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Abstract: The development of a novel ironmaking technology based on fine iron ore concentrate in a
flash reactor is summarized. The design of potential industrial reactors for flash ironmaking based on
the computational fluid dynamics technique is described. Overall, this simulation work has shown
that the size of the reactor used in the novel flash ironmaking technology (FIT) can be quite reasonable
vis-à-vis the blast furnaces. A flash reactor of 12 m diameter and 35 m height with a single burner
operating at atmospheric pressure would produce 1.0 million tons of iron per year. The height can be
further reduced by either using multiple burners, preheating the feed gas, or both. The computational
fluid dynamics (CFD)-based design of potential industrial reactors for flash ironmaking pointed to a
number of features that should be incorporated. The flow field should be designed in such a way
that a larger portion of the reactor is used for the reduction reaction but at the same time excessive
collision of particles with the wall must be avoided. Further, a large diameter-to-height ratio that still
allows a high reduction degree should be used from the viewpoint of decreased heat loss. This may
require the incorporation of multiple burners and solid feeding ports.

Keywords: concentrate; flash ironmaking technology (FIT); hydrogen; kinetics; magnetite; natural
gas; CFD simulation; reactor design; partial combustion

1. Introduction

Ironmaking consumes large amounts of energy and produces a great deal of carbon
dioxide. Therefore, a critical problem facing the steel industry is the development of an
innovative technology for producing iron that is much more energy-efficient and environ-
mentally friendly. It should also be much less expensive than the blast furnace/coke oven
combination, and must be capable of producing iron at a sufficiently large rate to feed
steel mills. This article describes the development of a novel flash ironmaking technology
(FIT), conceived by Sohn [1], which is based on the reduction of iron oxide concentrate
particles by gaseous fuel/reductant in a vertical flash reactor. The novel process addresses
the critical issues in ironmaking, namely, energy saving and greenhouse-gas emissions.
The steel industry is responsible for about 6–7% of total human-made emissions of carbon
dioxide [2].

The solid feed in the currently dominant blast furnace process is iron ore sinters or
pellets and coke made from coking coal, the production of both which uses a great deal of
energy and is prone to environmental pollution. The alternative ironmaking direct reduc-
tion processes [3] are divided into two different categories: shaft furnace processes (Midrex
and Energiron [4]) and fluidized-bed processes (e.g., FIOR [5], FINMET [5], CIRCORED [6],
and SPIREX [7]). These processes, however, are not intensive enough to compete with the
blast furnace. The shaft furnace processes must use pellets of iron oxide concentrate that
consume energy and emit pollutants including CO2 during production.
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A novel flash ironmaking technology (FIT) has been conceived by Sohn [1] for pro-
ducing iron directly from fine concentrates by a flash reduction process. This process
uses a reductant gas such as natural gas, hydrogen, or a mixture of the two, does not
require pellets, sinters or coke as required by other ironmaking processes [1,8–10]. The
new technology would significantly reduce energy consumption by 30–60% and decrease
carbon dioxide emissions by 60–96% compared with blast furnace ironmaking, depending
on whether hydrogen or hydrocarbon gas is used. The FIT will not have problems like par-
ticles sticking or pellet disintegration. High-grade lump iron ore is scarce world-side, and
new reserves must be ground to finer sizes to beneficiate them. Thus, increasing amounts
of concentrates that can feed the FIT reactor are expected to be produced world-wide [11].

Based on the potential advantages discussed here and the results of the process
feasibility studies, detailed flow sheets for different versions of the new process depending
on the fuel type and economic analysis have been developed by Pinegar et al. [12–15].

Articles on the description of flash ironmaking and comparison with other processes
together with review of the literature have been published previously [8,9,12,13]. This
article focuses on the design of flash reactors based on computational fluid dynamics (CFD)
simulation and modeling.

2. Description of Flash Ironmaking Technology (FIT)

A sketch of the new flash ironmaking process is shown in Figure 1. In this process,
the fuel gas is partially burned with tonnage oxygen, which generates a reducing gas of
1500–1800 K. The injected concentrate particles are reduced as they move downward. The
process may be operated to create a molten-iron bath for possible direct steelmaking or to
produce solid iron particles that can be charged in subsequent steelmaking furnaces.
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Figure 1. A schematic diagram of a possible direct steelmaking process based on flash ironmaking
technology (FIT).

The flash ironmaking technology (FIT) is expected to eliminate several of the critical
issues accompanying other alternate ironmaking processes such as (a) the requirements
of pelletization or sintering, (b) cokemaking, (c) solids sticking or disintegration, and
(d) refractory erosion. This technology offers the possibility to produce either solid iron
particles or molten iron that leads to direct steelmaking in a single unit, as shown in
Figure 1.



Metals 2021, 11, 332 3 of 26

3. Reduction Kinetics of Magnetite Concentrate Particles

Hydrogen is the main reducing agent in the new process that takes place at tempera-
tures above 1473 K, even when an H2 + CO mixture produced by the partial combustion
of natural gas is used. Carbon monoxide is highly stable at these high temperatures and
thus its direct contribution is much less from the viewpoints of thermodynamics and
also kinetics relative to hydrogen. However, it provides a synergistic effect on the hy-
drogen reduction, as shown below. Sohn and coworkers [16–21] have investigated the
reduction rates of magnetite and hematite concentrates under the temperature ranges and
gaseous reactant partial pressures applicable to the flash ironmaking technology (FIT),
using laminar-flow reactors. The results were found to yield rate equations that can be
expressed by the following general form of dX

dt for both component gases H2 and CO:

dX
dt

∣∣∣∣
j
= k j

(
p

mj
j −

(
pjO

Kj

)mj
)

nj (1 − X)(−Ln(1 − X))1−1/nj d
−sj
p ; j = H2 or CO (1)

where kj is the reaction rate constant for gas j, k j = ko,j exp
(
− Ej

RT

)
; pj is the partial pressure

of gas j; Kj is the equilibrium constant for the reduction of FeO by gas j; mj is the reaction

order with respect to gas j; nj is the Avrami parameter; d
−sj
p is the particle size effect

function; and X is the reduction degree defined as the ratio of the removed oxygen to the
total removable oxygen in the concentrate particles.

The rate parameters that are most appropriate for application in designing and ana-
lyzing the operation of a flash ironmaking reactor are given below. The reader is referred
to the original papers for other details of the rate measurement and data analysis.

Table 1 lists the kinetic parameters for the reduction of magnetite concentrate by
individual component gases.

Table 1. Kinetic parameters for reduction of magnetite concentrate by individual component gases [16,17,20,21].

Reducing Gas, j Temperature Range ko,j Ej (kJ/mol) mj nj sj

H2
1423–1623 K 1.23 × 107 atm−1·s−1 196 1 1 0
1623–1873 K 6.07 × 107 atm−1·s−1·µm 180 1 1 1

CO
1423–1623 K 1.07 × 1014 atm−1·s−1 451 1 0.5 0
1623–1873 K 6.45 × 103 atm−1·s−1·µm 88 1 0.5 1

When magnetite concentrate is reduced by a mixture of H2 + CO, the CO enhances
the rate of reaction between H2 and iron oxide, most likely due to the effect of CO on the
morphology of the reduced iron by forming whiskers which was observed in a separate
study [22]. Taking this into consideration, Fan et al. [17] developed the following rate
equations for the reduction of magnetite concentrate particles by H2+CO mixtures in the
two temperature ranges of 1423–1623 K (1150–1350 ◦C) and 1623–1873 K (1350–1600 ◦C):

dX
dt

=

(
1 + 1.3 · pco

pco + pH2

)
· dX

dt

∣∣∣∣
H2

+
dX
dt

∣∣∣∣
CO

1423 K < T < 1623 K (2)

dX
dt

=

(
1 + (−0.01T + 19.65) · pco

pco + pH2

)
· dX

dt

∣∣∣∣
H2

+
dX
dt

∣∣∣∣
CO

1623 K < T < 1873 K (3)

where dX
dt

∣∣∣
H2

and dX
dt

∣∣∣
CO

represent the rates of reduction individually by H2 and CO,

respectively, obtained from Equation (1) with the parameters listed in Table 1.
Similar rate measurements were also done with hematite concentrate [18,23,24]. It

was conclusively confirmed by the work described above that iron ore concentrate particles
can be >95% reduced by hydrogen in several seconds of residence time typically available
in a flash reactor at 1473 K or above.
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4. Tests in a Laboratory Flash Reactor

Based on the results of kinetic feasibility discussed above, reduction tests were con-
ducted by Sohn et al. [8,25,26] in a laboratory flash reactor shown in Figure 2. An industrial
flash reactor would be significantly different from a laminar-flow reactor (LFR) used for
the rate measurement, including the fact that an oxy-fuel burner would be the main source
of heat and the amount of excess reducing gases would be much lower (20–100%). The
laboratory flash reactor had many of the features of an industrial flash reactor. Other
experimental details can be found elsewhere [25–28].
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Experiments were performed with either hydrogen or methane and with different
modes of gas and particle feeding, the results of which were analyzed with the aid of
computational fluid dynamics (CFD) simulations.

The tests and simulation using the laboratory flash furnace produced useful informa-
tion, the most important of which can be summarized as follows:

• Iron can be obtained from iron concentrates by flash reduction using partial combus-
tion of gaseous fuels: hydrogen, natural gas, or a mixture thereof.

• The configuration of fuel gas and oxygen feeding is important in terms of temperature
uniformity and accompanying concentrate feeding mode. A flame generated by
central feeding of the gaseous fuel surrounded by oxygen flow promoted temperature
uniformity and allowed solid feeding through the center of the flame.

• The best position for concentrate feeding is near but outside the flame. This config-
uration works with either mode of gas feeding, fuel gas surrounded by oxygen, or
vice versa.

5. Operation of Pilot Plant with Flash Reactor

A pilot flash reactor (PFR) capable of operating at 1200–1600 ◦C with a concentrate
feeding rate of 1–7 kg/h, shown in Figure 3, was operated at the University of Utah [27].
This reactor was the first flash ironmaking reactor where the heat and reductant are
produced by partial oxidation of natural gas or hydrogen with tonnage oxygen.
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Figure 3. The pilot plant with a flash reactor installed at the University of Utah.

The PFR consisted of a reactor vessel, a vessel roof, burners, a quench tank, off-gas
piping, a flare stack, an off-gas analyzer, a gas valve train, a water-cooling system, gas leak
detectors, a concentrate feeding system, and human-machine interface. Figure 4 shows the
main components of the reactor body. Only the very salient features will be described here,
and other details of the facility and its operation are described elsewhere [27].
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5.1. Burners

The PFR had 3 burners: a preheat burner, the main burner, and a plasma burner.
Figure 5 shows a schematic diagram for the cross section of the preheat burner and the
main burner.
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5.2. Concentrate Feeding System

The concentrate was fed into the reactor using an HA5171P-D powder feeder supplied
by HAI, Placentia, CA, USA. This pneumatic powder feeder was used to feed magnetite
concentrate to the reactor at a feeding rate of 1–7 kg/h. Nitrogen gas at a flow rate of
11 standard liters per minute (SLPM) was used as the carrier gas. The particles were fed
through feeding inlets on the sides of the main burner. This was determined based on the
results obtained from the laboratory flash reactor.

5.3. Human Machine Interface

The human machine interface (HMI) consists of the main programmable logic con-
troller (PLC) and a computer. The main PLC was connected to all the different parts of the
system and to the computer where the operator could monitor all the different parts and
run the reactor. The programming in the main PLC was responsible for all the safety and
emergency steps. The main PLC was supplied by ACS company, Boise, ID, U.S. Figure 6
shows a screen shot where all the parameters of the reactor were displayed and controlled.

5.4. Operation of the PFR

All the components of the reactor were installed and a leak test was performed on the
vessel by capping the off-gas pipes and pressurizing the system to 2.0 atm for 45 min to
make sure that there were no leaks from any components. The system was preheated to
the target temperature with a heating rate of 90–95 ◦C/h which was the maximum heating
rate that could be used to avoid any damage to the refractories. The heating cycle was
automatically controlled by the HMI and the flow rates of natural gas and oxygen were
varied based on the measured temperature from the reactor vessel.
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5.5. Results from PFR Runs

This reactor was simulated by CFD to optimize the operating conditions to achieve
high reduction degree at the optimum conditions and reactor sizes to be used in an
industrial reactor [29]. The results obtained from the developed CFD model were compared
to the actual results of the reactor operation and good agreement was achieved. Table 2
shows the results of the runs performed in the reactor.

Different experimental runs were designed in this reactor to yield a wide range of
reduction degrees at less than complete reduction to better examine the effects of the
operating conditions and validate the CFD model in these different conditions. The results
showed good reproducibility within ±5% of the average reduction degree. This represents
a very high degree of reproducibility, considering the complexity of the operation and
design of this large unit.



Metals 2021, 11, 332 8 of 26

Table 2. The results of runs performed in the pilot flash reactor (PFR).

Inner Wall
Temperature

(◦C)

Magnetite
Concentrate

Feeding Rate (kg/h)

Gas Flow Rate *
H2 EDF † Nominal Residence

Time (s)
RD ††

(%)Main Burner

NG (SLPM) ** O2 (SLPM)

1200–1130 5.0 404 321 0.76 12.5 65

1290–1220 1.8 410 293 0.84 12.0 79
1290–1210 2.9 410 293 0.96 12.0 82
1290–1230 2.5 358 270 1.00 13.3 83
1290–1240 3.5 512 327 1.07 10.2 76

1330–1230 4.7 330 200 1.36 15.3 89
1330–1230 4.5 330 200 1.44 15.3 87
1330–1230 5.2 500 290 3.00 10.6 80
1330–1230 4.3 500 290 3.00 10.6 82

1355–1260 5.5 235 190 0.03 18.3 7
1350–1300 4.0 255 209 0.15 17.0 49
1350–1270 4.5 275 212 0.20 16.2 31
1340–1280 5.0 280 209 0.21 16.2 37
1350–1290 4.6 280 230 0.50 15.6 80

1400–1300 6.3 300 240 0.82 14.4 88
1400–1300 5.0 330 200 1.51 14.6 100

1415–1350 4.5 220 191 0.07 18.0 18
1410–1360 4.0 240 195 0.33 17.1 32
1410–1330 5.0 295 221 0.50 14.7 66
1410–1330 6.0 300 210 0.70 14.9 74
1410–1320 5.0 300 210 0.82 14.9 82

* The flow rates of NG and O2 in the pilot burner were 9.6 and 37.6 SLPM, respectively. The flow rate of N2 in the powder feeder was
10.7 SLPM. ** SLPM stands for standard liters per minute. † EDF stands for excess driving force of reactant gas over the equilibrium value.
†† RD stands for reduction degree.

6. Design of Medium-Size Flash Ironmaking Reactors

A reactor with a capacity of 100,000 t/y of iron was designed to further test the
feasibility of FIT in this range of production rate. For the proper design and scale-up of
such reactors, it is essential to have information on the temperature and species distribution,
gas and particle flow patterns. This information is difficult or even impossible to obtain
from experiments. With computational fluid dynamics (CFD) modeling, it is possible to
gain such insights into these critical parameters that are essential in reactor design.

Here, two types of reactors were designed. The first type was to produce metallic
iron in solid state. The typical operating temperature in this case is around 1300 ◦C. The
solid-state product collected could be charged into an electric arc furnace in the steelmaking
process. The second type is to produce iron in the molten state, which is typically operated
at a temperature of around 1600 ◦C, and can lead to direct steelmaking combined with
flash reduction or charged into a basic oxygen furnace or an electric arc furnace without
further treatment.

6.1. Geometries and Dimensions

Sketches of possible configurations of flash ironmaking reactors are shown in Figure 7.
Depending on the operating conditions, the main body of the reactor is either made up of a
cylindrical part and a conical part or a cylindrical shaft only. Under solid state operating
conditions, a conical part near the exit of the reactor is needed for solid particle collection.
If iron is produced in the molten state, a bath settler is needed below the shaft, as shown in
Figure 1. Our focus is mainly on the shaft part of the reactor in this work as the reduction
of concentrate particles mostly happens during their travel in the shaft.

With the same reactor volume, the design with a large height to diameter ratio leads
to a long and thin reactor, while a small height to diameter ratio leads to a short and fat one
as shown in Figure 7. In this study, two typical diameters, 4 m and 6 m, were tested. The
diameter of the long and thin reactor was set to be 4 m. A diameter of 6 m was used for
the short and fat reactor. The number of burners to be used is also an important factor in
reactor design. Reactors with one burner and four burners were tested in this work. Before
deciding on the number of burners to be used, the optimal value for the diameter was first
determined under the one-burner design. The dimensions of the reactors simulated are
listed in Table 3. The powders were fed through four feeding ports installed on the roof of
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the reactor. The four powder feeding ports were distributed evenly (90 degrees apart), as
shown in Figure 8. The distance between each feeding port and the centerline of the reactor
was equal to half of the radius.
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Table 3. Dimension of reactors with one-burner.

D1 (m) D2 (m) H1 (m) H2 (m) Preheat
Temp. (◦C)

Designed Product
Temp. (◦C) Design No.

4.0 2.0 12.0 6.0 600 1300 1
4.0 2.0 10.0 6.0 1000 1300 2
6.0 2.0 6.0 6.3 600 1300 3
6.0 2.0 6.0 5.0 1000 1300 4
4.0 – 13.0 – 1000 1600 5
6.0 – 9.0 – 1000 1600 6
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Figure 8. Distribution of the powder feeding ports on the roof of the reactor.

A nonpremixed burner with two oxygen slots and one natural gas slot, shown in
Figure 9, was used in the simulation. The reactor wall consisted of three layers, namely,
a refractory layer, an insulation layer, and a steel shell layer, as shown in Figure 10. The
thicknesses of the refractory, insulation, and steel shell layers are kept at 0.15 m, 0.08 m,
and 0.0254 m, respectively. Wall materials at those thicknesses were proved to be efficient
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in a pilot flash ironmaking reactor constructed on the campus of the University of Utah
that was designed to operate from 1200 to 1600 ◦C. The properties of the wall materials are
listed in Table 4.
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Figure 10. Reactor wall structure (unit in m).

Table 4. Wall material properties.

Wall Material Thermal Conductivity
(W·m−1·K−1)

Density
(kg·m−3)

Specific Heat
(J·kg−1·K−1)

Refractory 10−6 T2 − 0.0032 T + 4.5396 2890 0.2965 T + 362
Insulation 3 × 10−8 T2 + 4 × 10−5 T + 0.1797 1081 714
Steel shell 50 7850 470

6.2. Operating Conditions

The fuel entering the reactor consisted of fresh natural gas and recycled H2, which
were partially oxidized by oxygen to generate the heat needed for the reaction as well as
the reducing gases CO and H2. The recycled H2 is recovered from the off-gas which always
contains a significant amount of hydrogen because the reduction of FeO by hydrogen is
limited by equilibrium. The actual composition of natural gas was 96% CH4, 2% C2H6, and
2% nitrogen by volume. It makes the CFD simulation program, including the combustion
calculation, rather complicated to add the oxidation of C2H6, even if its amount is small.
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Considering that the amount is small and also that its oxidation produces the same gases
as CH4, the amount of C2H6 was converted to the equivalent amount of CH4. In terms
of heat production, 1 mol% of C2H6 is equivalent to 2.6 mol% of CH4 and in terms of
hydrogen and carbon monoxide production, 1 mol% of C2H6 is equivalent to 2 mol% of
CH4. Thus, to correct for the presence of the small amount of C2H6, 1 mol% of C2H6 was
treated as being equivalent to 2.3 mol% of CH4. As a result, natural gas was considered as
98.1% CH4 and 1.9% N2. The input gases were preheated to a specified temperature before
charging into the reactor to reduce the amount of input gases needed. In this work, two
preheat temperatures (600 and 1000 ◦C) were investigated. The operating conditions are
summarized in Tables 5–7.

Table 5. Operating conditions for solid product with input gases preheated to 600 ◦C.

Feed Flow Rate (kg/s) Preheat Temp. (◦C)

Natural Gas 1.15 600
Recycled H2 0.43 600

Oxygen 2.19 600
N2 (Carrier Gas) 0.07 25

Concentrate 5.20 25

Table 6. Operating conditions for solid product with input gases preheated to 1000 ◦C.

Feed Flow Rate (kg/s) Preheat Temp. (◦C)

Natural Gas 0.91 1000
Recycled H2 0.36 1000

Oxygen 1.54 1000
N2 (Carrier Gas) 0.07 25

Concentrate 5.20 25

Table 7. Operating conditions for molten product with input gases preheated to 1000 ◦C.

Feed Flow Rate (kg/s) Preheat Temp. (◦C)

Natural Gas 0.91 1000
Recycled H2 0.36 1000

Oxygen 1.54 1000
N2 (Carrier Gas) 0.07 25

Concentrate 5.20 25

The concentrate feeding rate was calculated based on 340 normal operating days in a
year, 70 wt.% total iron content in the concentrate and product metallization of 95%. As is
seen from Tables 5 and 6, when the preheat temperature was lower, the flow rates of fuel
and oxygen had to be increased to maintain the temperature in the reactor at 1300 ◦C.

Steady state conditions were simulated in this work. The Euler–Lagrange approach
was used to model the two-phase flow, in which the gas phase was treated as a continuum
in the Eulerian frame of reference while the solid phase was tracked in the Lagrangian
mode. A two-way coupling approach between the gas and solid phases was used in the
simulation. The CH4-O2 combustion mechanism available in the literature [30] was used.
In a large reactor, an efficient cooling method, such as copper stove cooling technology, is
usually necessary to cool the outer surface of the reactor to an acceptable temperature. The
incorporation of such cooling system significantly complicated the model. For simplicity,
the outer surface of reactor in this work was set to be 60 ◦C for all the calculations.
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6.3. Results and Discussion

The mass-weighted average metallization degrees at the exit of reactor in all the
designs listed in Table 3 were aimed to be 95%.

6.3.1. One-Burner Design

Typical velocity vector fields in the plane that passes through the center of two powder
feeding ports are shown in Figure 11. It is seen from these figures that due to the high-
velocity jets erupting from the burner nozzles, recirculation zones formed in regions close
to the reactor inner wall in the top part of the reactor. In design No.1, the particles entering
the reactor may be pushed to the reactor wall by the hot, high-velocity gas coming out of
the flame region as seen in Figure 11a. The particles being pushed towards the wall may
cause the sticking problem. In design No.3, the concentrate particles were less affected due
to its larger diameter. Design No.3 gave a better flow field in this case.
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Figure 11. Velocity vector field in the plane passing through the centers of two powder feeding ports: (a) design No. 1 and
(b) design No. 3 under operating conditions listed in Table 5 (unit in m/s).

Typical particle distributions are shown in Figure 12. It is evident that when the reactor
diameter was 4 m, the particle concentration near the wall was higher than that when the
reactor diameter was increased to 6 m. The particles were more evenly distributed in the
top part in the latter case.

The temperature distributions in the same plane above are shown in Figure 13. It is
seen that in the reactor with a diameter of 4 m, the particles were close to the flame region
in the top part of the reactor, especially in design No. 1, which may cause the particles to
melt. For the reactor with a diameter of 6 m, the particle-laden streams were farther away
from the flame region.

Heat loss is another criterion to look at in the reactor design. The heat loss through the
walls in each design was calculated and listed in Table 8. In order to help better evaluate
the energy efficiency of each reactor, the percentage of energy loss (the percentage of heat
loss from the heat generated from combustion plus the amount of sensible energy of the
input gases) is also calculated. The numbers indicated that reactors with a diameter of 6 m
had a smaller value of heat loss than reactors with a diameter of 4 m, as expected, but this
result gives a numerical indication of how the heat loss compares between the two cases.
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Table 8. Heat loss and heat generated from partial combustion.

Design No. Heat Loss (MW) Heat Generated
(MW)

Sensible Heat of
Input Gases from
Preheating (MW)

Percentage (%)

1 0.72 19.26 6.82 2.76
2 0.55 12.31 9.92 2.47
3 0.62 19.26 6.82 2.38
4 0.45 12.31 9.92 2.02
5 0.68 20.58 13.6 1.99
6 0.61 20.58 13.6 1.79

Therefore, the geometry used in design No. 6 will be used as the design of the flash
reactor that is operated to produce molten iron. The design of a flash reactor that operates
to produce a solid product will be further discussed in the next section. The species
distributions in designs No. 5 and No. 6 are shown in Figures 14 and 15. The main
component gases outside the flame region reached equilibrium quickly and were uniformly
distributed. The mole fractions of H2, H2O, and CO at the exit of two reactors (outside the
flame region) were the same at 0.48, 0.32, and 0.13, respectively.
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6.3.2. Four-Burner Design

The flash ironmaking reactor with the one-burner had uneven distribution of gaseous
species and temperature as well as high particle concentrations near the wall in the top part
of the reactor, as seen, respectively, from Figures 12 and 13 due to the strong recirculation
flow. In this section, the four-burner design is discussed. The distribution of the four
burners on the roof of the reactor is shown in Figure 16.
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to produce solid iron particles. 

  

Figure 16. Distribution of the burners on the roof of the reactor. The large openings are burners and
the small openings are powder feeding ports.

The four burners were evenly distributed 90 degrees apart on the roof. The distance
between the burner and the centerline of the reactor was equal to half of the radius. The
powder feeding ports were symmetrically placed in-between two burners. The distance
between the powder feeding port and the centerline of the reactor was also equal to half of
the radius. The burners used in this case were different from the one used in the one-burner
design. The radial velocity was eliminated by replacing the conical burner tip with a
straight concentric design, as shown in Figure 17. The natural gas stream was in the middle
and was surrounded by two oxygen streams.
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The same dimension as design No. 3 in Table 3 was used in this simulation. The
reactor diameter was chosen as 6 m. The same three layers of walls were also used in this
design. The operating conditions listed in Table 5 were used as the reactor was designed to
produce solid iron particles.

The velocity field in the plane that crosses the center of two powder feeding ports is
shown in Figure 18. The radial velocity component near the burner was smaller than that
in the one-burner design. The particle number density distribution is shown in Figure 19.
The number density of the concentrate particles close to the wall was greatly reduced,
making particle sticking to the wall much less likely.
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Figure 19. Particle number density (particles/cm3) in the plane passing through the centers of two
opposite powder feeding ports.

The temperature distributions are shown in Figure 20. Compared with the one-burner
design, the particle stream regions in the four-burner design were less exposed to the
high temperature of the flame. The consequence of this is that melting of the concentrate
particles was less likely to happen so that the reduction of the concentration particles
was not affected. Better temperature homogeneity was also seen in this reactor as four
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burners were used. As a result, the energy generated from the partial combustion was more
uniformly distributed inside the reactor. The averaged product temperature at the exit of
the reactor was 1278 ◦C rendering the mass averaged reduction degree of the product as
93%. The heat loss of this reactor was 0.65 MW, which is somewhat greater than the heat
loss in design No. 3. This is expected as the high temperature region in Figure 20 is closer
to the wall than that in Figure 13.
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Figure 20. Velocity vector field in the plane passing through (a) the centers of two opposite burners
and (b) the centers of two opposite powder feeder ports (unit in m/s).

The main species distribution inside the reactor is shown in Figures 21 and 22. No
noticeable change in the CO and CO2 mole fractions outside the flame region was seen as
the reduction of magnetite concentrate particles was done by H2. The mole fractions at the
exit of the reactor for H2, H2O, CO, and CO2 were 0.47, 0.31, 0.13, and 0.025, respectively.
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Figure 21. Species distribution in the plane passing through the centers of two opposite burners:
(a) H2 and (b) H2O.
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6.3.3. Summary

Flash ironmaking reactors of different geometrical dimensions with a capacity of
producing 100,000 t/y of metallic iron were designed. The metallization degrees of product
from these reactors were sufficiently high for use in the subsequent steelmaking step. In the
one-burner design, reactors with a diameter of 6 m gave better particle and temperature
distributions than reactors with a diameter of 4 m. Better energy efficiency in terms of heat
loss was also seen for reactors with a diameter of 6 m. A high particle number density
near the wall was less likely in design No. 6. A reactor with a diameter of 6 m and 4
burners was also simulated. The larger burner number led to a better particle distribution.
The particle distribution in this reactor showed a lower probability of particle sticking
compared with design No. 3 with a single burner design. All these results may be expected
qualitatively, but the CFD simulations present the possibility of yielding quantitative effects
of design variation.

7. Design of Industrial Flash Ironmaking Reactors

An industrial ironmaking plant should have a capacity to produce at least 0.3–1.0 mil-
lion t/y of iron to be competitive with modern blast furnaces, which typically produce
0.3–3.0 million t/y of iron. The same model that was previously described was used for
designing two industrial reactors capable of production in this range. A multi-burner
configuration was shown in the previous section to have a number of advantages, but for
the larger reactors the computational time and difficulties were rather prohibitive for this
work. Thus, the industrial reactors were designed to have a single burner in the center
of the reactor with four feeding ports. Further, the simulated reactor was designed to
produce solid iron particles as opposed to molten iron, as the near-term application of the
novel flash ironmaking technology is to produce direct reduced iron (DRI) rather than to
operate for direct steelmaking as shown in Figure 1. It is hoped that what we learn from
this work will provide helpful information and insight in designing future industrial flash
ironmaking reactors.

7.1. Dimensions and Operating Conditions

Table 9 shows the operating conditions of the two industrial reactors. The smaller reac-
tor produces 0.3 million tons of iron per year while the larger reactor produces 1.0 million
tons of iron per year.
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Table 9. Operating conditions of the two industrial reactors.

Parameter Reactor 1 Reactor 2

Target production of iron in million t/y. 0.3 1.0
Feed of the magnetite concentrate in million t/y. 0.415 1.38

Natural gas feeding rate in m3/s 17.5 45.8
Oxygen feeding rate in m3/s 13.2 34.7

Expected excess of hydrogen at full reduction (EDF) 0.3 0.3

Schematic representations of the reactor and the burner are shown in Figures 23 and 24,
respectively, while the dimensions for the two reactors are shown in Table 10.
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Figure 24. Schematic representation of the burner.

It is noted that the radial location of the powder feeders was half the radius of the
reactor. Furthermore, the volumetric flow rates of oxygen in inlets 1 and 2 were equal.
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Table 10. The dimensions of the industrial reactors.

Parameter Definition Reactor 1 (m) Reactor 2 (m)

H Height 35.0 35.0
D1 Inner diameter 7.0 12.0

D2 Diameter of powder
feeder (4 feeders) 0.05 0.30

D3 Inner diameter of the
oxygen inlet 1 0.02 0.02

D4 Outer diameter of the
oxygen inlet 1 0.26 0.8

D5 Outer diameter of the
natural gas inlet 0.44 1.6

D6 Outer diameter of the
oxygen inlet 2 0.51 1.8

7.2. Meshing

The industrial reactors were designed to have a single burner in the center of the
reactor with four feeding ports evenly distributed and have the same radial position
equal to half the radius of the reactor. The symmetry of the reactor was used to decrease
the computational time by taking a quarter of the reactor as a representation for the
entire reactor.

The mesh consisted of 264,000 hexahedral cells in the smaller reactor and 279,000 hex-
ahedral cells in the larger reactor. The top section of the meshing for Reactor 2 is shown in
Figure 25.
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7.3. Results and Discussion

Mass weighted average gas composition and product metallization at the outlet: A
velocity of 100 m/s was used for the inlet gases in Reactor 1, while for the larger Reactor
2 the area of the burner was increased and thus the inlet velocity was 37 m/s. The
products from reactor exit can tell us the efficiency of the design. As shown in Table 11, the
metallization degrees of the products from the two reactors were nearly identical at >90%.
The higher temperature of the gas mixture in Reactor 2 indicates that heat loss was lower
from it, as expected.
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Table 11. Average gas composition and metallization degree at reactor exit.

Reactor T (K) H2 CO CO2 H2O Metallization (%)

1 1519 40.2 26.3 5.9 24.1 91.2
2 1578 39.9 26.6 5.7 24.8 91.4

Contours of gas velocity, temperature, and product gas contents: The contours of different
variables in the reactor help to evaluate the performance of the reactor. Figure 26 shows the
contours of velocity magnitude in the gas phase, Figure 27 shows the temperature distribution,
and the H2, CO, H2O, and CO2 gases content are shown in Figures 28–31, respectively.
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Figure 27. Contours of gas temperature (in K) where the right vertical line represents the axis of 
symmetry: (a) Reactor 1 and (b) Reactor 2. 

  

Figure 27. Contours of gas temperature (in K) where the right vertical line represents the axis of
symmetry: (a) Reactor 1 and (b) Reactor 2.
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Figure 28. Contours of H2 content in mole fraction where the right vertical line represents the axis 
of symmetry: (a) Reactor 1 and (b) Reactor 2. 
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Figure 29. Contours of CO content in mole fraction where the right vertical line represents the axis of
symmetry: (a) Reactor 1 and (b) Reactor 2.
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Figure 30. Contours of H2O vapor content in mole fraction where the right vertical line represents 
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Figure 30. Contours of H2O vapor content in mole fraction where the right vertical line represents
the axis of symmetry: (a) Reactor 1 and (b) Reactor 2.
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Figure 31. Contours of CO2 content in mole fraction where the right vertical line represents the axis
of symmetry: (a) Reactor 1 and (b) Reactor 2.

The velocity and temperature distributions in Reactor 1 in Figures 26a and 27a show a
single flame where partial oxidation of natural gas produces the reducing gases. The gas
mixture expands because of the increase in the temperature and the total molar flow rate of
gas products.

Figure 27b shows a split flame which is different from the single flame of Reactor 1 in
Figure 27a. The split flame in Reactor 2 arose from the larger thickness of the natural gas
stream compared to Reactor 1.

The CO and CO2 mole fractions in Figures 29 and 31, respectively, show uniform
distribution in the last third of the reactors. This differs from the H2O mole fraction in
Figure 30 which shows a uniform distribution in the last fourth of the reactors. These
results can be explained from the reduction kinetics as H2 reacts to a greater extent than CO.

Particle distribution: Particles need to be distributed through the volume of the reactor
to increase their reduction. The number density distribution is shown in Figure 32. A
higher density near the wall in Reactor 1, which is not favorable, is noticed. A higher
density near the walls means that particles are more likely to collide with the wall and
stick to the wall. Reactor 2 shows a good distribution of particles and low probability of
particles sticking on the wall.
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The mass weighted average of the mass fraction of metallic iron in particles and the
particle temperature profiles are plotted in Figures 33 and 34, respectively, against the axial
distance in the reactors starting at the inlet and ending at the outlet of the 35-m long reactor.
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Figure 33. Mass weighted average mass fraction of metallic iron in particles: (a) Reactor 1 and (b) Reactor 2. 

  

Figure 33. Mass weighted average mass fraction of metallic iron in particles: (a) Reactor 1 and (b) Reactor 2.
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Figure 34. Mass weighted average particle temperature (in K): (a) Reactor 1 and (b) Reactor 2.

The irregular variations in the curves in Figures 33 and 34 arose from the recirculating
flows in the reactors as particles will stay longer on average in those areas. The particle
temperature did not reach 1811 K, which is the melting temperature of iron, as we designed
the reactor to produce solid iron particles.

Heat loss: The amount of heat generation and the percentage of heat loss in each of
the two reactors are summarized in Table 12.

Table 12. Heat generated from the combustion of natural gas, heat loss from the walls, and percentage
heat loss.

Reactor Heat Generated (MW) Heat Loss (MW) Percent Heat Loss

1 89.8 1.8 2.0
2 327 3.8 1.2

The numbers indicate that the design of Reactor 2 with a smaller surface area per
volume lost only about half of the % heat loss of Reactor 1.

7.4. Summary

Two industrial reactors with different production rates were designed. The metalliza-
tion degrees of product from these reactors were sufficiently high for use in the subsequent
steelmaking step. The modification in Reactor 2 caused higher outlet gas temperature,
more uniform temperature along the reactor. Particle distribution showed that Reactor 2
had a better distribution with a lower likelihood of particles sticking on the wall. Reactor 2
also showed a lower percentage of heat loss compared to Reactor 1 because of the lower
surface area per volume.
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8. Concluding Remarks

Overall, this simulation work has shown that the size of the reactor used in the novel
flash ironmaking technology (FIT), even at the production rate comparable to the largest
blast furnaces currently used in the steel industry, can be quite reasonable vis-à-vis the
blast furnaces. As an example, a flash reactor of 12 m diameter and 35 m with a single
burner operating at atmospheric pressure would produce 1.0 million tons of iron per year.
The height can be further reduced by using multiple burners or preheating the feed gas.
Further, the total volume of the reactor can be greatly reduced by operating the reactor
under elevated pressures, from the points of residence time and reaction kinetics. Obviously,
the cost of the reactor per unit volume and those of operation and safety measures would
increase accordingly. Thus, the actual design will require optimization by taking into
consideration these various factors.

The CFD-based design of potential industrial reactors for flash ironmaking pointed to
a number of features that an industrial reactor should incorporate. The flow field should be
designed in such a way that a larger portion of the reactor is used for the reduction reaction
but at the same time excessive collision of particles with the wall must be avoided. Further,
a large diameter-to-height ratio that still allows a high reduction degree should be used
from the viewpoint of decreased heat loss. This may require the incorporation of multiple
burners and solid feeding ports on the reactor roof.
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