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Abstract: Low-temperature active-screen plasma nitriding (ASPN) was applied in this study to
improve the bending rigidity and corrosion resistance of a small-diameter thin pipe composed of
austenitic stainless steel (SUS 304). The inner and outer diameters of the pipe were φ0.3 and φ0.4 mm,
respectively, and the pipe length was 50 mm. The jig temperature was measured using a thermocouple
and was adopted as the nitriding temperature because measuring the temperature of a small-diameter
pipe is difficult. The nitriding temperature was varied from 578 to 638 K to investigate the effect of
temperature on the nitriding layer and mechanical property. The nitriding layer thickness increased
with an increase in nitriding temperature, reaching 15 µm at 638 K. The existence of expanded
austenite (S phase) in this nitriding layer was revealed using the X-ray diffraction pattern. Moreover,
the surface hardness increased with the nitriding temperature and took a maximum value of 1100 HV
above 598 K. The bending load increased with an increase in the nitriding temperature in relation
to the thicker nitriding layer and increased surface hardness. The nitrided samples did not corrode
near the center, and corrosion was noted only near the tip at high nitriding temperatures of 618 and
638 K in a salt spray test. These results indicated that the bending rigidity of the small-diameter thin
pipe composed of austenitic stainless steel was successfully improved using low-temperature ASPN
while ensuring corrosion resistance.

Keywords: plasma nitriding; active screen plasma nitriding; austenitic stainless steel; expanded
austenite; S phase; small diameter thin pipe; bending strength; corrosion resistance

1. Introduction

Austenitic stainless steels are used in a wide range of items such as household prod-
ucts, construction materials and automobile parts as well as in applications related to
power generation and chemical and food industries owing to its high functionality, ex-
cellent corrosion resistance, ductility and toughness. However, austenitic stainless steel
is limited by a low-hardness poor bending rigidity and wear resistance [1–3]. Surface
hardening treatments such as nitriding can improve the mechanical properties to extend
the applicability of austenitic stainless steel to fine and precise machining [4–9]. An im-
provement of these characteristics without changing the design and material is highly
advantageous, particularly for medical equipment and surgical instruments [10–12]. In
particular, an improved bending rigidity of medical injection needles is desirable because
a small needle diameter reduces invasiveness. However, a method for improving the
bending strength of austenitic stainless steel without reducing the corrosion resistance has
not yet been reported. Moreover, nitriding has not been applied to thin pipes with a small
diameter such as medical injection needles.

It is widely accepted that nitriding treatment is useful for austenitic stainless steel
because a nitriding layer with high hardness is formed by the diffusion of nitrogen from
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the surface. However, this treatment can significantly reduce the corrosion resistance.
Conventionally, a strong passivation film is formed on the surface of austenitic stainless
steel whereby the stability of the film depends on the content of solute Cr in the steel.
Inside the nitrided layer, N diffused from the surface and Cr contained in the steel combine
to precipitate CrN, which reduces the amount of Cr in the solid solution. This prevents the
passivation film from forming on the surface of the steel, which consequently reduces the
corrosion resistance. Moreover, nitriding processes of nitrogen diffusion and chromium
nitrogen formation are strongly influenced by temperature. By reducing the temperatures to
under 698 K (425 ◦C), the deterioration of the corrosion resistance can be prevented [13–16].
The resultant nitrided layer with a good hardness and corrosion resistance is referred to as
expanded austenite or the S phase. This layer does not contain CrN precipitates and has a
face-centered cubic (FCC) structure with an expanded interstitial distance when compared
with that in the normal austenite phase. However, this thick hardened layer is difficult to
obtain due to the nitrogen diffusing at a low temperature.

Plasma nitriding is a thermochemical method in which a glow discharge is generated
under a mixed gas of N2 and H2 to form nitride and solid-solution N by diffusion. Plasma
nitriding does not require an external heating device because the processing material is
heated by the collision energy of ions, and the processing time can be shortened using N
atoms and ions in an active plasma state. It has been generally believed that gas nitriding
has difficulty forming nitriding layer on stainless steels due to their surface’s passive oxide
films, which are a diffusion barrier for N atoms. Therefore, plasma nitriding is highly
advantageous for treating stainless steel because a passivation film is removed by the
collision of ions in the plasma without pretreatment. Active screen plasma nitriding (ASPN)
is an excellent method for the further utilization of active species and the generation of
uniform heating regions. The screen suppresses the edge effect by increasing the supply of
active species such as N+, N2

+ and H+ and by heating the sample surface uniformly [17–32].
However, nitriding on small-diameter thin pipes has not been reported yet [30].

In the present study, low-temperature ASPN is applied to improve the bending rigidity
and corrosion resistance of an austenitic stainless-steel pipe with a small diameter. The
nitrided sample properties of layer thickness, layer structure, surface hardness, bending
load and corrosion resistance are evaluated by varying the changing nitriding temperature.

2. Materials and Methods
2.1. Materials

A small-diameter thin pipe composed of SUS 304 stainless steel was used as the
sample material. The nominal composition of the material is shown in Table 1. This pipe
was produced using a drawing process. The inner and outer diameters of the pipe were
φ0.3 and φ0.4 mm, respectively, and the pipe length was 50 mm.

Table 1. Nominal composition of SUS 304 stainless steel used in the present study (JIS G4304-2012).

C Si Mn P S Ni Cr

≤0.08 ≤1.00 ≤2.00 ≤0.045 ≤0.030 8.00–10.50 18.00–20.00

2.2. Plasma Nitriding

Figure 1 shows a schematic of the plasma nitriding process. The samples of the small-
diameter thin pipe were mounted at the circumference of a ring-shaped jig. The jig was
suspended from a screen that was placed on the cathodic sample stage. Consequently,
plasma was formed on both the sample pipe and screen. The screen material was an
expanded mesh composed of SUS 304 stainless steel with a 22.7% open area, diameter of
90 mm and height of 400 mm. The distance between the pipe and screen was 12.5 mm. The
jig temperature was measured using a thermocouple and adopted as the nitriding tempera-
ture because measuring the temperature of a small-diameter pipe is difficult. Moreover,
a pulsed power supply was used for plasma generation. Table 2 shows the experimental
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conditions. The plasma nitriding was conducted for 4 h at 578–638 K (305–365 ◦C) under a
50% N2–50% H2 atmosphere with a pressure of 200 Pa.
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Figure 1. Schematic of the plasma nitriding setup.

Table 2. Experimental conditions.

Nitriding Time/h Nitriding
Temperature/K Gas Pressure/Pa Gas Flow Ratio

(N2:H2) Discharge Voltage/V Pulse Width/µs

4 578, 598, 618, 638 200 1:1 −500 100

2.3. Characterization

The layer thickness and phase structure of the nitrided sample surfaces were char-
acterized by analyzing the cross sections of micrographs (GX71, Olympus Corporation,
Tokyo, Japan) and X-ray diffraction (XRD, RINT-2500, Rigaku Corporation, Tokyo, Japan),
respectively. To examine the microstructures, the samples were etched in a solution of
Marble’s reagent (composed of 4 g CuSO4, 20 cc HCl and 20 cc H2O). In the XRD mea-
surement, 10 pipes were placed in a side-by-side arrangement with no gaps among them.
The surface hardness was measured under a load of 0.5 N using a Vickers microhardness
tester (HM-211+AT-400, Mitsutoyo Corporation, Kanagawa, Japan). The pipe was fixed
with resin embedding for hardness test. The bending load of the pipe was measured by
applying the three-point bending test (EMX-1000N-FA-KX-0023-1, Imada Co. Ltd., Aichi,
Japan), as shown in Figure 2. The distance between the fulcrums at a radius of R2.5 was
30 mm. The bending load is defined as the load at a 1-mm displacement when pushing
the pipe at a speed of 0.5 mm/min. The bending load improvement was calculated by a
comparison with an untreated sample. The bending load measurements were conducted
using 18 samples for each condition. The corrosion resistance was evaluated by a 96-h salt
spray test based on the JIS Z 2371 standard. The pipes were set in a Styrofoam block at an
angle of approximately 60◦.
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Figure 2. Schematic of the bending load measurement.

3. Results and Discussion
3.1. Nitrided Layer Thickness and Phase Structure

Figure 3 shows the micrograph of the cross sections obtained at the center position in
the length direction of the plasma-nitrided samples. A white layer that was not corroded
by the Marble’s reagent was generated under all treatment temperature conditions. As the
nitriding temperature increased, the white nitriding layer thickened. The etched areas of
black corrosion were scattered on the surface at nitriding temperatures of 618 and 638 K.
Figure 4 shows the effect of the nitriding temperature on the layer thickness. The nitriding
thickness increased monotonically with the nitriding temperature.

The XRD patterns of the untreated and plasma-nitrided samples are shown in Figure 5.
The pattern of the untreated sample showed three distinct peaks. Two peaks at 43.7◦ and
50.8◦ represent γ-Fe, which is the main element of the austenitic stainless-steel sample. The
other, third peak at 44.7◦ represents α‘-Fe formation of strain-induced martensite during
the drawing process of the small diameter pipe. The pattern of the plasma-nitrided samples
showed two wide peaks from the austenite phase of the untreated samples that shifted to a
low angle, indicating that the S phase with N supersaturation was formed. This represents
the formation of the white layer observed in the microstructure cross sections shown in
Figure 3. At low temperatures of 578 K, a small peak of γ-Fe at 50.8◦ was also observed.
This peak was detected from the substrate because the nitrided layer was thin. Moreover,
under high nitriding temperature conditions of 618 and 638 K, a small peak was observed
at approximately 44◦. This indicates the formation of CrN and corresponds to the corroded
areas scattered on the surface, as shown in Figure 3.
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Figure 3. Micrographs showing the cross sections of plasma-nitrided samples.
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3.2. Mechanical Properties

Figure 6 shows the effect of the nitriding temperature on the surface hardness. The
surface hardness was higher in the nitrided samples than in the untreated sample. The
hardness increased with the nitriding temperature and was saturated at 1100 HV owing
to the N-supersaturated solid solution under nitriding temperatures above 598 K. At a
nitriding temperature of 578 K, the surface hardness was influenced by the base metal
because the nitrided layer was thin.

Figure 7 shows the effect of the nitriding temperature on the bending load. The
bending load increased with the nitriding temperature because the nitriding layer became
thicker and the surface hardness increased, as shown in Figures 4 and 6. These results
reveal that low temperature ASPN is effective in improving the bending strength of small-
diameter thin pipes composed of austenitic stainless steel.
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3.3. Corrosion Resistance

Figure 8 shows the results of the corrosion resistance evaluation according to the salt
spray test. No corrosion was observed under low nitriding temperature conditions of 578
and 598 K. At high nitriding temperatures of 618 and 638 K, corrosion was observed near
the tip of the pipe; no corrosion was observed near the center of the pipe.

To investigate the cause of the corrosion at the tip of the pipe, a vertical cross-section
micrograph was obtained near the tip of the pipe, as shown in Figure 9. A nitriding layer
was also formed on the inner surface of the pipe at approximately 1 mm from the tip. At
high nitriding temperatures of 618 and 638 K, a thin black corrosive layer of CrN was
observed on the surface of the tip. This CrN layer is the cause of the corrosion near the tip
shown in Figure 8. CrN was also formed near the center of the pipe, as shown in Figure 3,
but the pattern was scattered rather than layered. Therefore, the corrosion resistance was
strong near the center of the pipe.
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4. Conclusions

In this study, low-temperature ASPN was applied to improve the bending rigidity
and corrosion resistance of a small-diameter thin pipe composed of austenitic stainless
steel. The nitriding layer thickness, layer structure, surface hardness, bending load and
corrosion resistance were investigated by varying the nitriding temperature. The results
are summarized as follows:

1. An austenitic stainless-steel small-diameter thin pipe was successfully nitrided using
low-temperature ASPN.

2. The nitriding layer thickness increased monotonically with the nitriding temperature
from 578 to 638 K. The nitriding layer thickness at 638 K was approximately 15 µm.

3. The existence of expanded austenite (S phase) was revealed using the XRD pattern.
At high nitriding temperatures of 618 and 638 K, peaks related to the formation of
CrN were also observed.

4. The bending load increased with the nitriding temperature because the nitriding layer
became thicker and the surface hardness increased.

5. At low nitriding temperatures of 578 and 598 K, the nitrided samples did not corrode
in the corrosion test. At high nitriding temperatures of 618 and 638 K, corrosion was
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only observed near the tip of the pipe; no corrosion was observed near the center of
the pipe.

These results indicated that low-temperature ASPN achieved both flexural rigidity
and corrosion resistance in a small-diameter thin pipe composed of austenitic stainless
steel. Such results have not been reported thus far. It is expected that the application of
plasma nitriding for such applications as medical injection needles will be expanded to
provide the required diameter thinness.
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