which is
crucial for structures that change in geometry due to large displacements. As the pipe
deforms, the equilibrium equations take into consideration the geometrical changes of the
pipe as well as the nonlinear stress-strain relationship of the material. This enables
accurate predictions of failure pressures, as it accounts for strain hardening, plastic and
elastic deformation of the material [4].

However, FEM must be validated with the actual burst test result. This is because
FEM is usually simplified for ease of simulation, with the accuracy of the results
dependent on the proper choice of boundary conditions, model features and material
properties [19]. Furthermore, FEM needs to be optimized in terms of meshing, to ensure
that the model is able to run simulations efficiently with respect to time, without
compromising on the accuracy of the results [11].

1.5. Artificial Neural Network (ANN) as a Pipeline Failure prEssure Assessment Method

To reduce the computation time of a finite element analysis (FEA), quarter models
are utilised and symmetric boundary conditions are applied to ensure that the model is
treated as a whole pipe. Despite imposing symmetric boundary conditions, the
incorporation of axial compressive stress into FEM will greatly increase the complexity
and computing time of the model, which can take up to three hours per simulation. As
such it is not practical to use FEM to predict the failure pressure of multiple corroded
pipelines subjected to internal pressure and axial compressive stress. As an alternative, an
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artificial neural network based on FEA can be trained and used instead, as it can provide
results within seconds.

In a pipe, changes in the defect length, defect depth and axial compressive stress
cause a change in the failure pressure of the pipe in a nonlinear manner. In various studies
that have been carried out to improve assessment methods of corroded pipes, ANN has
proven to be very useful, as it has the ability to learn from nonlinear data and return
accurate failure pressure predictions [20]. ANN mimics the synapses in a human brain by
employing weights and biases to the neurons in the hidden layers of the neural network
[21]. The input and output data are analysed by a neural network and appropriate weights
and biases are allocated to each neuron until the neural network produces accurate results.
When this is achieved, the neural network is said to be trained. It is crucial that the training
dataset consists of a sufficient number of inputs and corresponding outputs to minimize
percentage error in the output of the neural network.

Parametric studies using FEM can be used to generate a set of training data to be used
for the development of the ANN. When the model has been sufficiently trained, the ANN
can be used to predict the failure pressure of a corroded pipeline if it falls within the
prediction range of the model. Xu et al. [22] utilised this approach to predict the failure
pressure of the corroded pipeline with interacting defects subjected to internal pressure
only. The failure pressure predictions using ANN were comparable with the experimental
burst pressure. In addition, the failure pressure prediction using ANN had a strong
correlation with the failure pressures obtained from the ASME-B31G and DNV’s corrosion
assessment codes.

In this paper, an empirical equation to predict the failure pressure of pipelines with
a single corrosion defect subjected to internal pressure and axial compressive stress was
formulated based on the weights and biases from an ANN trained with values from
parametric studies utilizing FEA. The equation was then validated against arbitrary finite
element (FE) models with single defect corrosion, and actual full-scale burst tests from
past research.

2. Methodology
2.1. Overview of Geometric Parameters

In this study, the parameters taken into consideration to calculate the failure pressure
of a pipe with single corrosion defect were the length of the defect, depth of the defect,
and axial compressive stress acting on the pipe. These parameters are presented as
normalised values. The pipe geometry and the normalised values of the parameters are
listed in Table 2. The corrosion defect width was not included in this study, as its influence
on the failure pressure of a corroded pipeline subjected to internal pressure and axial
compressive stress is minimal [6,7,11]. Based on the parameters listed in Table 2, the
failure pressures were obtained using two methods, FEM and DNV. The failure pressures
obtained using FEM was used to generate training data for the ANN, while the failure
pressures obtained using the DNV method was used to compare both the methods in
terms of accuracy.

Table 2. Geometric parameters for finite element analysis (FEA) parametric study.

Input Parameters Value (s)
Outer diameter of pipe, D (mm) 300
Wall thickness, t (mm) 10
Straight pipe length, L (mm) 2000
Defect width, w (mm) 100
Normalized defect length, [/D 0.0,0.2,0.4,0.6,0.8
Normalized defect depth, d/t 0.0,0.2,04,0.6,0.8

Normalized axial compressive stress, o./oy 0.0,0.2,04,0.6,0.8
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The calibrated safety factor approach (Part A) from the DNV-RP-F101 corroded
pipeline assessment manual was used for the calculation of the failure pressure of pipes
with a single defect subjected to internal pressure and axial compressive stress. In this
approach, the size of the defect depth and material properties must be specified in detail
[7]. The DNV corrosion assessment factors that were applied and their respective
assumptions are summarized in Table 3.

Table 3. DNV corrosion assessment factors and assumptions.

Factor Value Assumptions
Model prediction partial safety factor, y, 1.00 Perfect pipe inspection method.
Corrosion depth partial safety factor, y, 1.00 Exact corrosion defect depth.
Low tolerance and high
Fractile value, ¢, 0.00 confidence level corrosion
inspection method.
Usage factor, ¢ 1.00 Pristine pipe.

. High corrosion depth inspection
Relative depth accuracy, acc_rel 0.00 & . P P
accuracy with zero tolerance.

o .
Confidence level, conf 0.99 % /O, confidence .level (.)n
corrosion defect dimensions.

2.2. Development of the Finite Element Method

The development of the FEM could be divided into 4 steps, modelling of the pipe
with single corrosion defect, meshing of the pipe model, application of boundary
conditions, as well as loadings, and determination of failure criterion, as summarized in
Figure 1.

. . Application of Failure criterion
Modelling Meshing » o
boundary conditions determination

Figure 1. Flow of the development of the FEM.

2.2.1. Modelling of Pipe with Single Corrosion Defect

Since axial compressive stress will be imposed, the pipes were modelled with
endplates of 20 mm to ensure an even distribution of stress across the pipe wall. The full
length of the modelled pipe was set to 2000 mm, to prevent end cap effects, while the pipe
external diameter and wall thickness were set to be 300 mm and 10 mm, respectively. In
this study, a quarter of the corroded pipe, as illustrated in Figure 2, was modelled, and
used in the FE simulations to reduce computational time, without compromising the
accuracy of the results. As for the defect idealization, a rectangular-shaped corrosion
defect was modelled. This idealization was also utilised in the DNV method, as it allows
for a safer lower bound failure pressure prediction, without compromising much on the
accuracy of the failure pressure prediction [7,23-25].

2 20mm
“/2 S~
m
' N
oA
N | L2

Figure 2. An annotated quarter pipe model used for FEA.
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2.2.2. Meshing of the Pipe Model

ANSYS 16.1 (Ansys Inc., Canonsburg, PA, USA) Structural Product of Mechanical
ANSYS Parametric Design Language (APDL) or ANSYS for short, was used for the
meshing and FEA of the corroded pipe models. ANSYS offers a wide range of element
types for meshing depending on the material geometry and properties. In this study, due
to the thickness of the pressurized pipe walls, solid elements were used instead of shell
elements to increase the accuracy of the element meshing [26]. The pipe body and defect
region were meshed using hexahedral SOLID185 elements while the endplates were
meshed using tetrahedral SOLID186 elements. SOLID185 is defined by 8 nodes having
three degrees of freedom while SOLID186 can tolerate irregular shapes such as curved
boundaries. Both these elements accommodate high-stress stiffening, creep, large
deflection, plasticity, swelling, and large strain [27]. The application of SOLID185 and
SOLID186 elements on a pipe model is illustrated in Figures 3 and 4 respectively.

The number of mesh layers was set to 3, in accordance with the British Standards
Institution [28]. The length and width of the mesh were both set to 2 mm. An aspect ratio
of 0.5 was applied to the elements moving away from the defect region, with a total of 80
divisions. A convergence test was conducted to determine these element settings, to
ensure minimal computation time without compromising on the accuracy of the FEM.

ANSYS

k18,1

——— |

ACACEMIE

Figure 3. Hexahedral SOLID185 elements used to mesh the pipe body and defect region.

Y
1181
Taadeni |

FEB & 2021
12:26:09

Figure 4. Tetrahedral SOLID186 elements used to mesh the endplate.



Metals 2021, 11, 373

7 of 25

2.2.3. Application of Boundary Conditions and Loadings

To ensure that the quarter pipe model was treated as a whole model, symmetric
boundary conditions were applied to the model during the FEM using ANSYS. To prevent
undesired rigid body movements, degree of freedom (DOF) constraints in the X, y, and z
directions were applied at 4/5 of the quarter model length away from the corrosion defect
region (Figure 5). Incremental ramped loading of the internal pressure and axial
compressive stress from the first time step was applied on the inner surface of the pipe
and endplate respectively, as illustrated in Figure 5.

B Symmetry MW Intemnal Pressure
B DOF B Axial Compressive Stress

Figure 5. Application of symmetrical boundary conditions, internal pressure, compressive stress,
and degree of freedom (DOF) constraint for quarter pipe models.

2.2.4. Failure Criterion

In this study, a stress-based criterion was utilised to determine the point of pipe
failure. When the equivalent stress exceeds the true ultimate tensile stress of the material,
plastic collapse occurs. During FEA, the failure pressure of a pipe was determined by
observing the von Mises stress distribution across the pipe, where the region of defect is
the most critical part of the pipe. When the von Mises stress reaches the true ultimate
tensile strength of the material, the material is said to have failed, as illustrated in Figure
6 [29].

NODAL SOLUTION

Figure 6. Red contour depicting the region of failure of the pipe.
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In ANSYS, the stress distribution along the corroded pipe was analyzed using von
Mises theory, where the effective stress was calculated as a function of hoop, radial, and
axial stress, as shown in Equation (4) [2]. When the effective stress reached the true
ultimate tensile strength of the material, the time step of the simulation was recorded, and
the corresponding pressure was calculated and recorded as the failure pressure of the

pipe.

O = \[% [(on — 0,)2 + (04, — 0))% + (0, — 07)?] 4)

2.3. Development of the Finite Element Method

The development of the ANN could be divided into 3 steps, the determination of the

ANN architecture, training, and validation of the ANN model, as summarized in Figure
7.

Architecture determination H Training ]—* Validation ]

Figure 7. Flow of the development of the ANN.

2.3.1. Determination of the ANN Architecture

In this study, MathWorks MATLAB R2019b was utilised to develop a feed-forward
neural network. This architecture was utilised as it models the relationship between the
input and output based on a set of training data. The ANN was designed to receive three
input values and output one value. The input values were the normalised defect depth,
defect length and axial compressive stress, while the output value was the normalised
pipe failure pressure. The ANN was developed with two hidden layers, where the first
and second layer consisted of three and two neurons respectively, as illustrated in Figure
8, which was extracted from MathWorks MATLAB R2019b. The number of hidden layers
and neurons in each hidden layer was determined based on regression analysis of the
ANN model.

Input

=] =]

Hidden Layer 1 Hidden Layer 2 Output Layer
[mang Output
> W W
BT ED T D
e - L1 e 1

3 2 1

Figure 8. Overview of the Artificial Neural Network (ANN) model.

2.3.2. Training of the ANN Model

The ANN model was developed utilising the Levenberg-Marquardt back-
propagation algorithm. This training function was used to optimise the weight and biases
of the ANN model, as it requires less computation time and is recommended for
supervised learning algorithms. A hyperbolic tangent function, as shown in Equation (5),
was used as the activation function for neurons at the hidden layers; and a linear function,
as shown in Equation (6), was used as the activation function at the output node. The
training data for the ANN were obtained from the FEA.
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2
a(x) = Ate-1 ®)
f)=x (6)

2.3.3. Validation of the ANN Model

The ability of the ANN to produce outcomes close to the training data was measured
using the coefficient of determination (R?) of the model. The R? value ranged from 0.0 to
1.0, with a greater R? value indicating a better goodness of fit, which is the distance
between the fitted line of the ANN'’s regression plot and the training data points.

2.4. Material Properties

A high toughness pipe grade of API 5L X80 was utilised in this study. The material
properties of the pipe body were represented by a nonlinear true stress-strain curve of the
material, as illustrated in Figure 9.

800 - : , , ; E
700 | e e im0

1 -
r

[=2]
o
o

-
~

s o
o o
o =}
T T
|

L]
o
o

True stress (MPa)

API 5L X80

n

o

o
T
|

100

0 0.02 0.04 0.06 0.08 0.1

True plastic strain

Figure 9. True stress-strain curve for API 5L X80 steel, data from [19].

The true ultimate tensile strength and yield strength values were 718.2 MPa and 531
MPa, respectively, with a true plastic strain value of 0.079. The Poisson’s ratio and
modulus of elasticity of the pipe were set at 0.3 and 200 GPa respectively, and 0.3 and
200TPa respectively for the endplate. The endplate was assumed to be of a rigid body and
does not undergo deformation despite large load application. During the FEA, material
stress stiffening, large strain and displacements were considered, to account for high
material nonlinearity in the pipe body.

3. Validation of the Finite Element Method

The FEM was validated against full-scale burst test results to ensure the reliability
and accuracy of the FEM. Table 4 summarises the validation of the FEM against actual
full-scale burst test. Tests 5 and 6 by Bjornoy and Sigurdson (2000) include combined
internal pressure and axial compressive stress loading. The other test models were
subjected to internal pressure loading only. The maximum percentage difference between
the failure pressure obtained using FEM and actual full-scale burst tests for pipes
subjected to internal pressure only was 1.08%. As for pipes subjected to internal pressure
and axial compressive stress, the maximum percentage difference obtained was 5.92%. As
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the percentage differences are below 10%, it is evident that FEM can be used as a failure
pressure data generation tool for the training of the ANN.

Table 4. Summary of FEA failure pressure validation against full-scale burst tests for pipes subjected to internal pressure
only, and internal pressure and axial compressive stress, data from [30-32].

B.Maetal, Benjaminetal.,

Author(s), Year Bjornoy & Sigurdsson, 2000 2013 2005
Grade X52 X52 X52 X65 X80
Specimen Test 1 Test 5 Test 6 Test 61 IDTS 2
d (mm) 5.15 3.09 3.09 440 5.39
[ (mm) 243 162 162 200 39.6
w (mm 154.5 30.9 30.9 50.0 31.9
o (MPa) 0.0 48.0 84.0 0.0 0.0
Burst Pressure (MPa) 23.20 28.60 28.70 24.11 22.68
FEA failure pressure (MPa) 22.95 28.35 27.00 23.25 22.40
Percentage Difference (%) 1.08 0.87 5.92 3.57 1.23

4. Results and Discussion
4.1. Comparison of Pipe Failure Pressure Prediction Using FEA and DNV Method

During the development of the DNV method for the assessment of pipes with a single
corrosion defect subjected to internal pressure and axial compressive stress, full-scale
burst tests were conducted on pipes from grade API 5L X45 to API 5L X65 for the
validation of the assessment method. As such, this code is recommended to be used to
predict the failure pressure of pipelines within that range of pipe grades. Furthermore,
the validation tests for the assessment of the method are mostly done using pipes
subjected to internal pressure loading only. Only 7.25% of the validation tests included
axial compressive stress being imposed on the pipe. Hence, the validation in DNV for
assessing the failure pressure of pipes with a single corrosion defect subjected to internal
pressure and axial compressive stress is less comprehensive than the assessment
procedure used to predict the failure pressure of a pipe with single corrosion defect
subjected to internal pressure only.

Based on Figure 10, for API 5L X80 pipes with a single corrosion defect subjected to
internal pressure only, it was observed that for defect depths of 0.2 and 0.4, the
conservativeness of the DNV method is more significant, with a percentage difference
ranging from -7.72% to —13.11. As the defect depth is increased to 0.6 and 0.8, the
conservativeness of the DNV method reduces, with a percentage difference ranging from
-4.33% to =10.00%.

——d/t=02(DNV) —— d/t=0.4 (DNV) —— d/t=0.6 (DNV) —— d/t=0.8 (DNV)
- ==-d/t=02(FEA) - ---d/t=04(FEA) =----d/t=06(FEA) ----d/t=0.8(FEA)
1.00

o
®
S

o
[oN
S

.O
o
o

o
=
S

Normalised Failure Pressure
o
=
)

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Defect Length

Figure 10. Normalized failure pressure predictions of FEA and DNV for API 5L X80 pipe
subjected to internal pressure only.
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However, when axial compressive stress was introduced, the DNV codes perform
very poorly, especially for normalised axial compressive stress of 0.4 and above with
percentage differences ranging from —-0.19% to -65.95%, as depicted in Figure 11. Based
on Figure 11, the normalised failure pressure obtained using FEA decreases gradually and
in a more uniform manner compared to the values obtained using DNV. The
conservativeness of the DNV method with high percentage differences, when compared
to the FEM, was anticipated, as the DNV code is recommended for material grades of API

5L X42 to API 5L X65 only.
—— =02 (DNV) dit=04 (DNV) ——— d/t=06(DNV) dit=08 (DNV)
= === dft=02(FEA) dft=04 (FEA) ====gd/t=0.6(FEA) dft=08 (FEA)
1.00 1.00
¥ 09 e 40w
E 0.80 - —= éﬂ 0.80
0.70 —— 0.70
T
o 0.60 ) + 0.60
5050 5050
IE 0.40 I'E 0.40
0.30 0.30
%020 T o
=010 VD=02 = 010 ID=04
E 0.00 g 0.00
E 0 02 04 0.6 03 1 E 0 0z 04 06 05 1
MNormalised Axdial Compressive Stress MNormalised Axial Compressive Stress
(a) (B}
1.00 1.00
% pa0 o 4 0% o
Eu.su — Tl ﬁn_s:n  Tmeel
0.7 TP N & 070 T~ -
(¥ i . -
© 060 L o w 0.60 - S
= 0.50 e = 0&0 e __ T \
i, 040 T D & 0 T T
~ -H-\"\-\. ", "
= 0.30 ] ~— o 030 T
ﬁ 0.20 ) T % o0 — H-"""--\.h
& 010 iD= 010 .
B D=0s UD=08
g 0.00 g 000
4 0 02 04 06 08 1 < 0 02 04 05 0B 1
MNormalised Axial Compressive Stress Normalised Axial Compressive Stress
(<) (d)

Figure 11. (a) Normalized failure pressure predictions of API 5L X80 pipe using FEA and DNV subjected to internal
pressure and axial compressive stress for a normalised defect length of (a) 0.2; (b) 0.4; (c) 0.6; and (d) 0.8.

Of the failure pressures, 58.4% have a percentage difference of greater than 10% when
compared to the failure pressures obtained using FEM, as illustrated in the probability
distribution function in Figure 12. The percentage difference between the results obtained
using FEA and DNV was calculated using Equation (7).

_ P -p
Percentage Dif ference = —L2NV_ 1/ FEA 7)

Pnf,FEA
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Figure 12. Probability density function of normalized failure pressure predictions using DNV method when compared to
FEM for API 5L X80 pipe subjected to internal pressure and axial compressive stress.

4.2. Development of the ANN for the Failure Pressure Prediction of Pipe with Single Corrosion
Defects

4.2.1. Generation of the ANN Training Data

The failure pressures of pipes with single corrosion defect obtained using FEA were
normalised by the intact pressure of the pipe before training the ANN. The intact pressure
of the pristine pipe was obtained using FEM. To ensure a good correlation between the
simulated model and theoretical calculation, the intact pressure value was compared with
the maximum hoop stress theory represented by Equation (8). Based on this theory, the
intact pressure of the pristine pipe is 51.3 MPa and the intact pressure of the same pipe
obtained using FEM was 50.32 MPa, with a percentage difference of 1.9% between these
values.

Eighty-one sets of training data were used to train the ANN, as tabulated in Table 5.
The normalised defect depth, length, axial compressive stress and normalised failure
pressure are represented by d/t, 1/D, o./oy, and Py¢rga Tespectively.

o t
Pi=— (®)
Table 5. ANN training data.
d/t /D 6./0y  Prarea da/t l/D 0./0y  Prurea d/t l/D 6./0y  Pprurea
0.0 0.0 0.0 1.00 0.4 0.4 0.2 0.76 0.6 0.6 0.6 0.47
0.2 0.2 0.0 0.95 04 04 04 0.74 0.6 0.6 0.8 0.42
0.2 0.2 0.2 0.94 04 04 0.6 0.70 0.6 0.8 0.0 0.48
0.2 0.2 0.4 0.90 0.4 0.4 0.8 0.58 0.6 0.8 0.2 0.48
0.2 0.2 0.6 0.84 0.4 0.6 0.0 0.72 0.6 0.8 0.4 0.47
0.2 0.2 0.8 0.72 04 0.6 0.2 0.71 0.6 0.8 0.6 0.45
0.2 0.4 0.0 0.91 0.4 0.6 0.4 0.69 0.6 0.8 0.8 0.41
0.2 04 0.2 0.91 0.4 0.6 0.6 0.66 0.8 0.2 0.0 0.58
0.2 04 04 0.88 0.4 0.6 0.8 0.56 0.8 0.2 0.2 0.56
0.2 04 0.6 0.80 0.4 0.8 0.0 0.71 0.8 0.2 0.4 0.52
0.2 0.4 0.8 0.68 04 0.8 0.2 0.70 0.8 0.2 0.6 0.44
0.2 0.6 0.0 0.89 04 0.8 04 0.66 0.8 0.2 0.8 0.41
0.2 0.6 0.2 0.88 0.4 0.8 0.6 0.64 0.8 0.4 0.0 0.38
0.2 0.6 0.4 0.86 0.4 0.8 0.8 0.54 0.8 0.4 0.2 0.38
0.2 0.6 0.6 0.79 0.6 0.2 0.0 0.75 0.8 0.4 0.4 0.35
0.2 0.6 0.8 0.66 0.6 0.2 0.2 0.74 0.8 0.4 0.6 0.32
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0.2 0.8 0.0 0.87 0.6 0.2 0.4 0.72 0.8 0.4 0.8 0.27
0.2 0.8 0.2 0.87 0.6 0.2 0.6 0.68 0.8 0.6 0.0 0.31
0.2 0.8 0.4 0.85 0.6 0.2 0.8 0.51 0.8 0.6 0.2 0.29
0.2 0.8 0.6 0.78 0.6 0.4 0.0 0.59 0.8 0.6 0.4 0.26
0.2 0.8 0.8 0.66 0.6 04 0.2 0.59 0.8 0.6 0.6 0.25
0.4 0.2 0.0 0.87 0.6 0.4 0.4 0.57 0.8 0.6 0.8 0.24
0.4 0.2 0.2 0.86 0.6 0.4 0.6 0.51 0.8 0.8 0.0 0.28
0.4 0.2 0.4 0.83 0.6 0.4 0.8 0.45 0.8 0.8 0.2 0.27
0.4 0.2 0.6 0.76 0.6 0.6 0.0 0.53 0.8 0.8 0.4 0.26
0.4 0.2 0.8 0.63 0.6 0.6 0.2 0.51 0.8 0.8 0.6 0.23
0.4 0.4 0.0 0.76 0.6 0.6 0.4 0.50 0.8 0.8 0.8 0.23
4.2.2. Determination of the Number of Hidden Layers and Nodes in Each Layer
The optimum number of hidden layers and neurons in each layer of the ANN were
determined based on the regression analysis of the model. Eight models were developed
and their corresponding coefficient of determination (R?) was recorded. Initially, the ANN
model was trained using one hidden layer with one node. For each subsequent ANN
model, the number of neurons in the first hidden layer was increased by 1. When the
number of neurons in a hidden layer reaches 3, a new hidden layer with one node was
added to the subsequent model. The maximum number of hidden layers and neurons in
each hidden layer was set at three, to ensure that the empirical solution that was
developed was not overly complex. Table 6 summarizes the R? value obtained for each
model developed.
Table 6. Performances of the developed ANN models based on their coefficient of the determinant.
Model No. of Hidden  No. of Neurons in No. of Neurons in No. of Neurons in R2Value
Layers Hidden Layer 1 Hidden Layer 2 Hidden Layer 3
1 1 1 - - 0.93
2 1 2 - - 0.93
3 1 3 - - 0.95
4 2 3 1 - 0.97
5 2 3 2 - 0.99
6 2 3 3 - 0.99
7 3 3 3 1 0.98
8 3 3 3 2 0.94
9 3 3 3 3 0.91

Upon comparing the R? values of the developed models, it was found that Models 5
and 6 produced R? values closest to 1.00, which were 0.99. Both Models 5 and 6 consist of
two hidden layers and 3 neurons in the first hidden layer. However, the number of
neurons in the second hidden layer of Model 5 is less than that of Model 6. Hence, Model
5 was utilised for the development of an empirical solution, to ensure the simplicity of the
equations, without compromising the accuracy of the outcome.

Figure 13 illustrates the regression plots generated by MathWorks MatlabR2019 for
Model 5.The four plots in the figure represent the training, validation, testing, and the
combination of all the three plots. The linear regression line of best fit between the output
of the ANN and the desired output value is represented by the solid lines in the plot, with
dashed lines representing perfect results. In Figure 13, it is observed that the solid lines
and dashed line in each plot almost overlap completely, indicating that Model 5 is highly
capable of outputting results that are similar to that of the training data.
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Figure 13. Regression plots of Model 5.

4.3. Development of an Empirical Equation for the Failure Pressure Prediction of Corroded
Pipeline with a Single Defect

The weights and biases of Model 5 were used to develop an empirical equation to
predict the failure pressure of a pipe with a single corrosion defect. The weights and biases
of the trained ANN model, as illustrated in Figure 14, can be represented in a matrix form.
Equations (9)-(11) represent the matrix of the ANN model.

I/D

acfoy

Figure 14. Architecture of the ANN model.

| in wie wisp| (@/0n b4
ha| = [wi,z Wis Wi,s} (Ld)y, |+ [brz )
hys Wiz Wie Wig (JE/Uy)n bis



Metals 2021, 11, 373

15 of 25

bz
hyol 7 W12 Wis Wi ahn2) |+ bzz] (10)

h2,1] _ [wl_l W13 wl's] |:a(h1,1)
a(hy3)

([Wn sz][ ((,7“; +[h ]) an

The input values of the ANN are normalised by the ANN model so that the
normalised input value, i,, falls within the range of -1 to 1 before the values are
transferred to the first hidden layer. Hence, the inputs need to be normalised using
Equation (12) before being used. Likewise, the output values that were used to train the
ANN model were normalised to range between the values of -1 and 1. Hence, the final
output, o, must be denormalized using Equation (13), to obtain the failure pressure of the
corroded pipe.

_ (in,max - in,min)(i — bnin) | . 12)

ln = nmin

(imax - imin)

0= (On - On,min)(omax - Omin) + Opmin (13)

(On,max - On,min)

Upon training the ANN model, specific constant values were obtained for the
weights and biases as represented by Equations (14)—(16).

hia —024336 —0.027758 24948 1[ (4/Dx ~1.7819
hi|=| 026663  0.012313 0.0093227|| (I/d), |+]0.0033338| (14)
his| 1-0.023211 13349 0.18235 1{(q./3,), 1.491
h2,1]=[o.22303 ~21421 12816 aE“; 205771 (15)
hy,l ~ 10.27615 0.49941 —0.15404 (h“) 057701
1,3
a(hy,)
0, = f([1.7285 -1.8549][ h2'1]+[-0.37438]) (16)
a(h,,)

The steps involved in predicting the failure pressure of the corroded pipeline with a
single corrosion defect is summarised below:
Step 1: Normalisation of input parameters

2(d/t);
= - 17
@/ = =551 17
2(l/d)i
= - 18
Uy = =g -1 18)
2(9c/0y)i
(0:/0)n = —ox =1 (19)
Step 2: Calculation of the normalised output value
- 20
a(hl'l) T 14 e2(1D) - (20)
hy,) = _ 21
a( 1'2) T 1t e2(12) @1
hyz) = _ 1 22
a( 1,3) = 1+ e_z(hl,s) - ( )
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2
a(hzrl) = m -1 (23)
2
a(hz,z) = m -1 (24)
f(on) = 1.7285a(h,,) — 1.8549a(h,,) — 0.37438 (25)
0n = f(0n) (26)
Step 3: Denormalization of the output value
Purrq = 0.3874250, + 0.612575 (27)
Step 4: Calculation of the failure pressure
0*yrs t
p, =V -
= (28)
Pf,Eq = FufrEq * P; (29)

4.4. Evaluation of the New Corroded Pipeline Failure Pressure Assessment Method

Since the equations in the newly developed corrosion assessment method were
extracted from the ANN, the R2value of the new method is similar to that of the ANN,
which is 0.997. This indicates that the method results in failure pressure predictions that
are very close to the results obtained using FEA, which was used as the training data for
the ANN model. Based on the maximum hoop stress theory, the intact pressure of the
pristine pipe model used in this study was 51.3 MPa, while the intact pressure obtained
using FEM was 50.32 MPa. Using the newly developed failure pressure assessment
method, the intact pressure of the pristine pipe was calculated to be 51.86 MPa. The
comparison of the intact pressure values obtained using the three methods is summarised
in Table 7. The percentage difference between the failure pressure obtained using the
maximum hoop stress and the new corrosion assessment method is 1.09%, while the
percentage difference between the failure pressure obtains using FEM and the new
corrosion assessment method is 3.06%. This indicates a good correlation between the three
methods.

Table 7. Comparison of the intact pressure values of the pristine pipe.

Maximum Hoop Stress FEM [B] Newly Developed Percentage Difference Percentage Difference
Theory [A] (MPa) (MPa) Method [C] (MPa) between [A] and [C] (%) between [B] and [C] (%)
51.30 50.32 51.86 1.09 3.06

The probability distribution in Figure 15 depicts the percentage difference between
the failure pressure predicted using FEM and the new method for the same parameters
used to train the ANN. The percentage of differences fall within the range of -7.37% to
8.37%, with a standard deviation of 2.36. Based on the probability distribution function in
Figure 15, it is observed that the percentage differences between the methods fall within
four standard deviations of the mean. This indicates that the probability of obtaining a
failure pressure with a percentage error of greater than 9.44% is 1 in 15,787.
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Figure 15. Probability distribution of the percentage error obtained using the newly developed
failure pressure prediction method and FEM based on the parameters of the ANN training data.

To ensure that the new method performed well with data that was not included in
the training of the ANN, results from actual full-scale burst tests and FEA for a set of
arbitrary data were used to validate the new failure pressure prediction method. The
actual full-scale burst tests were carried out using internal pressure loading only and the
results of the burst tests and validation of the new equation are summarised in Table 8.
Due to the lack of data on actual full-scale burst tests of high toughness pipes subjected to
internal pressure and axial compressive stress, FEM was used to further validate the new
failure pressure prediction method based on a set of arbitrary data for API 5L X80 material
with a o*urs value of 718 MPa. Table 9 summarises the parametric details of the arbitrary
data, the failure pressure predictions using FEM and the new method, and the percentage
difference between the methods. A negative percentage difference indicates a
conservative prediction, while a positive value indicates an overestimation of the failure
pressure obtained using the new corrosion assessment method.

Table 8. Validation of newly developed failure pressure prediction method against actual full-scale burst tests for high-
grade pipes subjected to internal pressure only, data from [32].

DataNo. Grade o*urs(MPa) d/t 1/D  Failure Pressure (MPa) Pfg, (MPa) Percentage Difference (%)
68 X80 731 0.47 0.09 22.75 23.03 1.23
69 X80 684 0.67 0.09 20.61 19.72 -4.32
70 X80 740 0.77 0.50 9.65 9.00 -6.74
71 X80 740 0.37 0.50 18.28 19.04 4.16
72 X80 740 0.09 0.50 24.69 24.00 -2.79
73 X80 740 0.78 0.48 5.99 6.15 2.67
74 X80 740 0.40 048 12.08 12.81 6.04
75 X80 740 0.11 048 16.69 16.28 -2.46
76 X100 886 0.50 0.46 20.14 21.15 5.01
79 X100 886 0.50 0.77 18.06 19.09 5.70
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Table 9. Comparison of pipe failure pressure prediction using FEM and the newly developed method for API 5L X80
pipes subjected to internal pressure and axial compressive stress.

d/t l/D o./oy Pusrea Posiq Percentage Difference (%)
0.1 0.3 0.3 0.96 0.97 1.26
0.1 0.3 0.6 0.84 0.86 2.95
0.1 0.7 0.3 0.93 0.93 -0.26
0.1 0.9 0.3 0.93 0.92 -1.19
0.2 0.5 0.32 0.88 0.88 -0.22
0.2 0.7 0.45 0.84 0.84 0.47
0.3 0.3 0.3 0.86 0.86 -0.09
0.3 0.3 0.6 0.77 0.77 0.51
0.35 0.7 0.6 0.69 0.68 -1.00
0.35 1.1 0.35 0.7 0.71 1.85
0.35 1.1 0.6 0.64 0.67 3.91
0.45 1.1 0.45 0.59 0.61 3.12
0.4 0.5 0.32 0.72 0.72 0.15
0.45 0.7 0.6 0.6 0.60 0.07
0.55 0.3 0.6 0.62 0.60 -2.77
0.55 0.5 0.35 0.58 0.57 -0.91
0.7 0.5 0.25 0.45 0.52 -5.84
0.7 0.7 0.35 0.35 0.38 7.53
0.8 0.2 0.5 0.49 0.49 0.17
0.8 0.3 0.35 0.45 0.42 -6.86
0.8 0.3 0.6 0.4 0.37 -6.82
0.8 0.7 0.25 0.28 0.27 -2.86
0.8 0.7 0.5 0.26 0.26 -1.26
0.8 0.7 0.6 0.25 0.25 -1.59

Based on Tables 8 and 9, the percentage difference between the two methods ranges
from —6.86% to 7.53%. Hence, it is evident that the newly developed failure pressure
predictions conform to the four-sigma rule where the predicted failure pressures fall
within the four-sigma range of 9.44%. However, this is only true for normalised defect
depths of 0.00 to 0.80, normalised defect lengths of 0.00 to 1.10, normalised axial
compressive stress from 0.00 to 0.80, and pipe true ultimate tensile strengths values
ranging from 684 to 886 MPa.

4.5. Extensive Parametric Studies Using the Newly Developed Assessment Equation

The newly developed failure pressure prediction method was used to conduct an
extensive parametric study to investigate the effects of the defect depth, defect length and
axial compressive stress acting on an API 5L X80 corroded pipe with single corrosion
defect. The parameters used in this study are tabulated in Table 10. The failure pressure
of pipes subjected to internal pressure was only used as reference data to study the effects
of normalised defect length, normalised defect depth, and normalised axial compressive
stress on the normalised failure pressure of a pipe when axial compressive stress was
introduced.
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Table 10. Results of the extensive parametric study using the new corrosion assessment method for API 5L X80 pipe
with single corrosion defect.

Normalised Normalised Normalised Failure Pressure (P,sgq)
Defect
Defect Depth | oth 0.00 & 020 & 040 o 0.60 & 0.80 &

/1) . y . y . y . y . y
(/D)

0.00 0.00 1.00 1.00 1.00 0.89 0.74
0.05 1.00 1.00 1.00 0.89 0.73
0.20 1.00 1.00 1.00 0.89 0.74
0.40 0.99 0.99 0.97 0.87 0.73

0.05 0.60 0.97 0.97 0.95 0.86 0.72
0.80 0.96 0.96 0.94 0.86 0.72
1.00 0.96 0.95 0.94 0.85 0.71
1.10 0.95 0.95 0.93 0.85 0.71
0.05 0.97 0.97 0.95 0.86 0.71
0.20 0.96 0.95 0.93 0.84 0.69
0.40 0.91 0.90 0.88 0.81 0.67

0.20 0.60 0.88 0.87 0.86 0.79 0.66
0.80 0.86 0.86 0.85 0.78 0.66
1.00 0.85 0.85 0.84 0.77 0.65
1.10 0.85 0.84 0.83 0.77 0.65
0.05 0.90 0.90 0.88 0.80 0.66
0.20 0.86 0.85 0.82 0.75 0.62
0.40 0.77 0.76 0.74 0.68 0.58

0.40 0.60 0.72 0.71 0.70 0.65 0.56
0.80 0.70 0.69 0.68 0.63 0.55
1.00 0.68 0.68 0.67 0.63 0.54
1.10 0.68 0.67 0.66 0.62 0.54
0.05 0.83 0.82 0.80 0.73 0.60
0.20 0.74 0.71 0.68 0.62 0.53
0.40 0.59 0.57 0.55 0.51 0.45

0.60 0.60 0.52 0.51 0.49 0.47 0.42
0.80 0.49 0.48 0.47 0.44 0.40
1.00 0.47 0.47 0.46 0.43 0.39
1.10 0.47 0.46 0.45 0.43 0.39
0.05 0.74 0.72 0.69 0.63 0.52
0.20 0.59 0.55 0.51 0.46 0.39
0.40 0.39 0.36 0.34 0.31 0.28

0.80 0.60 0.30 0.29 0.27 0.25 0.24
0.80 0.27 0.26 0.25 0.23 0.22
1.00 0.25 0.24 0.23 0.22 0.21
1.10 0.25 0.24 0.23 0.21 0.20

4.5.1. Effects of Defect Length on the Failure Pressure of a Pipe

Based on Figure 16, it was observed that for normalised defect lengths of 0.05 to 1.10,
the failure pressure trend was similar for each value of normalised axial compressive
stress for a constant normalised defect depth of 0.20. As the normalised defect length was
increased from 0.05 to 1.10 for normalised axial compressive stress values of 0.00 to 0.80,
it was observed that the failure pressure decreased by a maximum of 12.69%. This similar
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pattern was also observed for a normalised defect depth of 0.05 and 0.40 with a maximum
normalised failure pressure decrease of 6.62% and 25.34% respectively.

------ oc/oy=0.00 oc/oy=0.20 oc/oy=0.40
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Figure 16. Normalized failure pressure predictions of the new assessment method against various
normalized defect length for multiple axial compressive stress at a constant normalized defect
depth of 0.20.

This decrease is more significant as the normalised defect length is increased for
normalised defect depth values of 0.60 and 0.80. Under these conditions, the maximum
decrease in failure pressure was 43.36% and 66.64%, respectively, for normalised axial
compressive stress values of 0.00 to 0.80. A drastic decrease in the normalised failure
pressure for normalised defect lengths of 0.00 to 0.80 was observed, indicating that the
normalised defect length significantly influences the failure pressure of a pipe when the
normalised defect depth ranges from 0.60 to 0.80. For the case of normalised defect depth
of 0.80, the decrease in failure pressure is illustrated in Figure 17. Besides, it was also
observed that the normalised failure pressure approaches a constant value as the
normalised defect length increases from 0.80 to 1.10, as depicted in Figures 16 and 17.
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Figure 17. Normalized failure pressure predictions of the new assessment method against various
normalized defect length for multiple axial compressive stress at a constant normalized defect
depth of 0.80.

Based on Figure 18, at a constant normalised axial compressive stress of 0.40, the
influence of normalised defect length on the decrease in normalised failure pressure can
be observed in more detail as the normalised defect depths are increased from 0.05 to 0.80.
Since the decrease in normalised failure pressure was only 6.12% for a normalised defect
depth of 0.05 when the normalised defect length was increased from 0.00 to 1.10, it
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indicates that the influence of normalised defect length is insignificant under this
condition as the decrease in normalised failure pressure was less than 10%. As the
normalised defect length was increased from 0.80 to 1.10 for each of the normalised defect
depth values, it was observed that its influence on normalised failure pressure was also
insignificant. The maximum drop in normalised failure pressure in this region was only
7.93%. This suggests that for normalised defect depths of 0.20 to 0.80, normalised defect
lengths of 0.00 to 0.80 significantly influence the normalised failure pressure. This pattern
was observed to be similar for all other values of normalised axial compressive stresses
investigated in this parametric study.
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Figure 18. Normalized failure pressure predictions of the new assessment method against various
normalized defect length for multiple normalised defect depths at constant normalized axial
compressive stress of 0.40.

4.5.2. Effects of Defect Depth on the Failure Pressure of a Pipe

Based on Figure 19, at a constant defect length of 0.60, it was observed that the
normalised failure pressure decreases drastically as the normalised defect depth was
increased for normalised axial compressive stress values of 0.00 to 0.80. The maximum
normalised pressure drop based on normalised axial compressive stress values of 0.00 to
0.80 was observed to be 71.19%. This indicates that the normalised defect depth has a high
influence on the normalised failure pressure of a pipe. For shallow depths, the increase in
normalised axial compressive stress from 0.00 to 0.80 causes a drastic reduction in the
normalised failure pressure. As the normalised defect depth increases, this reduction in
failure pressure shrinks by almost half the amount as the normalised defect length
approaches 0.80. This pattern was also observed for defect lengths of 0.05, 0.20, 0.40, 0.80,
1.00 and 1.10.
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Figure 19. Normalized failure pressure predictions of the new assessment method against various
normalized defect depth for multiple axial compressive stress at constant normalized defect length
of 0.60.
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Based on Figure 20, at a constant normalised axial compressive stress of 0.40, the
influence of normalised defect depth on the decrease in normalised failure pressure can
be observed in more detail as the normalised defect lengths are increased from 0.05 to
1.10. Generally, it was observed that the normalised failure pressure decreases gradually
as the normalised defect depth was increased. The maximum normalised failure pressure
reduction was observed to be 75.45% based on normalised defect length values of 0.0 to
1.1. As the normalised defect depth is increased from 0.0 to 0.8, the decrease in failure
pressure is more drastic for increasing values of normalised defect length. This indicates
that the normalised defect depth greatly influences the normalised failure pressure of a
pipe under axial loading and internal stress. This pattern was also observed for
normalised axial compressive stress values of 0.2, 0.6, and 0.8.

—— 1/D=0.05 ——1/D =0.20 ——1/D =040 1/D=0.60
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Figure 20. Normalized failure pressure predictions of the new assessment method against various
normalized defect depth for multiple normalised defect lengths at a constant normalized axial
compressive stress of 0.40.

4.5.3. Effects of Axial Compressive Stress on the Failure Pressure of a Pipe

Based on Figure 21, at a constant normalised defect length of 0.6, it was observed that
the normalised failure pressure decreases insignificantly for normalised axial compressive
stress values of 0.0 to 0.4. Under these conditions, the maximum normalised failure
pressure decrease was observed to be only 8.46% based on normalised defect depth values
of 0.05 to 0.80. For normalised axial compressive stress values of 0.40 to 0.60, the
normalised failure pressure drops significantly by a maximum of 24.48%. This indicates
that when a normalised axial compressive stress value of 0.4 to 0.8 is imposed on a pipe,
it causes a significant decrease in the normalised failure pressure of the pipe. This pattern
was also observed for normalised defect length values of 0.2, 0.4, and 0.8.
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Figure 21. Normalized failure pressure predictions of the new assessment method against various
normalized axial compressive stress for multiple normalised defect depths at a constant
normalized defect length of 0.60.
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4.6. Recommendations for Future Studies

The current equation is limited only to the prescribed range and material. Future
studies should consider using a greater number of ANN training datasets that consist of
different types of material and varying parameters of corrosion defects to increase the
accuracy of the ANN model, as well as the equation. To create a robust artificial neural
network, more training data covering greater parameter variations should be considered
during the generation of the ANN data. By doing so, a general equation that is applicable
to more material types and corrosion defect geometries can be achieved without
compromising on the accuracy of the results.

5. Conclusions

Despite being the most comprehensive corrosion assessment method, the DNV code
results in an inaccurate failure pressure prediction due to the assumptions,
simplifications, and the lack of method validation for high toughness pipes subjected to
internal pressure and axial compressive stress. FEM has proven to produce accurate
failure pressure predictions with a very strong correlation with actual full-scale burst
tests. Using this method together with ANN has shown promising results in the
development of an empirical solution for the failure pressure prediction of pipes with a
single corrosion defect subjected to internal pressure and axial compressive stress.

FEA was used to generate training data using API 5L X80 pipe grade. The weights
and biases of the ANN model were then used to develop an empirical equation for the
failure pressure prediction of a high toughness pipe with single corrosion defect subjected
to internal pressure and axial compressive stress as a function of normalised defect length,
depth, and axial compressive stress. The new method predicted failure pressures for API
5L X80 and X100 pipes with an error percentage of less than 10.00% for normalised defect
depths of 0.1 to 0.8, normalised defect lengths of 0.1 to 1.1, normalised axial compressive
stress from 0.2 to 0.8 and pipe grades ranging from API 5L X80 to X100. Hence, this
method is suitable for the failure pressure prediction of high toughness pipes ranging
from API 5L X80 to X100 grades with normalised defect length, normalised defect depth,
and normalised axial compressive stress that are within the mentioned ranges.
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Nomenclature

Nomenclature Description
ANSYS 16.1 Structural Product of Mechanical ANSYS Parametric Design

ANSYS Language (APDL)

DNV DNV-RP-F101 corrosion assessment method
DOF Degrees of freedom

FE Finite element

FEA Finite element analysis

FEM Finite element method
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UTS Ultimate tensile strength
D Diameter of pipe
d Corrosion defect depth
H; Factor for longitudinal compressive stresses
L Length of pipe
[ Length of defect
Failure pressure of pipe with single corrosion defect subjected to internal
PCOTT 3
pressure only using DNV
P oy Failure pressure of pipe with single corrosion defect subjected to internal

pressure and longitudinal compressive stress using DNV
Failure pressure of corroded pipeline obtained using the new corrosion

Fra assessment method
Normalised failure pressure of pipe with single corrosion defect

Porpnv subjected to internal pressure and longitudinal compressive stress using
DNV

Pas 5q Normalised failure pressure of corroded pipeline obtained using the new

' corrosion assessment method

Normalised failure pressure of corroded pipeline subjected to internal

Pos rea pressure and axial compressive stress obtained using finite element
analysis

r Internal radius of pipe

StD(x) Standard deviation of variable x

t Thickness of pipe

(d/)meas Measured (relative) defect depth

&4 Fractile value factor for the corrosion depth

Ya Partial safety factor of corrosion depth

Vm Model prediction partial safety factor

0 Ratio of circumferential length of corroded region to the nominal outside
circumference of the pipe

oc Axial compressive stress

Oe Effective von Mises stress

Oh Hoop stress

ol Axial/Longitudinal stress

or Radial stress

Oy Yield stress

ours Ultimate tensile strength

o*urs True ultimate tensile strength

¢ Pipe usage factor
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