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Abstract: Displacive stress and strain induced transformations are those transformations that occur
when the formation of martensite or bainitic ferrite is promoted by the application of stress or strain.
These transformations have been shown to be one of the mechanisms by which the mechanical
properties of a microstructure can be improved, as they lead to a better ductility and strength
by the transformation induced plasticity effect. This review aims to summarize the fundamental
knowledge about them, both in fully austenitic or in multiphase structures, pointing out the issues
that—according to the authors’ opinion—need further research. Knowing the mechanisms that
govern the stress and strain induced transformation could enable to optimize the thermomechanical
treatments and improve the final microstructure properties.

Keywords: stress induced transformations; strain induced transformations; transformation induced
plasticity; displacive transformations

1. Introduction

Displacive stress induced transformations (SIT) and strain/deformation induced trans-
formations (DIT) include the transformations from austenite (γ), which has a face-centered
cubic (fcc) structure, to either martensite or bainitic ferrite, promoted by the application of
elastic stress or plastic strain, respectively [1–4]. This type of transformations can happen
from the austenite in microstructures in which the austenite is the only phase [5–11], which
are called fully austenitic microstructures, from now on. They can also occur from the
retained austenite in microstructures which consist of different phases [1,4,12–19], which
are named multiphase microstructures, from now on. Some examples of multiphase mi-
crostructures are microstructures consisting of allotriomorphic ferrite, martensite, bainitic
ferrite, and retained austenite [20], bainitic microstructures with retained austenite [21] or
microstructures obtained by a quenching and partitioning (Q&P) treatment with retained
austenite [22]. The SIT/DIT can happen while a microstructure is subjected to a mechanical
test or in a thermomechanical treatment by which a certain final microstructure is aimed.

With respect to the first scenario (SIT/DIT in mechanical tests), the former research
on displacive SIT and DIT has mainly focused on the martensite transformation induced
plasticity (TRIP) effect at room temperature, which can happen in austenitic or in multi-
phase microstructures. The TRIP effect refers to the effect by which a SIT/DIT may lead to
improved mechanical properties, as these transformations are associated to an increase of
volume, i.e., an increase of elongation and an increase of the dislocation density. However,
the optimization of the mechanical properties by TRIP effect is not straightforward. The
effect of the stress or strain induced martensite on the mechanical properties can vary
depending on several factors, such as the thermal or mechanical austenite stability [23,24]
and the product phase [25]. In addition, the complexity of the initial microstructure can
also have other effects on these transformations, such as the effect of the matrix in mul-
tiphase steels [26–28]. Oppositely to the wide knowledge about martensite TRIP effect,
the bainite TRIP effect has not been so studied. Although this transformation has been
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detected in multiphase steels deformed above room temperature [2–4,19,29], its effect on
the mechanical properties and its differences with respect to the martensite TRIP effect
have not been assessed yet.

Concerning the second case (SIT/DIT happening in thermomechanical treatments),
there are many scenarios that have not received much attention, especially the ones involv-
ing the formation of bainite. For instance, although the bainite SIT/DIT has been studied
under constant stress [30–34], the formation of bainite while straining fully austenitized
steels [35,36] has not been deeply assessed.

In this review, the knowledge about displacive SIT/DIT is summarized, emphasizing
some controversial issues or questions that have not been answered yet and that need fur-
ther research at this point. This review is focused on the phase transformations, regardless
of in which process they take place. Therefore, transformations which happen in thermo-
mechanical treatments and in mechanical tests are discussed in many cases concurrently if
the authors consider that it helps to better understand the concepts. We believe that a better
knowledge of the SIT/DIT mechanisms and their characteristics could help to improve the
final mechanical properties of a microstructure. This improvement could imply the correct
selection of the steel chemical compositions and the thermal/thermomechanical processes
parameters, with the aim of either getting microstructures composed of phases that are
obtained by SIT/DIT during a thermomechanical treatment or to optimize the TRIP effect
that a given austenitic or multiphase microstructure presents.

2. Metastable Phases Formed by Stress and Strain Induced Transformations

As mentioned, the product of SIT and DIT include martensite and bainitic ferrite.
The structure of the bainitic ferrite (αB) is always either body-centered cubic (bcc) or body
centered tetragonal (bct) and it has morphology of plate or lath. Depending on the chemical
composition of the steel, a bainitic microstructure can contain cementite, martensite, and/or
retained austenite, apart from αB. Figure 1a,b show two micrographs showing the granular
bainite and plate-like bainite microstructures that were formed in a medium carbon high
silicon steel by a DIT at 520 ◦C and 400 ◦C, respectively [35].
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Figure 1. (a) Strain induced (granular) bainite formed at 520 ◦C in a medium carbon high silicon
steel surrounded by a martensite matrix, reprinted from [35], Copyright (2021) with permission
from Elsevier; (b) strain induced (plate-like) bainite formed at 400 ◦C in the same medium carbon
high silicon steel surrounded by a martensite matrix, after [35]; (c) In-situ TEM micrograph taken
during traction test showing the direct γ→α′ transformation observed while straining a 304 stainless
steel at −32 ◦C, where the white arrows point the interface front and the straight white line is the
invariant line; reprinted from [37], Copyright (2021) with permission from Elsevier; (d) in-situ TEM
micrograph taken during traction test showing a α′ embryo on a band of ε in a 304L steel deformed
at −196 ◦C, reprinted from [38], Copyright (2021) with permission from Taylor & Francis.
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However, the structure of martensite is not always the same. In many cases, two
different types of martensite are detected: α′-martensite and ε-martensite. The former one
is the most common type of martensite, with a bcc or bct structure and whose nucleation
is associated with dislocation pile-ups on the active slip plane of γ [39]. On the other
hand, ε-martensite, which has a hexagonal close-packed (hcp) structure, is less common.
ε-martensite has been mainly studied in high manganese steels or in austenitic steels
(>12 wt. %) [39–46], although it has also been observed in a low fraction in low-alloy
steels [47]. Its nucleation occurs from randomly spaced overlapping γ stacking faults
formed at grain boundaries [39] and, in many occasions, it is an intermediate phase during
the α′-martensite, i.e., the martensitic transformation follows the sequence γ→ ε→α′ [48].
Whereas Figure 1c is an example of a direct γ→α′ transformation observed while straining
a 304 stainless steel at −32 ◦C, Figure 1d is an example of a γ→ ε →α′ transformation
in a 304L steel deformed at −196 ◦C, as in the micrograph one can see a α′ embryo on a
band of ε. In multiphase structures, the transformation process is usually γ→α′, where
the transformation γ→ ε is only sporadically reported [47].

The appearance of the metastable phases named in this section as a product of
SIT/DIT mainly depends on the chemical composition of the steel and on the defor-
mation temperature. Hence, whereas the formation of stress or strain induced α′ is very
common in many different microstructures [23,25,35,49–56], ε is mainly found in austenitic
steels [23,25,39,48,52], although it has been sporadically detected in multiphase steels [47].
The formation of αB has not been reported, to the authors’ knowledge, at room temperature,
although it has been found in fully austenitized steels [35] and in multiphase steels [1,3,57]
deformed at high temperatures.

3. Conditions of Stress/Strain Induced Transformations
3.1. Stacking Fault Energy

The deformation mechanisms of γ mainly depend on the structure stacking fault
energy (SFE) [58], which is a function of the chemical composition and temperature [59–61].
These mechanisms can be of different types: (a) the displacive SIT/DIT are promoted if SFE
<18 mJ m−2, (b) twinning occurs if SFE is in the range 18–45 mJ m−2 and (c) dislocation
glide happens if SFE >45 mJ m−2 [62]. In addition, for SIT/DIT to happen, it is not only the
SFE that must be below 18 mJ m−2, but also the transformation must be thermodynamically
feasible. An austenitic structure is said to be highly stable if it is required that a very high
stress/strain is applied so that the transformation is induced. Although the γ stability
mainly depends on the SFE, the driving force for the transformation also has an effect [63].

3.2. Critical Temperatures and Thermodynamics

In order to show the temperature and stress ranges in which different displacive SIT
and DIT happen, Figure 2 is used. The schematic representation shown in that figure has
been adapted from the diagram that Olson and Cohen made in [64] after the results of
Bolling and Richman in Fe-Ni-C alloys [65–68], adding the different options for bainite
transformations to it. It is worth noting that, for the sake of clarity, the diagram in Figure 2
does not include the formation of ε martensite. A similar diagram including the formation
of ε and α′ can be found in [25]. All the transformations present in the diagram can be
classified into three different groups: non-deformation-related or spontaneous transfor-
mations, SIT and DIT. While spontaneous transformations are those that happen when
no stress or strain is involved, SIT an DIT can be distinguished according to the work
by Fahr [24]. A transformation is considered as SIT if no plastic deformation is applied
while/before the transformation happens, i.e., the applied stress is below the bulk parent
austenite yield strength (σY). Therefore, the fcc structure is only elastically strained and no
dislocations are introduced. In the same fashion, DIT involve austenite dislocation slipping
during/before the transformation. Thus, as can be seen in Figure 2, the SIT upper limit
is the line σY = f (Temperature), above which DIT occur. Note that this classification does
not enable to describe the mechanisms triggering the phase transformation, as opposite to
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Chaterjee and Bhadeshia’s [69]. However, it is useful as it states whether the introduction
of dislocations and its effect on the transformation are implicit or not.
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Figure 2. Schematic representation showing the stress–temperature conditions that must be met so
that different types of transformations are thermodynamically possible. SIT and DIT stand for stress
and strain induced transformation, respectively. Adapted from [64]. Units are arbitrary.

3.2.1. Spontaneous Martensite and Bainite Transformations

To start with, spontaneous martensite and bainite transformations are those that happen
when neither stress nor strain is involved. The former ones occur below Mα′

s or Mε
s—the

α′ and εmartensite start temperatures—and they are athermal. For simplicity, from now
on, it is referred to the highest of the Mα′

s and Mε
s temperatures as Ms, since a martensite

transformation starts as soon as the temperature goes below Ms. If Mα′
s >Mε

s, εmartensite
is never formed and the transformation is of the type γ→ α′, where the α′ martensite
volume fraction increases as the temperature is decreased down to Mα

f , the martensite

finish temperature [70]. If Mα′
S <Mε

S, the transformation is of the type γ→ ε→α′. Thus, once
the temperature goes below Mε

S, the transformation γ→ ε starts, increasing the ε fraction as
the temperature decreases until Mα′

S is reached, moment in which the transformation ε→α′

begins [41]. Among other factors, the Mα′
s and Mε

s temperatures are mainly functions of
the chemical composition, the prior austenite grain size (PAGS) [45,46,71] and the cooling
rate [44,72]. One can express the thermodynamic condition for a α′ transformation as
stated in Equation (1). The Mα′

S temperature is the maximum temperature at which that
balance is met.

∆Gγ→α ≤ ∆Gα′
N (1)

In Equation (1), ∆Gγ→α is the total driving force of the system and ∆Gα′
N is the critical

driving force needed to stimulate martensite by an athermal, diffusionless nucleation and
growth mechanism [73]. Note that, for a spontaneous transformation, ∆Gγ→α = ∆Gγ→α

ch ,
where ∆Gγ→α

ch is the chemical driving force. The critical driving force ∆Gα′
N can be cal-

culated by the expression derived by Ghosh and Olson as a function of the chemical
composition [73].

Although there is scarce information on the thermodynamics of εmartensite, it would
be intuitive to think that the transformation would happen ruled by a balance similar to
that of Equation (1). However, this approach has been shown only to work in some cases if
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Thermo-Calc is used to calculate the corresponding driving force ∆Gγ→ε [74,75], most likely
because of the lack of databases that make the thermodynamic calculations inaccurate [76].
There are some other studies that propose other methodologies to calculate ∆Gγ→ε [77,78],
suggesting to include the effect of the PAGS on the thermodynamic balance [45], suggesting
a value for the critical driving force for the transformation γ→ ε [45,75] or deriving empiri-
cal formulae for the calculation of Mε

S [74,76,79]. However, there is still no agreement in
which is the most accurate or which has a wider range of applicability in terms of chemical
composition. Further research on this topic is required.

Regarding bainite transformations, they are thermally activated, which means that
they require some time in order to start. In the absence of stress or strain, they are thermo-
dynamically possible in the range Ms-Bs, where Bs is the bainite start temperature. The Bs
also depends on the chemical composition of the steel and on the PAGS [80]. Thermody-
namically, bainite transformations occur as long as the conditions in Equations (2) and (3)
are met.

∆Gγ→γ′+α ≤ ∆GN (2)

∆Gγ→α ≤ −∆GSB (3)

where ∆Gγ→γ′+α is the nucleation driving force under paraequibrium conditions, GSB is
the stored energy of bainite (usually assumed to be 400 J mol−1 [31]) and ∆GN is the critical
driving force for the nucleation (in J mol−1), which can be calculated by the expression
derived by Bhadeshia as a function of the temperature [81,82].

3.2.2. Stress-Induced Martensite and Bainite Transformations

Displacive SIT cannot happen at any temperature or stress level, but they must meet
some criteria to be thermodynamically possible. For a given applied stress σ, the critical
temperatures above which the α′, ε and αB SIT cannot take place are named Mα′

s (σ), Mε
s(σ)

and Bs(σ), respectively. If one considers the maximum stress for a SIT, σY, one can define
the critical temperatures for any α′, ε and αB SIT: Mα′

s (σY), Mε
s(σY), and Bs(σY) [35,64]. For

a given temperature, the critical stress that must be applied so that a α′, ε or a αB SIT starts
is called σcrit−α′−SIT , σcrit−ε−SIT and σcrit−αB−SIT , respectively. For the sake of clarity, in this
review, the terms Ms(σY) and Ms(σ) are used to refer to the highest temperature at which
a martensite SIT can happen under a stress σY or σ, respectively. Similarly, the critical stress
for which a SIT of any type starts at a given temperature is referred to as σcrit−SIT .

Once these terms are defined, one can go on to define the corresponding thermody-
namic balances. First, only the conditions for α′and αB are assessed. Regarding the second
phase, so far, it has been assumed that the stress does not affect the αB nucleation [31,83].
Therefore, to calculate σcrit−α′−SIT and σcrit−αB−SIT as a function of the temperature, as
shown in Figure 2, one can use the balances in Equations (1)–(3). In this case, ∆Gγ→α

is no longer equal to ∆Gγ→α
ch , but equal to ∆Gγ→α

ch + ∆Gmech, where ∆Gmech is defined in
Equation (4) [84]. Also, note that the critical temperatures Mα′

s (σY) and Bs(σY) coincide
with the temperatures at which the σcrit−α′−SIT and σcrit−αB−SIT lines meet the austenite σY
line in Figure 2 [64].

∆Gmech = − σ : ε (4)

σ and ε are the stress tensor and the tensor describing the strains induced by the
formation of a ferrite subunit, respectively. If the coordinate system is taken so that its Y
axis is normal to the subunit habit plane and the x-axis is along the shear direction, then
the tensor ε can be calculated as shown in Equation (5), where s and ζ are the shear and
dilatational strains associated with the α or αB transformation, which usually lie in the
ranges 0.20–0.45 [85–89] and 0.03–0.04, respectively [85–87,89].

ε =

 0 1
2 s 0

1
2 s ζ 0
0 0 0

 (5)
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Patel and Cohen derived the expression in Equation (4) assuming different defor-
mation modes. Hence, in the case of uniaxial deformation, ∆Gmech can be calculated as
shown in Equation (6), where the second term is preceded by a plus sign in the case the
deformation mode is compression and a minus sign in the case the deformation mode
is tension [84]. Although the angle θ was originally defined as the angle between the
compression/tension direction and the normal to any potential habit plane, it is usually
considered as the angle for which the transformation is promoted the most (i.e., ∆Gmech

is maximum in absolute value): θ = arctan
(

s
ζ

)
/2 [84]. In the case of hydrostatic pres-

sure, ∆Gmech can be calculated as shown in Equation (7). Hence, in the case of uniaxial
deformation, the stress application always promotes the α′ and the αB transformations,
where the transformation is promoted in a higher extent if the deformation mode is tension.
However, if an hydrostatic deformation is applied, the transformation is not promoted, but
impeded [84]. Note that an expression for other deformation modes that have been studied,
such as torsion, were not derived by Patel and Cohen, although it would be possible to
derive their expressions from Equation (4).

∆Gmech = −1
2

sσ sin 2θ ± 1
2

ζσ(1 + cos 2θ) (6)

∆Gmech =
1
2

ζσ (7)

Although these definitions of ∆Gmech by Patel and Cohen [84] are the most commonly
used to explain the effect of stress on the driving force for the transformation and to
calculate Mα′

s (σY) and Bs(σY), there are more recent models or studies that also consider
other parameters, such as the PAGS [90,91], the chemical composition [92] or the austenite
texture [93].

The authors would like to emphasize that, as can be seen in Figure 2, the SIT lower
limits are not considered Mα′

s and Bs, even though below those temperatures the α′ and
αB transformations are thermodynamically possible in the absence of stress or strain. This
has been considered because the application of stress in those temperature ranges further
stimulates the corresponding reaction and the transformation stops once the stress is
removed. For instance, in the case of α′, if a steel is cooled down to a temperature T1 in the
range Mα′

f -Mα′
s , see Figure 3, a certain volume fraction P1 < 100% transforms to α′. However,

if a stress below σY is applied to the structure, the driving force for the transformation
increases (in absolute value) and so does the volume fraction of α′, reaching even 100% in
some cases. It has been previously reported that austenitic structures subjected to stress
are able to transform to α′ in a higher extent than the same structures in a stress-free
state [49]. After that, if the load was removed, the volume fraction of austenite would
not further go up. In the case of bainite, let us take austenite to the αB temperature range
and hold the temperature for a long enough time so that the transformation is finished.
Subsequently, an external stress is applied to the structure, which increases the driving force
for the transformation and, thus, shifts the T0 curve, line that shows the carbon content in
austenite above which bainitic transformation becomes thermodynamically impossible [94].
This promotes that the transformation goes further and the volume fraction of αB further
increases. If the stress is removed before the new T0 carbon content is achieved, the
transformation stops. Note that, although this behavior is ‘theoretically’ expected, so far,
this type of experiment has not been carried out.
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Concerning the formation of εmartensite, the calculation of Mε
s (σ) was assessed by

Andersson et al. [96], who thermodynamically considered the applied stress by adding the
effect of the mechanical driving force to the chemical driving force for the transformation
∆Gγ→ε, similarly than for α′. Although they proved that their methodology worked for
their cases of study in Fe-Mn-Si alloys, the γ→ ε transformation is not fully understood
from a thermodynamic point of view, as there is no way of calculating the Mε

s temper-
ature that works for any steel. The solution firstly involves the full understanding of
the thermodynamics governing the γ→ ε transformation before trying to understand the
transformation under stress.

3.2.3. Strain Induced Martensite and Bainite Transformations

Regarding α′, ε, and αB DIT, they happen below the critical temperatures Mα′
d , Mε

d and
Bd, respectively, provided that the applied stress is higher than a critical stress σcrit−α′−DIT ,
σcrit−ε−DIT , or σcrit−αB−DIT , respectively, always higher than the austenite σY, as previously
mentioned and shown in Figure 2 [23,25]. Similarly to martensite SIT, from now on, when
it is aimed to talk about a critical temperature for martensite DIT and it is not necessary
to specify whether the product phase is α′ or ε, the general term Md is used. Also, the
critical stress for a DIT at a given temperature is named σcrit−DIT . Although the ε DIT has
been reported in many studies [39–41], it has not been formulated how the application
of stress and plastic strain affects the thermodynamic state of the system. Regarding α′

and αB, the dislocations introduced during the deformation affect the growth of both of
them, altering the nucleation and growth energy balance in Equation (1) and the growth
balance in Equation (3). For a plate/lath to grow, there is an additional driving force needed
to overcome the dislocation density introduced by plastic deformation, ∆Gdisl . The new
energy balances read now as shown in Equations (8) and (9) [70,97,98].

∆Gγ→α ≤ ∆Gα′
N − ∆Gdisl (8)

∆Gγ→α ≤ −∆GSB − ∆Gdisl (9)

The value of ∆Gdisl depends on the initial and final (after deformation) dislocation
densities (ρ0 and ρ, respectively), on the austenite Poisson ratio ν, on the austenite Burgers
vector bT , on the austenite shear modulus, µT , and on the temperature T, as shown
in [70,97,98], see Equation (10).

∆Gdisl =
µTbT

(
ρ1/2 − ρ1/2

0

)
8 π (1− ν)

(10)
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Regarding the nucleation of αB, although it is known that is promoted by the presence
of a larger amount of defects or slip bands [99] generated during plastic deformation [31],
it has not been reported how the nucleation condition found in Equation (2) is modified
because of the increase of nucleation sites. Further information on the calculation of the
Mα′

d and Bd critical temperatures or energies can be found in [35].
Again, it is considered that α′ and αB DIT can happen below the Mα′

s (σY) and Bs(σY)
temperatures, respectively, as seen in Figure 2 because, even though the α′ and αB transfor-
mations are thermodynamically possible below those temperatures if plastic deformation is
not applied, the application of plastic strain enables to further stimulate both transforma-
tions. Coming back to Figure 3 and assuming that austenite is cooled down to a temperature
T2 in the range Mα′

s -Mα′
s (σY), if neither stress nor strain are applied, the structure remains

fully austenitic. However, if stress is increased up to σY, the α′ transformation is induced by
stress until a fraction P2 is reached. If the stress is further increased, α′ is be strain-induced
and the fraction could increase up to P3. Note that, in this case, P3 < 100%. Also, in the case
of αB, it is possible that the modification of the thermodynamics due to the application of
strain also modifies the kinetics, although only while the stress is applied. For instance, it
has been previously reported that a αB DIT taking place while deforming a fully austenitized
medium carbon steel at 520 ◦C and 400 ◦C got interrupted after the load was removed.
Bainitic transformation did not start again until several tens of seconds later [35].

4. Resultant Microstructures of Stress and Strain Induced Transformations and Their
Strain Hardening Capacity

In this section, the characteristics of α′/ε/αB SIT and DIT are described. These trans-
formations can be obtained by different routes that are detailed next. The most common
scenarios are shown in Figure 4. Note that the deformation temperatures could be reached
in Figure 4b,c by heating, instead of cooling, depending on the chemical composition
of the steel and on whether an initial fully austenitic or multiphase microstructure is
aimed. In those cases, the microstructure may need a previous austenitization or a previous
heat-treatment, respectively. The characteristics of the SIT/DIT taking place during the
mentioned treatments would only be expected to vary significantly depending on the
initial structure and not on how the initial structure was obtained.
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4.1. Stress or Strain Induced Martensite Transformations
4.1.1. Continuous Cooling Treatments under Constant Stress

One of the most studied treatments during which martensite is induced is the continu-
ous cooling treatment under constant stress σ, see Figure 4a. Usually, the initial structure
is fully austenitic, either because the steel of study is austenitic or because it has been
previously austenitized (high temperature deformation). In this case, if the cooling rate
was high enough to avoid ferritic/pearlitic/bainitic transformations, a martensite transfor-
mation would happen [49,92,100]. The transformation would be athermal, it would start at
a temperature Ms(σ) [49,92,100], where Ms(σ) would be higher than Ms if the deformation
mode was uniaxial tension, uniaxial compression or torsion [49,92,100–103]. In addition, in
cases in which the Mα′

f temperature was above room temperature, the α′ volume fraction
would increase under stress, because of the additional mechanical driving force and (if
the applied stress was above the austenite σY) the increase in nucleation sites [49]. In
cases in which no plastic deformation was introduced, the addition of the mechanical
driving force would not only affect the start of the α′ transformation, but also the selection
of specific crystallographic variants [84,104–106], especially during the first stages of the
transformation [106]. The selected variants would have the highest total driving force in
absolute value, as ∆Gmech is a function of the position of the habit plane [84,104,105]. Vari-
ant selection in α′ has also been reported in transformations on continuous cooling under
stresses higher than the σY by Liu et al. and it has been associated to the application of stress
rather than to the introduction of dislocations [49]. This assumption would follow the same
line of thought of Tamura, who suggested that the strain-induced transformations can be
understood only in terms of the applied stress [50,107] or of Chatterjee and Bhadeshia, who
reached the same conclusion later [69]. Regarding the martensite scale, Liu et al. reported
that, the α′ microstructure obtained by applying 70 MPa to an austenitized medium carbon
steel during continuous cooling was more refined than the stress-free α′ microstructure
obtained by a continuous cooling. They attributed this refinement to the small applied
plastic deformation (<5%), which led to the recrystallization of some prior austenite grains
at high temperature and to a dislocation density increase in the non-recrystallized grains.
The scale of the α′ strain-induced laths/plates has not been reported in any other study, to
the authors’ knowledge.

No work in which multiphase structures with retained austenite were cooled under
stress have been found by the authors. Although it would be expected that the transfor-
mation of the retained austenite would also be promoted at higher temperatures than the
ones at which the stress-free martensite transformation would happen, it is important
to consider that the retained austenite may also be subjected to hydrostatic stresses that
would lead to the stabilization of the retained austenite.

4.1.2. Deformation at a Constant Temperature

Martensite can also be induced when a steel is held at a fixed temperature T—always
below Md—while an increasing stress is applied, see Figure 4b. When martensite is induced
during straining in austenite structures, it is possible that the transformation process is
γ→ ε, γ→ ε→α′, or γ→α′ [25], depending on the applied strain and the deformation
temperature [25], where the formation of ε is always preceded by the formation of stacking
faults [39]. In addition, the application of stress can also lead to the coalescence of α′ or ε,
as previously reported [108–111].

Regarding variant selection, stress/strain induced α′ [23,50–52,112], and ε [23,48,52]
present this phenomenon. Even when the transformation happens from a fully austenitic
structure, there is no agreement about the reasons of the variant selection phenomenon.
While some authors claim that variant selection in transformations from a fully austenitic
structure may be explained by the mechanical driving force criterion [48,50–52], other
authors suggest that some transformation sequences lead to local stress fields which
make the analysis more complex [23]. The rules governing variant selection in TRIP
transformations in multiphase structures—i.e., formation of stress or strain induced phases
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from retained austenite—have not been deeply studied. Yamashita et al. studied this
phenomenon in a microstructure consisting of ferrite, bainitic ferrite, and retained austenite
which was subjected to tensile tests. The retained austenite transformed to α′, always
governed by variant selection, although the explanation for this variant selection was
not always based on the mechanical driving force, but depended on the location of the
retained austenite (at the ferrite grain boundaries or inside the ferrite matrix) [112]. The
effect of other types of matrices on the selection of variants of α′ formed by TRIP effect in
multiphase microstructures is still unclear.

The mechanical response that is observed when a fully austenitic structure is sub-
jected to tension has been assessed in many austenitic steels. To better understand how a
stress–strain curve changes under the influence of the appearance of martensite and why
those changes occur, one can use Figure 5, where there are three stress–strain and their
corresponding strain hardening rate-strain curves which correspond to three different steels
which are fully austenitic before testing. The austenite σY of those three steels are the same
at the testing temperature. Note that the steel B seems to yield at a lower stress, although
this is only an effect of a stress-induced transformation, as is explained subsequently. Be-
cause of the different thermodynamics of the steels, steel A does not undergo any SIT/DIT
while being deformed, steel B does undergo a SIT and steel C undergoes a DIT. Using the
strain hardening rate-strain curve enables to notice much subtler abnormalities. As can be
observed, if the transformation is SIT/DIT (steel B/C), the stress–strain curve takes a sig-
moidal curve. After reaching σcrit−SIT and σcrit−DIT , a SIT/DIT starts and the stress–strain
behavior is no longer as would expected. From this point onwards, the martensite fraction
increases as the stress to which the austenite is subjected is higher [107,113,114], mainly
as a function of the strain and not of the temperature [115], until it reaches a limit, see
Figure 3. There are several effects that compete when a SIT/DIT takes place during loading
and they can be studied by looking at the strain hardening rate–strain curves in Figure 5b.
The first of them is called dynamic softening and it is a product of the transformation
working as a competing deformation mechanism. It is associated with the fact that the
SIT/DIT transformation strain contributes to the total strain, while the stress increases
more slowly [116,117] and it usually predominates at low strain values [10]. In some cases,
this phenomenon has also been associated to the formation of ε in the early stages [118],
as this phase has been proved to be almost ideally plastic [119]. Dynamic softening is
characterized by a rapid decrease of the strain hardening rate, as happens for steels B and
C in Figure 5b at low strain values. For higher strains, one can observe that the second
effect, called static hardening, is predominant. Static hardening is characterized by a
strong increase of the strain hardening rate due to the presence of martensite which acts
as a reinforcing phase [116,117]. It has been previously reported that, during the static
hardening effect, the martensite volume fraction can increase up to a given amount, called
percolation threshold [120], and that, up to this point, the austenite stress level is similar
to the macroscopic stress [63]. Once the martensite volume fraction is higher than the
percolation threshold, the martensite forms a percolating cluster which extends through
the whole structure [120]. In this stage, the strain hardening rate further increases until it
reaches its maximum value and the austenite stress level deviates from the macroscopic
stress level, suggesting that the material is acting as a composite [10,63]. Finally, once the
volume fraction of martensite is close to the unity, the material behavior starts to resemble
the martensite behavior and, hence, the strain hardening rate starts to decrease [63]. This
final hardening has also been attributed to the activation of strain hardening mechanisms
which involve a high dislocation density or a complex state of stress, among others [10].
Note that, although all the mentioned effects are predominant at different stages, it could
be possible that some of them were not noticeable during the deformation process. These
concepts can be extrapolated to the mechanical behavior of a multiphase structure if one
understands that the initial microstructure has already a composite-like behavior [26],
as would happen for an austenite structure in which α′ has formed by TRIP effect in a
high fraction, i.e., after the percolation threshold has been overcome. However, in this
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case, the retained austenite may be more stable against deformation depending on several
factors: (a) its chemical stability, which depends on its chemical composition [121]; (b) in
the case that the matrix phase has formed by a displacive transformation, the stability of
the retained austenite increases because of the hydrostatic stresses that the matrix exerts on
this retained austenite, as reported in Section 3.2.2. [28]; and (c) if the matrix phase is αB,
the amount of dislocations introduced during the transformation in the retained austenite
mechanically stabilize it [122].
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Figure 5. (a) Stress–strain curves and (b) strain hardening rate–strain curves corresponding to three
different steels with a fully austenitic structure before the test starts and with the same austenite σY .
Steel A is plastically deformed and no stress/strain induced transformation occurs and steels B and
C undergo stress and strain transformations, respectively. Units are arbitrary.

Therefore, if one wants to control the mechanical properties of a microstructure which
contains retained austenite or that is fully austenitic and that is expected to undergo TRIP
effect, one must control several factors. First, as mentioned, the austenite stability is one
of the most important factors controlling the mechanical properties of these structures.
If the austenite stability is low, a SIT or DIT starts at very low strain values and the ma-
terial yield strength and elongation are lower, although their ultimate tensile strength is
high [23,24,123]. If the austenite is too stable, the TRIP effect may never occur, hence, its
benefits cannot be exploited [123]. If the austenite stability is high enough, the ultimate ten-
sile strength of the material is not so high, although its elongation is higher [24]. In addition,
it has been reported that, in an austenitic steel with rather stable austenite, the formation of
martensite—specially α′, rather than ε—during straining leads to higher uniform elonga-
tions [25] because of the suppression or delay of the necking phenomenon [124]. Previous
studies have shown that the uniform elongation can be maximized if it is made sure that the
induced transformation continues until the latter stage of deformation or the onset of neck-
ing [107,115,125] and that the transformation rate is slow, as the dislocations have time to be
accommodated and the local stresses can be suppressed [23,115]. The combination of high
strength and high ductility can be obtained at temperatures close to Md at which the DIT
starts for high strains, before the necking effect takes place, enabling its suppression [24]. A
similar effect has been reported in multiphase microstructures [126–128].

Second, the strain rate can also affect the mechanical behavior, depending on whether
the specimen is deformed under isothermal or under adiabatic conditions, on the product
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phase and on the deformation temperature. Generally, under isothermal conditions, an
increase of the strain rate leads to an increase of the final fraction of stress or strain
induced martensite [6,129]. However, if the strain rate is too high, there is a transition from
isothermal to adiabatic material behavior, which makes the SFE increase [9,120,129,130]
and the driving force for the transformation decrease (in absolute value) [131]. Therefore,
using higher strain rates would decrease the volume fraction of stress/strain induced
martensite as the strain rate is higher [9,131–134]. In multiphase microstructures, the effect
of the strain rate follows similar trends [135–137].

4.2. Stress or Strain Induced Bainite Transformations

The stress or strain induced bainite transformations have not been as studied as the
martensite ones. For instance, the authors have not found any work where the effect of a
constant stress on the bainite transformation in continuous cooled structures is assessed.
However, the effect of a constant uniaxial stress on the αB transformation has been assessed
in isothermal treatments, as in Figure 4c. It has been found out that the application of an
elastic uniaxial stress accelerates the αB transformation [30–34], provided that the stress is
not very low (few MPa) [33], attributed to the increase of driving force (in absolute value).
The kinetics of the transformation were also shown to be accelerated when plastic uniaxial
deformation was applied during the isothermal holding [31,99,138–140] as a result of the
increase in nucleation sites (defects) [31]. Regarding the αB volume fraction, although it
would be expected to increase if the transformation happened under elastic stress due to the
addition of the mechanical driving force, Shipway and Bhadeshia did not report changes
for σ < σY in a Fe-0.45C2.08Si-2.69Mn (wt %) steel [32]. If higher stresses are applied,
the effect on the volume fraction of αB is not clear, though. Although previous results
have shown that the introduction of dislocations prior to the transformation mechanically
stabilizes the austenite against either αB or α′ transformation [97,98,141], theoretically, the
addition of the mechanical driving force would shift the T0 curve towards higher carbon
content values. This would imply that the transformation would not stop until the austenite
reached a higher carbon content, which may lead to a higher fraction of αB. Although
this fact was not discussed by Freiwillig et al., they showed that, when deformation was
applied during an isothermal holding, the final volume fraction of αB decreased with
respect to the one obtained by the standard treatment if the steel carbon content was
above 0.86 wt %, while it increased with respect to the one obtained by the standard
treatment for a steel with carbon content of 0.43 wt % [138]. The application of stress has
also been shown to lead to transformation plasticity strains, i.e., anisotropic portion of the
transformation strains: the changes in length due to the αB transformation are not the same
along all axes [32–34,142,143]. This transformation plasticity is due to variant selection
effects driven by the same mechanisms that drive the α′ transformations during continuous
cooling under constant stresses, i.e., variants which are preferentially promoted by the
applied stress (those whose habit plane lies at about 45◦ with respect to the deformation
direction) tend to form first and their fraction tends to be the highest [30,33,34,104,143–145].
Variant selection affects the microstructure, which becomes much more organized after
transformation under stress, i.e., in each PAG, there are fewer sheaves which are bigger
than the ones obtained by stress-free transformation. The reduction of sheaves affects the
number of blocks of austenite that are present in the microstructure, i.e., microstructures
show less blocky γ if they have been transformed under the effect of stress [145]. To the
best knowledge of the authors, the effect of the stress on the thickness of the αB has not
been assessed, although it would be expected that microstructures are refined because
of the increase of driving force [146–148], σY (in the case σY is overcome) [146–148], and
transformation kinetics [149]. It has been reported, though, that applying stress while a
specimen is isothermally treated promoted the coalescence of αB plates [150]. Nevertheless,
further research is needed.

Finding studies about αB SIT/DIT happening while straining a fully austenitic struc-
ture is not very common, only reported in [35,36] to the authors’ knowledge. In multiphase
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structures, the αB SIT/DIT at temperatures higher than room temperature have been re-
ported in few studies [2–4,19,29], although their effect on the mechanical properties or the
differences with respect to the SIT/DIT taking place in fully austenitic structures has not
been discussed. Further research would be needed in order to know if the conclusions
made with the α′ and ε transformations could be extrapolated to αB transformations, al-
though some differences are expected, such as: (a) while the martensite transformation can
be spontaneous, the bainitic transformation is thermally activated, which may inhibit the
SIT/DIT in some extent; (b) while martensite transformation does not lead to any carbon
partition, carbon is partitioned from αB after a plate/lath is fully grown, which is expected
to increase the SFE [151,152] and the driving force for the transformation [149], inhibiting
the SIT/DIT in a higher extent as the transformation progresses [153]; (c) bainitic ferrite
may not be as hard as martensite because of their different carbon contents, hence, the αB
TRIP effect may not lead to such a pronounced strengthening as the α′ TRIP.

5. Issues That Require Further Research

In this work, the knowledge about displacive stress and strain/deformation induced
transformations—SIT and DIT—is reviewed, stating the different thermodynamic condi-
tions, thermomechanical treatments and deformation conditions that are required for them
to happen, either from a fully austenitic microstructure or from a multiphase one. Several
issues that need further research, most of them associated to the formation of bainite, have
been identified:

- there is no agreement about the thermodynamic conditions that govern the formation
of ε, neither athermally nor induced by stress or strain

- it has been assumed that the nucleation of bainite is not affected by elastic stress,
although it has not been experimentally proven

- although it is known that the application of plastic deformation promotes the nucle-
ation of αB, this fact has not been modeled thermodynamically yet

- the scale of the α′ and αB stress/strain-induced laths/plates formed during contin-
uous cooling or during isothermal treatments, respectively, has not been previously
reported

- the effect of a constant stress on continuous cooling bainitic microstructures has not
been assessed in the literature so far

- the effect on the volume fraction of strain induced αB formed during isothermal
treatments under constant stresses needs to be clarified

- the effect of the matrix on the selection of variants of metastable phases formed by
TRIP effect in multiphase microstructures is still unclear

- the αB SIT/DIT during tensile/compression deformation from a fully austenitic
microstructure has not been studied in the literature and, therefore, it would be
necessary to study these transformations, as there are several reasons that suggest that
their mechanisms could be different to the ones governing the formation of martensite
in the same conditions.
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