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Abstract: Deformed and partitioned (D&P) medium Mn steels exhibiting high strength, large ductility,
and excellent fracture toughness have been developed recently. The ultra-high dislocation density
and transformation-induced plasticity (TRIP) effect are the main mechanisms for their exceptional
mechanical properties. The simple processing route to manufacturing D&P steel makes it promising
for large-scale industrial applications. However, the exact effect of each processing step on the final
mechanical properties of D&P steel is not yet fully understood. In the present work, the effects of
processing parameters on the mechanical properties of D&P steels are systematically investigated.
The evolution of microstructure, tensile behavior and austenite fraction of warm rolled samples and
D&P samples are revealed. Two D&P steels, with and without the intercritical annealing process,
are both produced for comparison. It is revealed that the intercritical annealing process plays an
insignificant role to the mechanical properties of D&P steel. The partitioning process is extremely
important for obtaining large uniform elongation via slow but sustaining strain hardening by the
TRIP effect in the partitioned austenite. The cold rolling process is also significant for acquiring
high strength, and the cold rolling thickness reduction (CRTR) is extremely critical for the strength–
ductility synergy of D&P steels.

Keywords: deformed and partitioned (D&P) steel; medium Mn steel; heterogeneous lamellar mi-
crostructure; processing parameter; high dislocation density; ultrahigh strength

1. Introduction

Structural materials with high strength and good ductility are highly desired for
engineering applications to meet the demand of lightweight and energy-efficient materials
in a wide variety of industries such as automotive, aerospace and marine engineering [1,2].
Unfortunately, for most metallic materials, improving strength or ductility is often at
the expense of deteriorating the other property, which is well-known as the strength–
ductility tradeoff [3–5]. In the past decades, unremitting efforts have been devoted to
search strategies that can solve the strength–ductility tradeoff dilemma. Nanostructured
engineering is a strategy that could realize the combination of high strength and good
ductility [6–8]. By tailing the nanostructured grains or twins via various processing routes
such as severe plastic deformation (SPD) [9,10], and overcoming the instabilities upon
plastic deformation by miscellaneous methods such as grain boundary and twin boundary
engineering, the goal of improving the ductility without sacrificing the strength could be
realized [11–15]. A gradient hierarchical microstructure can also be used to circumvent the
strength–ductility tradeoff [16–19]. It is reported that the gradient hierarchical nanotwinned
structure can be obtained in a twinning-induced plasiticity (TWIP) steel via pre-torsion,
which leads to doubled yield strength with no reduction of the ductility [18]. Nevertheless,
the processing routes for obtaining and controlling the nanostructured grains, twins, or
gradient structures is often very complicated, which is difficult for large-scale industrial
manufacturing at present.
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Alloying is another alternative way to overcome the strength–ductility tradeoff. For
example, large amounts of nickel, cobalt, titanium, or molybdenum are often alloyed
in the high-strength maraging steel to improve the strength and ductility, usually by
nanoscale precipitations and solid solutions [20–22]. This way is feasible but not sustainable
and cost-effective [23]. Low-alloy high-carbon martensitic steel is another high-strength
material [24,25]. However, the high-carbon martensitic steel is usually very brittle in the
as-quenched or low-temperature-tempered state. Recently, a super-strong dislocation-
structured high-carbon martensite steel possessing 2.5 GPa tensile strength and 10% total
elongation has been developed by a new temforming (tempering and deforming of a
quenched steel) thermomechanical process. The drastic enhancement of ductility in this
high-carbon martensitic steel is found to arise from the martensite with a dislocation
microstructure instead of a conventional twin microstructure [24].

Quenching and partitioning (Q&P) steel is a third-generation advanced high-strength
steel (AHSS) exhibiting outstanding combination of high strength and good ductility [26–28].
In Q&P steels, the martensite matrix provides the high strength, while the retained austenite
provides the high work hardening rate and ductility by transformation-induced plasticity
(TRIP) effect [29–31]. The carbon partitioning from martensite or ferrite to retained austen-
ite is quite critical to the mechanical properties of Q&P steels. This process increases the
mechanical stability of retained austenite with enriched carbon concentration, which is of
benefit to the work hardening and ductility owing to the TRIP effect [32–34]. By optimizing
the fraction and stability of retained austenite, the best mechanical properties of Q&P steel
could be achieved [35]. Recently, a two-step Q–P treatment with a prolonged partition-
ing stage has been proposed to tailor the strength–ductility combination of a Si-alloyed
middle-carbon steel. The combination of 2374 MPa ultimate tensile strength (UTS) with 9%
total elongation (TEL) or combination of 1743–1830 MPa UTS with 20–21% TEL could be
achieved [36].

Carbide-free bainitic (CFB) steel is another high-strength steel, comprising of ultra-
fine lamellae (20–40 nm) of bainitic ferrites with thin retained austenite films or coarse
austenite blocks [37,38]. This mixed microstructure results in an extraordinary balance of
the mechanical properties of CFB steels. The ultrafine bainitic ferrite provides the high
strength while the retained austenite provides the high strain hardening rate and ductility
by the TRIP effect [39–41]. It has been reported that the combination of 2172 MPa UTS
and 8.8% uniform elongation (UE) can be achieved in CFB steels [42]. Medium Mn steel
is another promising third-generation AHSS with Mn concentration ranging between ap-
proximately 3–12 wt.% [43,44]. The excellent balance between the strength and ductility is
also mainly due to the TRIP effect occurring in retained austenite. Intercritical annealing is
a critical process in general medium Mn steels, in order to obtain large amounts of retained
austenite, which is the main source for the high mechanical performance of medium Mn
steel [45,46]. It can be found that the retained austenite grains are the common components
in Q&P steels, CFB steels, and medium Mn steels, which increases the strength and ductility
simultaneously by the TRIP effect.

Heterogeneous lamellar microstructures, with soft micro-grained lamellae embedded
in hard ultrafine-grained lamellar matrix, can also avoid the strength–ductility tradeoff
via combining the ultrafine-grained strength and the coarse-grain ductility [47,48]. Such a
heterogeneous lamellar microstructure can be easily obtained through a simple rolling and
annealing process, which is very common in the metal industry. Martensite and austenite
are the most common hard and soft phases in steel, respectively, which are perfect for mak-
ing a heterogeneous microstructure. Recently, it has been reported that medium Mn steels
subjected to deformed and partitioned (D&P) processes possess a heterogeneous lamel-
lar microstructure and exhibit ultra-high strength, large ductility, and excellent fracture
toughness [49,50]. The processing route is quite simple, including hot rolling, warm rolling,
intercritical annealing, cold rolling, and partitioning. The corresponding steel is defined as
D&P steel. The heterogeneous lamellar microstructure is produced by the deforming pro-
cess, with the soft austenite lamella embedded in the hard martensite lamellar matrix. The
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hard martensite lamellar is produced in the cold rolling process via deformation-induced
martensitic transformation [51,52]. Due to the large plastic deformation and displacive
shear transformation, the martensite matrix has an unprecedented high dislocation density,
which results in ultra-high strength. Meanwhile, the steel also has a large uniform elonga-
tion, which is contributed by the high mobile dislocation density. The controllable high
mobile dislocation density, introduced by the warm rolling process, is the key mechanism
for obtaining such an ultra-strong yet ductile steel. Different from nanostructured engineer-
ing mentioned before, D&P steel circumvents the strength–ductility tradeoff by dislocation
engineering. In addition to the dislocation engineering, the TRIP effect is also a very crucial
mechanism for the excellent uniform elongation during deformation. The strain hardening
by the TRIP effect postpones the necking initiation, which is greatly significant to the
increased uniform elongation.

The ultra-strong and ductile D&P steel is produced by sequential hot rolling, warm
rolling, intercritical annealing, cold rolling, and partitioning processes, via playing the
dislocation engineering and the TRIP effect. In the present paper, the effect of each process
on the mechanical properties of D&P steel is systematically investigated. The evolution of
microstructure, tensile behavior and austenite fraction of warm rolling samples and D&P
samples are investigated. Two D&P steels, with and without the intercritical annealing
process, are both produced for comparison. It is found that the intercritical annealing
process is not necessary for producing D&P steel, which further simplifies the processing
route for industrial manufacturing. Samples with different processing routes are studied.
The partitioning process is very important in achieving high uniform elongation due to the
sustaining strain hardening by the TRIP effect in the partitioned retained austenite. The
effects of different partitioning temperatures on the mechanical properties of D&P steel
are also elucidated. Cold rolling is also highly important, and the cold rolling thickness
reduction is extremely critical for the strength–ductility combination.

2. Materials and Methods

A medium Mn steel with a chemical composition of Fe-10.13 Mn-0.39 C-2.05 Al-0.26 V
(wt.%) is employed for the present investigation. The equilibrium phase fraction of the steel at
different temperatures is calculated by using Thermo-Calc software (version 2017b, Stockholm,
Sweden) with the TCFE8 database, as shown in Figure 1. It is indicated that (i) the A3 point
is 730 ◦C; (ii) the fractions of ferrite and austenite are equal at 620 ◦C; (iii) the cementite and
vanadium carbide are completely dissoluted at 640 ◦C and 960 ◦C, respectively.

The steel ingots were casted using a vacuum induction melting furnace (Nabertherm
GmbH, Lilienthal, Germany) and then hot forged into billets with a thickness of 20 mm.
The billets were homogenized at 1150 ◦C for 2 h, and then were subjected hot rolling
(HR) to a thickness of 4 mm, with a finishing temperature of about 850 ◦C. The HR strips
were reheated to 700 ◦C for 10 min, and then were further subjected to warm rolling (WR)
to a thickness of 2 mm (i.e., 50% thickness reduction), with a finishing temperature of
about 350 ◦C. Then an intercritical annealing (IA) process was applied to the WR strips,
or this IA process was skipped. The IA process was performed at 620 ◦C for 5 h. The
mechanical properties of HR + WR samples with and without the IA process were both
tested, to determine whether IA is a significant process to produce the D&P steel. The
strips were further subjected to cold rolling (CR) with different thickness reductions, which
varied from 0% to 35%, to investigate the effect of cold rolling reduction to the mechanical
properties of the D&P steel. The tensile samples were partitioned at different temperatures,
varying from 350 ◦C to 500 ◦C for 6 min, to investigate the influence of the partitioning
temperature on the mechanical properties of the D&P steel. The above thermomechanical
process of the D&P steel is summarized in Figure 2.
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Figure 2. Schematic illustration of the thermomechanical process for producing deformed and partitioned (D&P) steel.

The room temperature mechanical properties of the HR + WR samples and D&P
samples were evaluated by qusi-static tensile tests. The dog-bone tensile samples with a
gauge length of 10 mm were wire cut from strips along the rolling direction. All the tensile
tests were carried out using a MTS 810 machine (MTS Systems Corporation, Bellevue,
WA, USA) equipped with an extensometer of a 10 mm gauge at a strain rate of 10−3 s−1.
The HR + WR samples and D&P samples with and without the IA process were tested.
D&P samples with and without the partitioning process were tested. D&P samples with
different partitioning temperatures, varying from 350 ◦C to 500 ◦C were tested. D&P
samples with different cold rolling thickness reductions, which varied from 0% to 35%
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were tested. Tensile tests for each sample were repeated at least twice. The mean values
and standard deviations of the yield strength and uniform elongation of samples at each
condition were calculated for comparison.

The initial microstructures of the HR + WR and D&P samples were observed by
optical microscopy (ContourX-100, Bruker, Billerica, MA, USA). The OM samples were
prepared by etching using a solution of 10% perchloric acid and 90% acetic acid (vol.%)
for 90 s after mechanical polishing to 1 µm. The electron backscatter diffraction (EBSD)
characterization of HR + WR and D&P samples were conducted using the Sigma 300
scanning electron microscope (Zeiss, Jena, Germany) equipped with a Symmetry EBSD
detector (Oxford Instruments, Oxfordshire, UK), performed at 20 kV. The step size of the
EBSD measurement was 0.2 µm. The EBSD data were analyzed using HKL CHANNEL5
software (Oxford Instruments, Oxfordshire, UK). The EBSD samples were prepared by
electro-polishing using a solution of 10% perchloric acid and 90% acetic acid (vol.%) at
room temperature after mechanical polishing to 1 µm. To determine the austenite volume
fraction, conventional X-ray diffraction (XRD) measurements were carried out on the
electro-polishing samples using Cu Kα radiation with a wavelength of 0.154 nm using a
Smartlab diffractometer (Rigaku, Tokyo, Japan). The 2θ Bragg angle was scanned from
30◦ to 100◦ with a counting rate of 0.02◦ s−1. The volume fraction of martensite (α′) and
austenite (γ) was calculated by considering the integrated intensities of (110) α′, (200) α′,
(211) α′, (111) γ, (200) γ, (220) γ, (311) γ diffraction reflections according to the ASTM E975
standard [53,54]. In addition to the XRD tests, the austenite volume fractions of all samples
before and after the tensile test were also measured using a Feritscope (FMP30, Helmut
Fischer, Stuttgart, Germany), which was calibrated in advance with the volume fraction of
retained austenite measured by XRD before and after the tensile test [55,56]. The detector
of the Feritscope was tightly adhered to the middle of the gauge portion of the tensile
samples during the measurement. For each sample, the measurement of Feritscope were
repeated five times, and the mean values and standard deviations of the retained austenite
were calculated for comparison.

3. Results
3.1. Microstructure Characterization

The initial microstructures of two typical samples examined by optical microscope are
shown in Figure 3. The first sample is a medium product only subjected to the HR and WR
process, denoted as the HR + WR sample. The second sample is a D&P product, which
was subjected to HR, WR, IA, CR with 25% thickness reduction (CR25%), and partitioning
at 400 ◦C for 6 min (PT400), denoted as the HR + WR + IA + CR25% + PT400 sample.

It can be seen that both samples exhibit banded microstructures. For the HR + WR
sample, martensite bands consisting of small martensite grains are sparsely decorated in
the austenite matrix, as shown in Figure 3(a1,a2). For the HR + WR + IA + CR25% + PT400
sample, a typical heterogeneous dual-phase lamellar microstructure is observed, as shown
in Figure 3(b1,b2). The martensite matrix exhibits heterogeneous grain morphologies, con-
sisting of large lenticular martensite grains and small lath martensite grains. The retained
austenite also possesses a heterogeneous microstructure, including coarse lenticular grains
and ultrafine lamellar films embedded in large martensite grains.
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Figure 3. Optical micrographs showing the initial microstructures of the hot rolling (HR) + warm rolling (WR) sample
(a1,a2) and the HR + WR + intercritical annealing (IA) + cold rolling with 25% thickness reduction (CR25%) + partitioning
at 400 ◦C (PT400) sample (b1,b2). RD: rolling direction, ND: normal direction. M: martensite, RA: retained austenite.

The initial microstructures of these two typical samples are also characterized by
EBSD and XRD, as shown in Figures 4 and 5, respectively. The HR + WR sample has
an almost full austenite microstructure decorated with very few small martensite grains,
as shown in Figure 4(a1), which is further confirmed by the XRD result that the volume
fraction of austenite in the HR + WR sample is 96.9% (Figure 5a). The austenite grains
are obviously elongated along the rolling direction (RD) and are observed to exhibit two
morphologies, i.e., most are large lenticular grains, and a band structure consists of small
austenite grains parallel to the rolling direction. The HR + WR + IA + CR25% + PT400
sample has a heterogeneous dual-phase lamellar microstructure (Figure 4(b1)). It can be
seen that, after cold rolling, about half of the austenite is transformed to fresh martensite.
The prior austenite grain boundaries can be distinguished according to the inverse pole
figure (IPF) maps (Figure 4(b2)). The volume fractions of retained austenite in this D&P
sample measured by XRD is 53.5% (Figure 5b). Because of cold rolling, the austenite and
martensite lamellae are much thinner compared to that in the HR + WR sample. The
austenite grain is further elongated along the rolling direction after cold rolling.
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Figure 4. Electron backscatter diffraction (EBSD) maps showing the initial microstructures of the HR + WR sample (a1–a4) and
HR + WR + IA + CR25% + PT400 sample (b1–b4). Therein, (a1,b1) are the phase maps showing the phase distribution of the two
samples. (a2,b2) are the inverse pole figure (IPF) maps showing the grains orientations of the two samples. (a3,b3) are the maps
of geometrically necessary dislocation (GND) density, estimated based on the kernel average misorientation. (a4,b4) are the band
contrast maps showing image quality of the mapping. RD: rolling direction, ND: normal direction. γ: austenite, α′: martensite.
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The densities of the geometrically necessary dislocations (GND) of the two samples are
shown in Figure 4(a3,b3), which are estimated based on the kernel average misorientation
(KAM). The estimated average GND densities of austenite and martensite in the two
samples are summarized in Table 1. It is reported that the average total dislocation density
of the martensite in D&P steel is around 1016 m−2, which is two orders higher than
thermally transformed martensite [49,57]. Table 1 shows that the average GND density of
martensite in D&P steel is around 2 × 1015 m−2, which coincides with the reported value,
without regard to the statically stored dislocations (SSD). It is found that the GND densities
of both austenite and martensite in D&P sample are much higher than in the HR + WR
sample. The GND density of austenite is massively increased in the D&P sample compared
to the HR + WR sample, owing to the additional large plastic deformation during the cold
rolling process. It is notable that, in the D&P sample, the GND density of austenite is very
close to the GND density of martensite. The GND density of martensite is also slightly
increased in the D&P sample, caused by cold rolling. In the D&P sample, the higher GND
density in fresh martensite than in the retained austenite is due to the displacive martensitic
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transformation induced by cold rolling. The band contrast maps in Figure 4(a4,b4) also
reflect the GND magnitude of the three samples from another perspective.

Table 1. The average GND densities of austenite and martensite in three typical samples.

Sample Austenite Martensite

HR + WR 0.9 × 1015 m−2 1.6 × 1015 m−2

HR + WR + IA + CR25% + PT400 1.5 × 1015 m−2 2.0 × 1015 m−2

3.2. Mechanical Properties

The engineering stress–strain curves of the HR + WR and HR + WR + IA + CR25% + PT400
samples are shown in Figure 6a. Figure 6b shows the corresponding true stress–strain curves and
the work hardening rate curves of these two samples.
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The HR + WR sample shows a relatively low yield point (722 MPa), followed by a
Lüders strain of about 3% and a 10% uniform strain, finally fractured at an engineering
strain of 14.5% with an ultimate tensile strength of 1373 MPa (Figure 6a). The volume
fraction of austenite is 96.9% before deformation, and turns into 52.4% after fracture
(Figure 5a,c). The high work hardening rate after the Lüders band is shown, which
could be ascribed to the impetuous martensitic transformation during the tensile test, and
consequently the strong TRIP effect.

The HR + WR + IA + CR25% + PT400 sample has an ultra-high yield strength, i.e.,
1924 MPa (Figure 6a). A pronounced yield drop phenomenon is shown in the sample.
This phenomenon is caused by the partitioning process, which will promote carbon atoms
diffusing to the dislocations, and forming a Cottrell atmosphere [58,59]. It is noted that the
yield strength of the D&P sample in the present paper is determined as the upper yield
point. After yielding, the samples show a Lüders strain of about 17%, which accounts for
almost 95% of the total plastic deformation. A small hardening trend is initiated after the
Lüders strain, but the sample breaks down immediately. Finally, the total elongation of
the HR + WR + IA + CR25% + PT400 sample is 20.5%. There is almost no work hardening
during the Lüders strain, as shown in Figure 6b. Since the deformation behavior at the
Lüders band area is non-homogeneous, the Considère criterion is not applicable here.

The volume fraction of retained austenite in HR + WR + IA + CR25% + PT400 sample is
53.5% before deformation, and becomes 20.4% after fracture (Figure 5b,c). It is noticeable that
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the martensitic transformation rate in the HR + WR + IA + CR25% + PT400 sample is severely
slower than that in the HR + WR sample. This could be contributed to by the markedly higher
dislocation density in retained austenite in the HR + WR + IA + CR25% + PT400 sample
(Figure 4(a3,a4,b3,b4)), which makes the retained austenite much more stable.

The ultra-high strength and ductility of the D&P steel are mainly due to the high dis-
location densities, both in martensite and austenite. The warm rolling process remarkably
produces large amounts of dislocations in austenite. For a nearly full austenite microstruc-
ture, the yield strength of the present steel after warm rolling (743 MPa) is largely improved
by the high dislocation density, compared to other fully austenitic steels, such as fully
recrystallized twinning-induced plasticity (TWIP) steel (500 MPa) [60]. The cold rolling
(CR) process produces a large fraction of martensite through martensitic transformation.
The fresh martensite resulting from martensitic transformation inherits the high dislocation
density of prior warm rolled austenite. Meanwhile, further plastic deformation by cold
rolling and martensitic transformation continues to increase the dislocation density of
austenite and martensite. The final D&P steel has a microstructure of about half martensite
and half austenite, and both phases possess ultra-high dislocation densities, resulting in an
extremely high yield strength.

4. Discussion
4.1. Insignificant Role of the Intercritical Annealing Process

In order to determine whether the intercritical annealing process is a significant
process for producing D&P steel, the mechanical properties of the HR + WR + IA sample
were also tested, and compared with the HR + WR sample (Figure 7). The result shows
that the yield and ultimate strengths, as well as the work hardening response of samples
with and without the IA process are almost the same, which implies that the IA process
has no significant effect on the mechanical properties of D&P steel. Note that the only
difference is that the sample with the IA process exhibits a discontinuous yielding (i.e.,
showing upper and lower yield points) due to the carbon pinning effect introduced by
the IA process [58], while the sample without the IA process shows a continuous yielding
(Figure 5b). Although it has been reported that after the IA process, the dislocation density
of the sample would slightly decrease [57], the comparison of the mechanical behavior
between the HR + WR sample and the HR + WR + IA sample here shows that the IA
process does not play a significant role in tailoring the mechanical performance of the
warm rolled samples.
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In order to further illustrate that the IA process plays an insignificant role in manu-
facturing D&P steel, another D&P steel without IA process is produced. The cold rolling
thickness reduction is 20%, and the partitioning temperature is 350 ◦C. This D&P sample is
denoted as the HR + WR + CR20% + PT350 sample. Note that the cold rolling thickness
reduction and the partitioning temperature of the HR + WR + CR20% + PT350 sample are
slightly different from the previous HR + WR + IA + CR25% + PT400 sample, in order to
obtain the optimal mechanical properties.

The initial microstructure of the HR + WR + CR20% + PT350 sample is characterized
by EBSD, as shown in Figure 8. It is found that the heterogeneous dual-phase lamellar
microstructure of this D&P steel without the IA process is almost the same as the previous
D&P steel including the IA process. The comparison of the tensile properties of the two
D&P steels with and without the IA process is shown in Figure 9. It is found that the tensile
behaviors of the two D&P samples are also very similar. The retained austenite fraction of
the HR + WR + CR20% + PT350 sample is 56.1% before deformation, and 22% after fracture,
according to XRD and Feritscope measurements, which is also very close to the HR + WR + IA
+ CR25% + PT400 sample.
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Figure 8. EBSD maps showing the initial microstructures of the HR + WR + CR20% + PT350 sample. (a) Phase map showing the
distribution of martensite phase (red color) and retained austenite phase (blue color). (b) IPF map showing the grains orientations
of the sample. (c) The map of GND density estimated based on the kernel average misorientation. (d) Band contrast map
showing image quality of the mapping. RD: rolling direction, ND: normal direction. γ: austenite, α′: martensite.
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In conclusion, the ultra-strong and ductile D&P steel can be produced without the
IA process. The IA process does not play a significant role in tailoring the mechanical
performance of D&P steels. On this basis, removing the IA step is possible, which greatly
simplifies the total manufacturing procedures, and makes it more attractive for the indus-
trial manufacturing of D&P steel.

4.2. Significance of the Partitioning Process

The influence of the partitioning process on the mechanical properties of D&P steel
is shown in Figure 10. The tensile behavior of samples with and without partitioning are
tested, and samples with and without the IA process are both tested. Figure 10a shows
that the samples without the partitioning process are very brittle, with uniform elongation
less than 4.5%. After a simple partitioning at 350 ◦C or 400 ◦C for 6 min, the samples then
exhibit large elongation (about 20%). Meanwhile, the yield strength of samples (determined
as upper yield point) do not decrease after the partitioning process. Figure 10b shows
the map of uniform elongation versus the yield strength of samples with and without the
partitioning process, which exhibits the great significance of the partitioning process for
improving the final mechanical properties of D&P steel.

The partitioning process brings several benefits to the steel. According to previous
research, the partitioning process of D&P steel does not change the fraction of austenite [57].
The yield strength of the steel has nearly no change since the phase fraction remains unchanged.
The low temperature tempering releases the stress concentration introduced by cold rolling,
making the tempered martensite not so brittle. The carbon atoms diffuse from martensite to
the austenite during the partitioning process. This carbon partitioning, on one hand, decreases
the carbon content in martensite, further making the martensite more ductile, and on the other
hand, enhances the stability of austenite by increasing its carbon concentration. The more
stable austenite leads to a slower TRIP effect during the deformation. The slow but sustaining
TRIP effect makes the strain hardening lasting for a larger strain and therefore delays the
initiation of necking and leads to a larger uniform elongation.

4.3. Influence of Partitioning Temperature

The partitioning process is extremely important to the extraordinary mechanical per-
formance of the D&P steel. In order to find the best partitioning temperature, samples
subjected to different partitioning temperatures (350 ◦C, 400 ◦C, 450 ◦C, 500 ◦C) are tested.
Note all the samples in this test have been subjected to the IA process. The influence of dif-
ferent partitioning temperatures on the tensile behavior of D&P steel is shown in Figure 11.
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With the increase of the partitioning temperature, the yield strength decreases, and the
total elongation increases. When the partitioning temperature is increased from 350 ◦C to
500 ◦C, the yield strength drops from 2020 MPa to 1730 MPa, and the total elongation rises
from 17.5% to 26.8%. Note that the post-elongation appears in the sample with partitioning
at 500 ◦C, which do not exist in samples with lower partitioning temperatures.
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The higher partitioning temperature leads to more dislocation recovery, resulting in
lower dislocation density [57]. This is the reason for the decline of yield strength when
increasing the partitioning temperature, according to the Taylor hardening law [61]. The
decreasing yield strength is also part of the reason for the increase of total elongation,
according to the strength–ductility tradeoff. Another reason for the increasing total elonga-
tion is that the carbon concentration in austenite is higher at higher temperatures. Thus,
the austenite becomes more stable, leading to a better TRIP effect.

4.4. Critical Thickness Reduction in Cold Rolling Process

The martensite matrix with high dislocation density produced by the cold rolling
process is the main reason for the ultra-high strength. In order to seek out the most
appropriate cold rolling parameter for realizing the best strength–ductility synergy in D&P
steels, cold rolling with different thickness reductions is performed. Note that all samples
in this section have not been subjected to the IA process. The samples subjected to different
CR thickness reductions (both with and without partitioning process) are all tested.

Figure 12a shows the engineering stress–strain curves of all samples. Figure 12b shows
the map of uniform elongation versus yield strength of all samples. Comparing the mechanical
properties of samples with and without partitioning (for all CR thickness reduction except
CR0%), the importance of the partitioning process for improving the performance of D&P steel
is once again illuminated. The partitioning process improves the uniform elongation but does
not affect the yield strength of D&P steel, as discussed in Section 4.2.

For samples with different cold rolling thickness reductions (CRTRs), the yield strength
rises with increasing CRTR (for both with and without the partitioning process), as shown
in Figure 12c. The yield strength increases from 743 MPa to as high as 2195 MPa when the
CRTR increases from 0% to 35%. Two reasons are accounted for this phenomenon. Firstly,
the larger CRTR produces more dislocations. According to the Taylor hardening law [61],
the high dislocation density results in higher yield strength. Secondly, the larger CRTR also
produces more martensite, as shown in Figure 12d. Since the martensite phase is much
harder than austenite phase, the higher martensite volume fraction also contributes to the
higher yield strength.

As for the uniform elongation, for samples without partitioning, it decreases with
increasing CRTR (or yield strength). This is the strength–ductility tradeoff phenomenon,
which is common in most metallic materials. However, for samples with partitioning, the
results are different. An unexpected peak appears in Figure 12b. It is found that, when
the CRTR is 20%, the uniform elongation can surprisingly rise to 21.3%, which is much
larger than the samples with 0% and 15% CRTR. The mechanism of breaking through the
strength–ductility tradeoff rule could be attributed to the high mobile dislocation density
in D&P steel with 20% CRTR. It can be seen that the large Lüders strain (about 13%) is the
major contribution to the total elongation. The glide of intensive mobile dislocations is
accounted for with the large Lüders strain [49]. Meanwhile, the slow and continuous TRIP
effect delays the onset of necking and thus also contributes to the high uniform elongation.

It is shown in Figure 12c that, although the yield strength of the steel constantly
increases with the increasing CRTR, the increasing rate slows down obviously with the
rising CRTR, especially when the CRTR is larger than 20%. It shows that when the CRTR
increases from 0% to 15%, or 15% to 20%, or 20% to 25%, or 25% to 35%, the yield strength
increments are 453 MPa, 654 MPa, 238 MPa and 125 MPa, respectively. The evolution of
the volume fraction of austenite in D&P steel with respect to CRTR is shown in Figure
12d. It is found that the volume fraction of austenite decreases greatly with the increasing
CRTR, when the CRTR is lower than 20%. It means the deformation-induced martensitic
transformation (DIMT) occurs dramatically in the cold rolling process when the CRTR is
lower than 20%. However, further increasing the CRTR from 20% to 35%, the fraction of
austenite almost keeps stable, with an extremely small decreasing trend. It means that
martensitic transformation almost no longer happens by further increasing CRTR when it
is higher than 20%.
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When CRTR is lower than 20%, the rise of yield strength by increasing CRTR is mainly
caused by the rising martensite fraction (Figure 12c,d). Since the martensite is the harder
phase and austenite is the softer phase, the larger fraction of martensite enhances the
contribution of the martensite phase and thus increases the macro yield strength of D&P
steel pronouncedly. Meanwhile, the higher stress lever also promotes more dislocations to
become mobile dislocations, which leads to a larger uniform elongation. This mechanism
of evading the strength–ductility tradeoff is reflected by comparing the D&P steels with
15% and 20% CRTR.

When the CRTR is larger than 20%, the yield strength still increases with the increasing
CRTR, but the increasing rate slows down sharply. Meanwhile, the uniform elongation
drops down substantially with the increasing CRTR. The fraction of martensite almost
does not increase with the rising CRTR, which is responsible for the slower increasing
rate of yield strength. That means, at this moment, when increasing the CRTR, almost all
the strength increment comes from the slightly increasing dislocation density induced by
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further cold rolling. At this large CRTR, the dislocation density of both martensite and
austenite is very high. More and more mobile dislocations are entangled and hindered, and
become stationary dislocations. It is suspected that the ratio of mobile dislocations drops
down dramatically. In short, when the CRTR is larger than 20%, further increasing the
CRTR may increase the total dislocation density slightly, but decrease the mobile dislocation
density intensively, which results in a small increase in yield strength but greatly decreased
uniform elongation.

Thus, in order to produce the ultra-strong yet ductile D&P steel, the choosing of cold
rolling thickness reduction is critically important. For the present D&P steel, 20% CRTR is
the best for the strength–ductility synergy.

5. Conclusions

In the present work, the effects of processing parameters on the final mechanical
properties of D&P steels are systematically investigated. Two D&P steels, with and without
the IA process, are both produced for comparison. By conducting EBSD, XRD and quasi-
static tensile tests, the evolution of microstructure, austenite fraction and mechanical
behavior from the WR sample to the D&P sample are revealed, demonstrating that the
heterogeneous lamellar microstructure, high dislocation density and continuous TRIP
effect in D&P steel are responsible for the excellent mechanical properties. Tensile tests of
samples with and without the IA process shows that the IA process is insignificant and
can be removed. The partitioning process is very important to D&P steels for obtaining
large uniform elongation via slow but sustaining hardening by the TRIP effect in more
stable retained austenite with higher carbon content. The cold rolling process is also critical
for realizing such a high strength of D&P steel. Furthermore, the cold rolling thickness
reduction plays a critical role on the strength–ductility synergy.
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