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Abstract: Novel Fe–28Mn–10Al–C–0.5Nb low-density steel was developed and the room temperature
tensile behavior in the solid solution state and the microstructure evolution process during plastic
deformation were studied, aiming to clarify the dominant deformation mechanisms. The results
show that the developed steel was fully austenitic with a low density of 6.63 g/cm3 and fairly
high stacking fault energy of 84 MJ/m2. The present fully austenitic Fe–28Mn–10Al–C–0.5Nb low-
density steel exhibited an excellent ultimate tensile strength of 1084 MPa and elongation of 37.5%;
in addition, the steel exhibited an excellent combination of strength and ductility (i.e., the product
of strength and ductility (PSE) could reach as high as 40.65 GPa%). In spite of the high stacking
fault energy, deformed microstructures exhibited planar glide characteristics, seemingly due to the
glide plane softening effect. The excellent combination of strength and ductility is attributed to
plasticity induced by microbands and leads to the continuous strain hardening during deformation
at room temperature. Moreover, the addition of Nb does not change the deformation mechanism
and strengthening mechanism of Fe–Mn–Al–C low-density steel, and can optimize the mechanical
properties of the steel.

Keywords: Fe–Mn–Al–C; Nb; deformation mechanisms; planar glide; microbands

1. Introduction

The development of high-strength steel plates with high ductility and toughness for au-
tomotive manufacturing has been pursued for a long time. Nowadays, several advanced steel
materials with a combination of strength and ductility (i.e., tensile strength (TS) × elongation)
of 15,000–20,000 MPa% have been applied to automobile sheet steels such as gapless steel,
high strength low alloys (HSLA), transformation induced plasticity steel (TRIP), twin-induced
plasticity steel (TWIP), etc. [1,2]. However, due to rising fuel costs and restrictions on exhaust
emissions, automakers have begun to devote attention to developing vehicles with low fuel
consumption and high safety. As a solution, the applications of lightweight and safe steel to
reduce the weight of cars is considered an efficient approach. However, the weight savings of
commercially available automotive sheet steels are not effective due to the low alloying of
light elements such as Al. Several recent investigations have revealed that Fe–Mn–Al–C steel,
prepared by adding Al to high Mn austenitic steel, can be used in automobile manufacturing
to realize automobile lightweight [3,4] due to its low density, excellent mechanical properties,
formability, and weldability. Therefore, the development of Fe–Mn–Al–C low-density steels is
widely of interest worldwide [5–7].

Compared with TRIP/TWIP steel, Fe–Mn–Al–C steel has lower density and better
mechanical properties with considerable Al addition (e.g., 10%) [8–12]. These effects mainly
result from the stacking fault energy (SFE) increase with the addition of Al in the high
Mn austenitic steel and making the dislocation plane slip the main deformation mech-
anism. In addition, the addition of Al also induces dynamic precipitation of κ-carbide.
The L’12 type κ-carbides with FCC structure will precipitate by spinodal decomposition
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of austenite. Through precipitation strengthening of κ-carbides, dislocation plane slip
is prevented, and the mechanical properties of low density steel will be improved. For
example, Sutou et al. [13] reported that the fine κ-carbides produced during the quench-
ing process will make Fe–20Mn–(10,11)Al–(1.0,1.5)C low-density steel obtain high yield
strength and tensile strength while maintaining high ductility. Kalashnikov [14] reported
that when the Al content exceeds 7%, the austenitic Fe–Mn–Al–C steel after aging treatment
is significantly strengthened due to the precipitation of nano-scale κ-carbides, with yield
strength and tensile strength elevated. However, as reported by Sutou [13], Lu [15], and
Liu [16], etc., due to the stress concentration at the grain boundary, coarse κ-carbides
distributed along grain boundaries would reduce the ductility of low density steel [17,18].
Therefore, the size and distribution of κ-carbides need to be controlled to improve the
mechanical properties of low-density steel. This limits the development and preparation of
higher-performance austenitic Fe–Mn–Al–C low-density steel for automobiles, and also
greatly increases its production difficulty and cost.

In order to better improve the tensile property, the present work aimed to develop
a Nb alloyed Fe–Mn–Al–C low-density steel. First of all, Nb has a strong affinity with
C, which consumes C atoms in low-density steel to form a very stable NbC phase [19],
and the precipitation of coarse κ-carbides can be suppressed. Moreover, NbC precipitates
uniformly distributed in austenite can be obtained, and the size of the austenite grain
can be refined [20]. The mechanical properties of low density steel can be optimized by
precipitation strengthening and fine grain strengthening through the precipitation of NbC.
In addition, due to the strong stability of NbC, it can maintain the nano-scale particle size
during the high-temperature aging process, and can effectively avoid the loss of ductility
caused by the coarsening of the precipitated phase [21]. At present, there are less reports
on the preparation of Fe–Mn–Al–C–Nb low density steel by Nb alloying, and the evolution
of the microstructure of Fe–Mn–Al–C–Nb low density steel during plastic deformation has
not attracted attention, and the strengthening mechanism is still unclear. In the present
investigation, the correlation between room temperature tensile behavior and the deformed
microstructure of Fe–Mn–Al–C–Nb low density steel was analyzed, in order to determine
the plastic deformation mechanism and strengthening mechanism of this new product.
These results may provide theoretical support for subsequent research and development.

2. Experimental Procedure

A 25 kg ingot was prepared by induction melting in an argon atmosphere. In order
to obtain a plate-like shape, the ingot was forged and hot rolled, and a high temperature
heat treatment was performed before and after machining to remove internal stress. The
ingot was heated at 1150 ◦C for 2 h, and then forged into a slab with sectional dimensions
of 80 mm × 40 mm. After homogenization at 1200 ◦C for 2 h, the slab was hot rolled to
the plate of 5 mm thickness. After that, the hot rolled plate was solution treated at 950 ◦C
for 1 h and water quenched to room temperature. This process is shown in Figure 1. The
chemical composition of steel with error bars is shown in Table 1 and Figure 2. According to
the Archimedes principle, the density of the Fe–Mn–Al–C–Nb low density steel, measured
by densitometry (Byes-300A, Byes, Shanghai, China) is 6.63 g/cm3, which is 15% lower
than pure iron.

Tensile specimens with a section of 25 mm × 5 mm × 6 mm were machined from
the hot-rolled plate, along the parallel to the rolling direction. The shape and size of
the tensile specimens is shown in Figure 3, according to the GB/T 228.1-2010 [22] sub-
size standard. The room temperature tensile test was carried out up to failure on the
universal testing machine (INSTRON 3382, Instron, Norwood, MA, USA) at an initial
strain rate of 1 × 10−3s−1. The microstructural evolution and microstructural evolution
at the different strain levels were observed by interrupted tensile tests at predetermined
strains. The microstructure examination and the analysis of the characteristics of the
precipitated phase were performed on the optical microscope (OM, Leica DMi8, Leica,
Wentzler, Germany), scanning electron microscope (SEM, FEI Quanta 650, Thermo Fisher
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Scientific, Hillsboro, OR, USA), and transmission electron microscope (TEM, Tecnai G2
F20 S-TWIN, Thermo Fisher Scientific, Hillsboro, OR, USA). The specimens used for OM
observation were mechanically polished and then etched with 4% Nital. The average grain
size was determined by a Nano Measurer. Thin foils for TEM analysis were electro-polished
by a twin-jet polishing using a mixture of 10% perchloric acid and 90% ethanol with an
applied voltage of 20 V at −35 ◦C. TEM observations were performed at 200 kV. Phase
constituents of the specimen were examined by an x-ray diffractometer (XRD, Rigaku,
D/Max/PC, Rigaku Corporation, Tokyo, Japan) with Cu-Kα radiation, and scanning speed
of 5◦/min in the angle range of 40–100◦.

Figure 1. Test setup and the details of tensile specimens of the dog bone geometry.

Table 1. Chemical compositions of the designed steels.

Composition Al Mn C Nb S P Fe

Wt.% 10.83 29.33 1.02 0.52 0.0028 0.0031 Bal
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3. Results
3.1. Microstructure and Precipitate Morphology

The microstructure of the steel after solution treatment at 950 ◦C, followed by quench-
ing, is shown in Figure 4a. Specimens had a stable austenite structure and very few
annealing twins, and the grain size on average was 13.67 µm. The result of the XRD
analysis is shown in Figure 4b, indicating the presence of face-centered cubic (fcc) peaks
and that the sample was fully austenitic.
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Figure 4. (a) Optical micrographs and (b) x-ray diffraction (XRD) profile of Fe–28Mn–10Al–C–0.5Nb
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Figure 5 shows the SEM morphologies and Energy Dispersive Spectrometer (EDS)
analysis of the present steel. As can be seen in Figure 5, in the wake of adding Nb to
low-density steel, precipitated phases formed, and were mainly distributed continuously
along the austenite grain boundaries. The EDS element mapping shows that the distri-
bution positions of Nb and C were almost the same, indicating that the precipitates were
NbC. In order to further analyze the morphologies of the precipitated phases, Figure 6
shows the bright-field TEM morphologies of the steel. As shown by the bright-field TEM
morphologies, the second phase precipitated in the steel after solution treatment, which
had an ellipsoid shape. The precipitates were distributed in austenite grains and grain
boundaries, with a particle size of 450 nm, and the EDS results showed that the precipitates
were NbC.Metals 2021, 11, x FOR PEER REVIEW 5 of 16 
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Figure 5. Scanning electron microscopy (SEM) image (a) and EDS element mapping (b,c,d) of
Fe-28Mn–10Al–C–0.5Nb: (b) C, (c) Nb, and (d) C and Nb.
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Figure 6. Transmission electron microscopy (TEM) bright-field morphologies and EDS analysis of
Fe–28Mn–10Al–C–0.5Nb steel.

3.2. Stacking Fault Energy

Al has a great influence on the stacking fault energy (SFE) of Fe–Mn–Al–C low density
steel. SFE determines the deformation mechanism of low-density steel [23,24], so will
therefore affect the mechanical properties. Based on the thermodynamic model established
by Olson–Cohen [25], the SFE (τ) can be estimated as:

τ = 2ρ∆Gγ→ε + 2σ (1)

ρ =

(
4
3

)(
1
α2N

)
(2)

where ∆Gγ→ε is the Gibbs free energy for phase transition of γfcc; ρ is the molar planar
density of {111} plane; σ is the interfacial energy of γ/ε; α is the lattice constant of γfcc; and
N is Avogadro’s number.

In a single-phase (ϕ) system composed of elements i and j, its Gibbs free energy Gϕ

can be generally expressed as:

Gφ = XiG
φ
i + XjG

φ
j + RT

(
XilnXi + Xj ln

)
+ XiXjΩ

φ
ij (3)

Ωφij = Lφ0 + Lφ1
(
Xi − Xj

)
(4)

Gφmg = f
(

T
Tneel

)
RTln(β+ 1) (5)

where X is the mole fraction; Gϕ is Gibbs free energy of; L0 is a temperature-based
parameter; L1 is a constant; Tneel is Neel temperature; and β is the magnetic moment. From
Equations (3)–(5), The ∆Gγ→ε of the γ/ε transformation of austenitic steel composed of
two components can be expressed as:

∆Gγ→ε = Xi∆Gγ→ε
i + Xj∆Gγ→εj + XiXjΩ

γ→ε
ij + ∆Gγ→ε

mg (6)

According to Equation (6) and regular solid solution model, the G of Fe–Mn–Al–C
and Fe–Mn–Al–C–Nb multi-component low-density steel can be expressed as:

∆Gγ→ε

= XFe∆Gγ→ε
Fe + XMn∆Gγ→εMn + XAl∆Gγ→ε

Al + XC∆Gγ→ε
C + XNb∆Gγ→ε

Nb
+ XFeXMnΩγ→εFeMn + XFeXAlΩ

γ→ε
FeAl + XFeXCΩγ→εFeC + XFeXNbΩγ→εFeNb

+ XMnXCΩγ→εMnC + ∆Gγ→ε
mg .

(7)

Based on Equation (1) and Equation (7), the values and functions used in the calcula-
tion are listed in Table 2 [26] and the ∆Gγ→ε and SFE of steel at room temperature were
estimated as 1128 J/mol and 84 MJ/m2, respectively.
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Table 2. The values used for the estimation of the stacking fault energy (SFE) of Fe–28Mn–10Al–C–
0.5Nb steel by Equations (1), (4), and (7) [26].

Parameters Values and Functions

ρ 2.94 × 10−5(mol/m2)
σ 9 (MJ/mol)

∆Gγ→ε
Fe −2243.38 + 4.309T (J/mol)

∆Gγ→εMn −1000 + 1.123T (J/mol)
∆Gγ→ε

Al 2800 + 5T (J/mol)
∆Gγ→ε

C −22,166 (J/mol)
∆Gγ→ε

Nb 4046 (J/mol)
Ωγ→εFeMn 2180 + 532(XFe − XMn) (J/mol)
Ωγ→εFeAl 3339 (J/mol)
Ωγ→εFeC 42,500 (J/mol)
Ωγ→εMnC 26,910 (J/mol)
Ωγ→εFeNb 27,403 (J/mol)
βγ 0.7XFe + 0.62XMn − 0.64XFeXMn − 4XC
βε 0.62XMn − 4Xc

Tγnell 580XMn(K)
Tεnell 250ln XMn − 4750XMnXC − 6.2XAl + 720(K)

f
(

T
Tneel

) 1−
{(

79τ−1
140ρ

)
+( 474

497 )
(

1
ρ

)
−1)(

(
σ3
6

)
+
(

τ6
135

)
+
(

τ15
600

)}
D

When τ = T
TNell

< 1

1−
{(

τ−5
10

)
+
(

σ−15
315

)
+
(

τ−25
1500

)}
D

When τ = T
TNell

> 1. Where
ρ = 0.28,D = 2.34

3.3. Mechanical Properties

The engineering stress-strain curve of the steel after solution treatment is shown in
Figure 7. The steel exhibits continuous strain hardening during the tensile process at room
temperature. The yield strength (YS) and ultimate tensile strength (UTS) of the sample
were 963 MPa and 1084 MPa, respectively, and high elongation (EI) to fracture of 37.5% was
obtained, where the elongation is the percentage ratio of the total deformation of gauge
length after tensile fracture to the original gauge length. It is worth noting that compared
with the mechanical properties of several typical Fe–Mn–Al–C low-density steels (Table 3),
the present steel had higher YS and UTS. Although Fe–12Mn–5.5Al–0.7C had extremely
high YS (1290 MPa) and UTS (1415 MPa), the EI of the steel was only 8.2% due to the
existence of coarse intergranular κ-carbides, as shown in Figure 8, which makes it difficult
to meet the requirements of commercial automotive steel [27]. This also indicates that
ultimate tensile strength and ductility are mutually contradictory. Therefore, the product
of strength and plastic (PSE = UTS × EI) is usually used to describe the balance between
ductility and strength. Generally, a typical value of the PSE of TRIP steel and TWIP steel
ranges from 15,000 to 20,000 MPa%, and as shown in Table 3, the range of the SFE of
commercial Fe–Mn–Al-C low-density steel was about 11,000 MPa% to 88,000 MPa%. The
PSE value of the present steel reached as high as 40,650 MPa%, much higher than the TRIP
steel, TWIP steel, and traditional Fe–Mn–Al–C low density steel. The balance between
ultra-high UTS (1084 MPa) and good ductility (37.5%) was achieved, which can meet the
production and application requirements of automobile steel. The steel achieved a balance
between ultra-high ultimate tensile strength (1084 MPa) and excellent ductility (37.5%),
which satisfies the requirement for high performance automotive steels.
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Figure 7. Engineering stress-strain curves of Fe–28Mn–10Al–C–0.5Nb low-density steel tested at
room temperature at an initial strain rate of 1 × 10−3s−1.

Table 3. Chemical compositions, annealing and cooling conditions, and mechanical properties of advanced high strength
Fe–Mn–Al–C-based steels.

Composition Annealing and Cooling Condition YS (MPa) UTS (MPa) EI (%) PSE (GPa%)

Fe–28Mn–10Al–C–0.5Nb 950 ◦C/60 min-water-quenched 963 1084 37.5 40.65
Fe–28Mn–9Al–0.8C [26] 1000 ◦C/60 min-water-quenched 440 880 100 88.00

Fe–8.5Mn–5.6Al–0.3C [27] 900 ◦C/30 min-air cooling 502 734 77 56.52
Fe–3.5Mn–5.8Al–0.35C [28] 830 ◦C/15 s-air cooling 622 800 42.0 33.60
Fe–12Mn–5.5Al–0.7C [29] 640 ◦C/10 min-air cooling 1290 1415 8.2 11.60
Fe–18Mn–10Al–1.2C [30] 1000 ◦C/15 min-water-quenched 702 875 77.4 67.72
Fe–27Mn–12Al–0.9C [31] 1025 ◦C/25 min-water-quenched – 875 58 50.75

Fe–28Mn–10Al–C [31] 1000 ◦C/60 min-water-quenched – 873 98.9 86.33
Fe–30Mn–8Al–1.2C [31] 1100 ◦C/120 min-water-quenched – 900 68 61.20

Fe–26Mn–8Al–C [32] 1000 ◦C/15 min-water-quenched 625 915 50.9 46.57
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The true stress (σ)-true strain (ε) curve of the steel is presented in Figure 9 with
the corresponding strain hardening rate (dσ/dε). It can be seen from the results that
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the strain hardening rate was not linear; its rate rapid decreased in the initial stage of
plastic deformation, then continuously increased to ε = 0.175, subsequently dσ/dε began
to decrease to ε = 0.24 and the occurrence of plastic instability. The post-necking strain
was 0.31%.
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3.4. Deformed Micro-Structures

In order to further determine the mechanism of plastic deformation of the present
steel, dislocation configuration of the sample was performed through intermittent tensile
tests under different strain levels of 0.05, 0.15, and 0.25 and the failure samples, as shown
in Figure 10. As shown in Figure 10a, at a low strain level of 5%, the development
of the substructure manifested through dislocation pile ups on a single slip plane and
the slip along the {1 1 1} plane, which are typical planar slip configurations. When the
strain increased to 10%, no distinct cell structure was found, and the dislocation structure
still showed a planar slip configuration. Moreover, the slip trace on another plane was
observed, which indicates an activation of multiple slip with further increment, and a
Taylor lattice-like structure, a kind of low-energy dislocation structure, was formed, as
shown in Figure 10b. As the sample strained to a medium strain of 25%, microbands were
exhibited with distinct boundaries (as marked ‘A’ in Figure 10c). With the increase in
strain, the spacing between the slip bands further reduced, and the microband structure
(marked “B” in Figure 10c) appeared. When the sample failed to fracture, as marked ‘A’ in
Figure 10d, the slip became finer and more intensive. As more multiple slips occurred, the
sub microstructure of the sample was dominated by the intersections of microbands. In
addition, the substructure of the fracture sample still showed a planar slip structure, and
no dislocation cell was formed.

To investigate the fracture mode of Fe–Mn–Al–C–Nb low-density steel, the fracture
morphology after tensile fracture was observed by SEM, as shown in Figure 11. The fracture
surface was composed of well-developed dimples [33,34], indicating that the fracture mode
was ductile fracture [35,36].
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4. Discussion

The analysis of the above results showed that the present Fe–28Mn–10Al–C–0.5Nb low-
density steel had high ultimate tensile strength and elongation after fracture. It showed
continuous strain hardening during room temperature tensile, and the deformed mi-
crostructure exhibited typical planar slip characteristics such as the formation of dislo-
cation pile-up, Taylor lattice, and microband, while no cell formed, nor were martensite
and mechanical twins produced. This is mainly attributed to the influence of SFE on the
deformation mode. According to the previous work, the TRIP effect is dominant during
the deformation of austenite when the SFE is less than 18 MJ/m2, and the deformation
twins will replace the martensitic transformation when SFE is between 18 and 40 MJ/m2L
the deformation of austenite is manifested by TWIP effect [37]. The SFE (84 MJ/m2) of the
present steel was much higher than that of the TWIP effect. Accordingly, it is instructive to
describe the effect of SFE on the deformation mode of austenitic low-density steels.
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4.1. Stacking Fault Energy and Deformation Modes of Austenitic Steel

It can be judged by the Olson–Cohen mode (τ = 2ρ∆Gγ→ε + 2σ) that when the
SFE of austenite is less than the γ/ε interface energy, ∆Gγ→ε becomes negative. In this
case, the overlapping of the intrinsic stacking faults on the {111} plane will promote the
formation of new planar defects-shear bands during the plastic deformation of austenite.
With further deformation, the number of shear bands increase and the εmartensite with
HCP structure is formed at their intersections for the reason of low energy, causing the
transformation-induced plasticity [26]. Generally, the typical value of γ/ε interface energy
is 10–20 MJ/mol. Accordingly, based on the calculation results of Equation (1), as the SFE
was less than 20 MJ/m2 in the FCC solid solution alloys [26], the value of ∆Gγ→ε was
negative, and the deformed microstructure exhibited the increasing α’-martensite volume
fraction with increasing strain (i.e., the plastic deformation mode is the TRIP effect).

In contrast, when SFE is higher than the γ/ε interfacial energy, ∆Gγ→ε is a positive
value, which means that the formation of ε-martensite will be inhibited during the strain
process. In addition, due to the continuous displacement of partial dislocations on the slip
surface, the formation of mechanical twinning is favorable, as a result, strain hardening
of austenitic steel will be enhanced (i.e., the TWIP effect). According to previous work,
based on the relationship between partial dislocation and stress, the critical stress σT for
the occurrence of twinning is summarized as [38]:

σT = 6.14
τ

b
(8)

where b is the magnitude of the partial dislocation and the value is usually 0.147 nm [39].
As the applied load is larger than the critical stress (σT), the stability of the stacking fault
decreases and diverges into partial dislocations. Therefore, twin stacking faults will be
formed by continuous decomposition of stacking faults, and lead to the formation of
mechanical twins. Inversely, while the applied load is lower than σT , no mechanical
twins are formed during the deformation process. Instead, deformation is achieved by
dislocation gliding.

According to the previous calculation, the SFE of Fe–28Mn–10Al–Nb steel was much
higher than the value of the γ/ε interface energy, which will suppress the formation of
shear bands and martensitic transformation during deformation. Based on Equation (8),
the σT of the present Fe–Mn–Al–C–Nb low-density steel was estimated to be as high as
3429 MPa by using τ = 84 MJ/m2, which is much higher than its UTS. Therefore, it can be
concluded that no εmartensite nor mechanical twins occur during tensile deformation at
room temperature. Instead, plastic deformation of Fe–Mn–Al–C–Nb low-density is realized
by planar slip, as observed by TEM.

4.2. Glide Plane Softening and Microband-Induced Plasticity
4.2.1. Glide Plane Softening

Generally, for austenite materials, SFE not only affects the deformation mechanism,
but also determines the slip mode of dislocations in the process of plastic deformation [40].
When the SFE is low, the two partial dislocations decomposed by perfect dislocations
are easy to separate and have strong mobility, therefore Burgers vector directions for cell
formation are insufficient, tending to planar slip, as shown in Figure 12a [41]. As the SFE
is high enough, the width of the extended dislocation decreases. During the progress of
plastic deformation, the cross-slip of extended partials can easily occur, which promotes
the wavy slip and the formation of a cell structure, as shown in Figure 12b. However,
the present low-density steel still exhibited a planar slip structure, even though it had a
high SFE (84 MJ/m2), while no wavy slip and cell formation occurred, even up to failure.
These results indicate that the SFE is not the only parameter that determines dislocation
slip mode (i.e., planar slip or wavy slip).
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According to several previous reports, regardless of the value of SFE, the formation
of short range ordering (SRO) in austenitic steels also determines the mode of dislocation
slip [42]. In the process of tensile deformation at room temperature, once the leading
dislocation shears the short range ordering, the structure of SRO will be destroyed and
it is difficult to self-recover. Therefore, the slip resistance of dislocations in this region
decreases, and it will facilitate propagation of succeeding dislocations on the same glide
plane with high slip rate, forming a slip plane. Thus, the gliding of dislocations more easily
gets through the destroyed ordered region on the same plane. The softening phenomenon
is referred to as ‘glide plane softening’ [43,44]. Accordingly, dislocations were exhibited
as the planar glide manner on the slip plane in the process of plastic deformation. It is
reported that in concentrated solid solutions, planar slip caused by glide plane softening
occurs more preferentially [26]. The Fe–28Mn–10Al–C–0.5Nb low-density steel in the solid
solution state is also a concentrated solid solution with the total atomic mole fraction of
the alloying elements of 0.47. Therefore, due to its relatively high SFE and concentrated
alloying, the plane slip of the dislocations in the present steel during the plastic deformation
can be attributed to the glide plane softening effect, rather than the SFE effect.

Additionally, Figure 13 shows the relationship between dislocations and precipitates
at 5% deformation of the present steel. As can be seen from Figure 13, the planar slip of
dislocation will shear the precipitates (NbC) the present steel during tensile deformation at
room temperature. Due to the hindering of precipitation (NbC), the leading dislocation
moving through the slip plane faces the energy barrier by NbC, so the following dislocations
are piled up on the same single slip plane, and the plane slip is blocked. The leading
dislocation overcomes the NbC energy barrier by shearing and destroying the structure
of NbC by itself. Since the destroyed precipitation is hard to restore, it will facilitate the
following dislocation to propagate on the same glide plane, and promote the planar slip
of dislocation and the form of planar slip bands. The result indicates that similar to SRO,
NbC will be crystallographically sheared, which is considered as weak obstacles to the
movement of dislocations [16], hence promoting the glide plane softening and the planar
gliding. Moreover, the precipitation of NbC did not alter the planar slip mode in the
process of tensile deformation at room temperature.

4.2.2. Microband-Induced Plasticity

As a well-recognized deformation mechanism of high SFE materials, planar slip was
first proposed by Frommeyer and Brüx [31]. In the process of the mechanical behavior of
Fe–27Mn–12Al–0.9C low-density steel, it was found that austenite, ferrite, and κ-carbide
coexisted in the low-density steel. In the case of high SFE (110 MJ/m2), Fe–27Mn–12Al–
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0.9C steel obtained high UTS (875MPa) and EI (58%) during the tensile deformation at
room temperature. Based on the TEM observation, researchers believe that high strength
and ductility are mainly due to the formation and existence of κ-carbides. During the
process of plastic deformation, dislocation motion shears through κ-carbide and forms
shear bands, then induces Fe–27Mn–12Al–0.9C low-density steel to obtain high plasticity
(i.e., shear band induced plasticity (SIP)). Yoo et al. [26] found that Fe–28Mn–9Al–0.8C had
a high UTS (840 MPa) and an incredibly high EI (100%) at room temperature. Observed by
TEM and fracture morphology, there was no TRIP or TWIP effect in the process of tensile
deformation, nor were the shear bands observed by Frommeyer and Brüx. Instead, the
microbands and intersections of well-developed microbands were formed in the process of
tensile deformation. The excellent combination of strength and ductility of the steel can be
primarily attributed to microband-induced plasticity.
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As mentioned in Section 3.4, in the initial stage of deformation, the structure of dislo-
cation was narrow and dislocations had high three-dimensional mobility. With increasing
strain, dislocations slip along the slip plane. Due to the alternating sense, the density
of dislocations gradually increases and the Taylor lattices are formed. Moreover, with
the activation of the non-coplanar slip system, the submicroscopic of the sample will be
dominated by the intersections of well-developed microbands. It can be seen that under
the process of strain, the submicroscopic evolution process of the present Fe–Mn–Al–C–Nb
low-density steel can be described as dislocation pile-up→ Taylor lattice→ intersections
of microbands. Moreover, no shear band formation was found during the deformation
process. In addition, since both the Taylor lattice and the microbands are the structure
consisting of geometrically necessary dislocations, the total dislocation density gradually
increases as the strain increases, and therefore continuous strain hardening occurs. Fur-
thermore, the formation and intersection of microbands will act as sub-grain boundaries
and penetrate the austenite grains. On one hand, it can hinder planer slip and strengthen
the steel; on the other hand, as an area of stress concentration, new dislocations can form
near the microbands, improving the strain hardening rate, and increasing the strength and
toughness of steel at the same time. Accordingly, similar to the conclusions of Yoo et al. [26],
the exceedingly good balance between high strength and ductility of the present Fe–Mn–Al–
C–Nb low-density steel can also be attributed to the microband-induced plasticity, rather
than the shear band induced plasticity proposed by Frommeyer and Brüx.

In addition, it can be seen from Figure 13 that the precipitations (NbC) in Fe–Mn–Al–
C–Nb low-density steel will hinder the planar slip of dislocations, which will enhance the
precipitation strengthening effect and improve the strain hardening rate, so the present
steel will obtain higher YS and UTS than the same type of low density steel without the
addition of Nb. This indicates that the addition of Nb does not change the deformation
mechanism and strengthening mechanism of Fe–Mn–Al–C low-density steel, and can
optimize the mechanical properties of the steel.
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Based on the practical perspective, through Al alloying and utilizing microband-
induced plasticity, Fe–Mn–Al–C–Nb steel has low-density and competitive mechanical
properties, which meets the requirements of high-performance automotive steels and can
be achieved for wide use in the future.

5. Conclusions

1. Fe–28Mn–10Al–C–0.5Nb steel had a low density (6.63 g/cm3) after solution treatment,
and was fully austenitic with extremely few annealing twins. The ∆Gγ→ε and stack-
ing fault energy of the steel at room temperature was estimated to be 1128 J/mol and
84 MJ/m2, respectively.

2. The fully austenitic Fe–28Mn–10Al–C–0.5Nb low-density steel showed an excellent
ultimate tensile strength (1084 MPa) and elongation (37.5%), and the steel exhibited
an excellent combination of strength and ductility with the product of strength and
plastic value of 40.65 GPa%.

3. The Fe–28Mn–10Al–C–0.5Nb low-density steel exhibited typical planar glide charac-
teristics during deformation. The excellent combination of strength and ductility can
be attributed to plasticity induced by microbands and leads to the continuous strain
hardening during deformation at room temperature.

4. The addition of Nb did not change the deformation mechanism and strengthening
mechanism of Fe–Mn–Al–C low-density steel, and in the absence of aging treatment
and without the formation of κ-carbide, the present Fe–Mn–Al–C–Nb steel achieved
a balance between ultra-high ultimate tensile strength and excellent ductility, which
can optimize the mechanical properties of the steel.
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