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Abstract: To accelerate the large-scale cellular automaton (CA) simulation for grain growth, a parallel
CA model for grain growth was developed. The model was implemented based on the compute
unified device architecture (CUDA) parallel computing platform. The model was verified by the
grain growth of a single crystal and the columnar-to-equiaxed transition (CET) of an Al-7wt% Si
specimen of uniform undercooling with a constant cooling rate. The grid independence of the model
was verified. The grain growth of a plate-like casting of nickel-based superalloy during directional
solidification process was simulated and the obtained results of grain density at each section with
different heights were compared with the experimental data. The CET transition of directional
solidified Al-7wt% Si cylindrical ingot was simulated. The grain texture and cooling curves were in
good agreement with experimental results from the literature. Finally, high parallel performance of
the CA model was obtained and evaluated.

Keywords: cellular automaton; grain growth; GPU computing; directional solidification; columnar-
to-equiaxed transition

1. Introduction

Nickel-based superalloy has been widely used to produce blades which are used in
aero engines and industrial gas turbines. To improve the high-temperature mechanical
properties of blades, the directional solidification (DS) technique has been used to fabricate
superalloy blades. The high-temperature performance of blades is closely related to the
microstructure, grain size and crystallographic orientation. Therefore, the grain growth
during solidification process has been widely investigated over the last two decades.

Many numerical models have been proposed to simulate the grain growth process
during DS process. Models for grain growth during solidification process were originally
investigated by Rappaz and Thévoz [1,2]. Then, the decentered cellular automaton (CA)
algorithm was proposed by Gandin et al. [3] and it was widely accepted to predict the
dendritic grain growth. Based on the analytical predictions of dendritic grain envelopes,
the cellular automaton finite element (CAFE) model [4] was developed to predict grain
structure, such as growth of equiaxed dendritic grains and columnar dendritic grains.
Nastac et al. [5] proposed a stochastic modeling of microstructure formation to predict
the grain structure in castings and the influences of various neighborhood configurations
on nucleation and grain growth were evaluated. Wang et al. [6] proposed a modified
decentered CA method to study the influence of perturbing the withdrawal velocity
upon the stability of the primary dendrite spacing. Zhang et al. [7] developed a cellular
automaton finite difference (CAFD) model to simulate the grain growth coupled with
the temperature evolution of turbine blades during DS process. Then, Zhang et al. [8]
investigated the grain growth and grain selection behavior in a spiral selector for nickel-
based superalloy based on the developed CAFD model. Viardin et al. [9] developed a
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mesoscopic model for equiaxed and columnar dendritic growth and the solidification of
Ti-45 at% Al with the effect of flow was simulated.

The CA model has been widely accepted to investigate the columnar-to-equiaxed
transition (CET) during the grain growth process [10,11]. Dong et al. [12] simulated the CET
during the directional solidification of Al-Cu alloys using a CAFD model. Satbhai et al. [13]
studied the effect of interfacial heat transfer coefficient, superheat, and nucleation site
density on the grain structure using a coupled finite-volume-method-cellular-automaton
model, where the CET and the equiaxed-to-columnar transition (ECT) were predicted.
Ahmadein et al. [14] analyzed the macrosegregation formation and the CET during solidifi-
cation of Al-4wt% Cu ingot using a 5-phase model. Geng et al. [15] investigated the CET
in full-penetration laser welding of thin 5083 aluminum sheet using a three-dimensional
multi-physical numerical model. The CET in directional solidification of Inconel 718 alloy
was investigated by Nabavizadeh et al. [16] and Lenart et al. [17] using a phase field-lattice
Boltzmann (LB) model. A CET solidification map for Inconel 718 alloy was developed for
different temperature gradients and growth rates in reference [16]. In addition, effect of
magnetic field on the CET during solidification of superalloy and steel was investigated in
References [18,19]. Effect of gravity on CET and columnar dendritic growth was studied
in references [20,21].

Although the CA model has been widely used in the simulation of dendritic growth
and grain structure prediction, the high requirement for computational resources still
makes it a challenge for the grain growth simulation of an industrial casting when high
prediction accuracy is needed. Therefore, a parallel computational model for CA method
with high efficiency and scalability is necessary to accelerate the simulation.

Recently, several parallel computation methods have been implemented to the CA
model. Jelinek et al. [22] developed a parallel two-dimensional LB-CA model for the
simulation of dendrite growth under forced convection. The model was parallelized
using the Message Passing Interface (MPI) technique and showed good scalability up
to centimeter-size domains. Eshraghi et al. [23] proposed a parallel LB-CA model using
the MPI with spatial domain decomposition. Columnar dendrite growth in a 1-mm3

region was simulated at a microscale. The scale-up performance on up to 4000 computing
cores was evaluated. Kao et al. [24] developed a parallel CA model for convection-driven
solidification. By conducting several simulations with the domain size varying from O
(200 million to 1 billion) cells, the parallel efficiency is about 70% using MPI technique.
Dobraveca et al. [25] developed a two-dimensional CA model using an adaptive mesh
refinement which reduced the requirement for computational resources.

Although much progress has been made to accelerate the CA method, most of these
studies are focused on the parallelization of CA model at the scale of dendritic growth.
The progress on the parallelization of CA model at the scale of grain growth mainly comes
from Gandin’s group [26,27]. The parallel computational method for the CA model at the
mesoscopic scale, like the grain envelope, is much helpful to expedite the simulation of
DS process of superalloy blades. For the widely used CAFE model, a dynamic allocation
algorithm has been proposed by Gandin et al. [4] to save the memory size for computation.
Then Gandin et al. [27] implemented direct modeling of structures and segregations dur-
ing industrial casting processes and discussed the difficulties for applications of the 3D
CAFE model in an industrial casting process. Carozzani et al. [26] further implemented
an optimized parallel computation method for the CAFE model and discussed several
algorithm modifications and strategies to maximize parallel efficiency. The MPI technique
was utilized by Lian et al. [28] to accelerate the mesoscopic CA model for the grain growth
during additive manufacturing and the scaling test indicated that the parallel efficiency
can reach 80% for the simulation consisting of about half a billion cells.

Recently, GPU-based parallel computing technology has been widely accepted in den-
drite growth simulation using phase field model, due to massive computation capacity and
high memory bandwidth, where high efficiency and scalability were demonstrated [29–31].
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In this work, a parallel algorithm was proposed for both 2D and 3D CA model of
grain growth using the graphic processing unit (GPU). A mapping strategy between the
CA cells and threads on GPU was illustrated. The parallel performance of the developed
algorithm was evaluated by the comparison with the program parallelized with Open Multi-
Processing (OpenMP) technique. Then, the CET of Al-7wt% Si specimen was simulated.
The grain growth was simulated during DS process for a plate-like casting of nickel-based
superalloy and the obtained results of grain density with different heights were compared
with the experimental data. Finally, the parallel performance of the developed CA model
was evaluated.

2. A Cellular Automaton Model
2.1. Nucleation Model and Grain Growth Algorithm

To simulate grain growth in superalloy solidification, a CA model [32] was adopted.
A continuous nucleation model proposed by Rappaz and Gandin et al. [33] was used to
describe the heterogeneous nucleation. The total nucleation density n(∆T) is calculated as

n(∆T) =
nmax√
2π∆Tσ

∆T∫
0

exp

[
−1

2

(
∆T − ∆TN

∆Tσ

)2
]

d(∆T) (1)

where ∆T is the undercooling; nmax is the maximum nucleation site density; ∆Tσ is the
standard deviation of undercooling; ∆TN is the mean nucleation undercooling. The relation
between the tip growth velocity with the given undercooling is given by the polynomial
formulation.

υ(∆T) = a2∆T2 + a3∆T3 (2)

The kinetic coefficients a2 and a3 are fitted on the predictions of Kurz-Giovanola-
Trivedi (KGT) model [34]. The CA model is restricted to the face center cubic (FCC) crystal.
In Figure 1, three orthogonal axes, which are the half-diagonals of the octahedron represent
the growth directions of the primary dendritic, which are labeled as the crystallographic
directions ([100]/[010]/[001]). The orientation of the [100] direction with respect to the
global coordinate (X, Y, Z) was characterized by a set of Euler angles (φ1, φ2, φ3).
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Figure 1. Octahedral grain envelope. 

Figure 1. Octahedral grain envelope.

The growth of the dendrite tip follows the rule above. Then, the grain envelope is
determined by the crystallographic orientation and the dendrite tip length. For 2D CA
model, the envelope is square shape. The capture rule can be seen in Figure 2. The grain
envelope associated with cell A (smaller blue square) grow large enough to cover the center
of cell B, which means that cell B is captured and will become interface cell at the next time
step. Moore neighborhoods of cell A were considered for cell capture. The extension of the
capture rule to 3D is straightforward, which can be referred to [32].
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2.2. Algorithm Implementation on GPU

To accelerate the CA model, we developed a program based on the compute unified
device architecture (CUDA) parallel computing platform using a GPU. GPU is more
suitable for compute-intensive computation compared with CPU, because there are several
thousand cores on a single GPU.

In our model, the finite difference method (FDM) was used to solve the temperature
field with coarse grids and the CA model was used for grain growth calculation with fine
grids. One FDM grid consists of several CA cells depending on the grid size ratio. Due to
the locality of computation of both FDM and CA model, the calculation performed on each
cell can be easily mapped to the thread on GPU. Considering only the domain designated
as alloy attribute needs the memory used for CA model, the memory for computation of
CA model was allocated for these areas. A global index array was used as the indicator of
the neighboring configuration of each CA cell. Hence, memory requirement was reduced
in the simulation of casting with complex shape. The memory arrangement of CA cells
stored on GPU is shown in Figure 3. The memory is only allocated for active cells, which
are alloy cells and shell cells. In CA model, the computation requires the index of Moore
neighboring cells. In Figure 3, it shows the step to search the index of the neighboring
cell at (0, 1) direction for the 10th active cell. Firstly, the global index (5, 4) was obtained
by the global index of active cells. With the direction (0, 1) of the Moore neighboring cell,
the global index of the neighboring cell is calculated as (5, 5). Then, the local index of
neighboring cell can be obtained by the value of index helper in global index, as shown in
the left side of Figure 3.

The subroutine for each module, such as grain nucleation, cell capture process, grain
growth, is defined in the kernel function. These kernel functions, invoked by CPU, run by
threads on GPU. The index of each thread is labeled by the built-in variables on GPU, which
help to find the index of each cell. Therefore, data stored on each cell, such as temperature,
cell status, are accessible to the kernel functions.

In CUDA programming, data can be stored in the global memory and the shared
memory. The global memory is large, usually several gigabytes, while the shared memory,
a low-latency memory near the processor core, is only 64 kilobytes for most GPU. The
shared memory is expected to be much faster than the global memory. However, using the
shared memory in a kernel function will increase the number of occupied registers, which
reduces the number of cores that can be launched on GPU. The efficiency of the program
is usually affected by the utilization of the shared memory. Therefore, only the global
memory is used in the program. In addition, the constants such as the process parameters,
and variables related to the index offset of Moore neighborhood’s configuration are stored



Metals 2021, 11, 298 5 of 13

in the constant memory, which is a low-latency memory with the size of 64 kilobytes for
frequent access.
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The implementation of the model on GPU is given as following. Firstly, the initializa-
tion of the CA model was performed on CPU, then the data for the CA model and FDM
calculation were transferred to GPU. Each thread on GPU performs a group of computation
based on the kernel function after the thread configuration was set. During the calculation
process, the data of grain orientation and temperature were transferred from GPU to CPU
with a given interval of time step. Since no other extra data transfer between CPU and
GPU, the consumed time mainly comes from the iteration calculation and the computation
efficiency was ensured by the locality of computation. Different time steps can be used for
the calculation of temperature field and CA model to reduce the total iteration times.

The algorithm of the heat transfer and grain growth process can be briefly summarized
as follows.

(1) Heat transfer calculation on grids by FDM.
(2) Temperature interpolation from FDM grids to CA cells.
(3) Check nucleation of each liquid cell by the continuous nucleation model in Equation (1).
(4) Grain growth by updating the dendrite tip length of each interface cell according to

Equation (2).
(5) Cell capture by searching the Moore neighborhoods of the interface cells following

the rule shown in Figure 2.
(6) Status transition of the interface cells and the corresponding captured liquid cells.

3. Model Verification
3.1. Single Grain Growth

The predictions of a single grain growth with a given orientation under different
temperature gradients are shown in Figure 4. The corresponding Euler angle is (10◦, 20◦,
30◦) and the growth kinetics is given by the dendrite tip growth velocity υ = A · ∆T2, with
A = 1.0× 10−4 m · s−1 ·K−2.

In order to verify the accuracy of model, the tip growth velocity of the envelope was
analyzed by comparison between the numerical results and the theoretical results.

The error caused by grid anisotropy is an expected defect of the CA model [35], which
is associated with the corresponding transition rule of cell state and time step used in the
numerical calculation. Hence, the error should be suppressed to ensure the accuracy of
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numerical calculation. The effects of orientation angle of the grain envelope and time step
on the tip growth velocity were investigated in this section.
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For simplicity, a two-dimensional case was performed. The computation domain is
300 × 300 with a cell size of 15 µm. A nucleation site was positioned in the center of the
domain with a given orientation angle. A uniform undercooling of 3 K was kept during
the whole simulation. The growth kinetics of Al-7 wt% Si alloy is given by the dendrite
tip growth velocity υ = A · ∆Tn with n = 2.7 and A = 2.9 × 10−6m · s−1 · K−2.7 [36].
In order to determine the time step with a given condition, a parameter λ is defined as
λ = Vm · ∆t/∆x, where Vm is the maximum tip growth velocity at the whole domain, ∆t is
the time step and ∆x is the cell size. Cases with envelope orientation angles from 0◦ to 45◦

(due to the four-fold symmetry) with an interval of 5◦ and the parameter λ of 0.1, 0.01, and
0.001 were simulated. To ensure the same reference tip length of the envelope at the end
time, the calculation was finished while the solid fraction of the growing envelope reaches
0.4 in the computation domain. The error of the tip length ε is defined as ε = |Lc − Lt|/Lt,
where Lc is the tip length obtained by simulation, and Lt is the theoretical value. The error
of tip length with different orientation angles and parameter λ is shown in Figure 5. The
results indicated that the error of tip length decreases with the decrease of the time step
(the parameter λ) when orientation angle is small (less than 20◦ approximately). The error
of tip length is small when the parameter λ is smaller than 0.01, which is an acceptable
accuracy for grain growth simulation, as a single grain usually will not grow too large in a
given thermal condition. The effect of orientation angle on the tip length is not large, which
indicates that the developed CA model is applicable to the grain growth with arbitrary
orientation angle.

3.2. Grain Growth with a Uniform Undercooling

Then, the grain growth of Al-7 wt% Si specimen was simulated by 2D simulation. The
computation domain is 300 × 300 with a cell size of 15 µm. The simulation started with
a uniform undercooling and the cooling rate was −2.3 K/s. The growth kinetics of the
alloy is the same as that of aforementioned parameters. The cell size is 15 µm, which is
suitable for the description of dendrite growth. The volumetric nucleation site density nv is
5.5 × 1010 m−3 and the surface nucleation site density ns is 2.5 × 108 m−2. The correspond-
ing parameters used in 2D simulation can be obtained by the stereological relationships in
the Reference [33]. The standard deviations of volumetric nucleation undercooling ∆Ts,σ
and surface nucleation undercooling ∆Tv,σ are both 0.1 K. The mean surface nucleation
undercooling ∆Ts,m is 0.5 K. Cases with different mean volumetric nucleation undercooling
∆Tv,m were simulated. The CA model is used to describe the final grain structure or the
grain texture after solidification, hence only the primary FCC aluminum dendrite is consid-
ered in the model. The formation of diamond silicon facet phase is not considered in the CA



Metals 2021, 11, 298 7 of 13

model. The grain structures after the whole domain solidified are shown in Figure 6. Grains
with crystallographic orientation aligned with the normal to mold surface were selected
corresponding to the grains with orientation angle close to 0◦ and 90◦. The columnar grains
formed at the mold surface grow up to the center of the specimen as shown in Figure 6a.
As the mean volumetric nucleation undercooling decreases, equiaxed grains nucleated
before the columnar grains grow up to the center domain as shown in Figure 6b,c. The CET
occurs as the mean volumetric nucleation undercooling becomes small.
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To verify the grid independence of the CA model, a domain with a size of 24× 24 mm2

was used for simulation. The mean volumetric nucleation undercooling was 4 K to ensure
large ratio of equiaxed grains’ nucleation. The cell size of 15 µm, 20 µm and 25 µm were
selected. Other parameters are the same as the aforementioned condition. The grain
area size distribution of each case is shown in Figure 7a. The cumulative grain area size
distribution of each case is shown in Figure 7b for comparison. In Figure 7a, results of the
three cases show that the grain area size mainly ranges from 0.2× 105 µm2 to 1.0× 105 µm2.
The cumulative grain size distributions of the cases were consistent with each other and
Figure 7b clearly shows that the grain size distributions of cases with cell size of 15 µm and
20 µm are almost the same.
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4. Simulation and Discussion
4.1. Grain Growth during Directional Solidification

The model was applied to simulate grain growth of a plate-like casting of nickel-based
superalloy during DS process. The directional solidification experiment of the plate-like
casting was carried out in the ALD furnace with a withdraw rate of 6 mm/min. A plate-like
casting with dimension of 25 × 7 × 160 mm was used. The chemical composition of the
superalloy is Ni-7.82Cr-5.34Co-2.25Mo-4.88W-6.02Al-1.94Ti-3.49Ta (wt%). A multicompo-
nent pseudo-binary alloy method [37] was used to obtain the physical parameters of this
superalloy. Then, the coefficients of growth kinetics were fitted by the results according to
the Lipton-Glicksman-Kurz (LGK) growth model [34,38], as shown in Figure 8. The values
of a2 and a3 are 9.478 × 10−7 m s−1 K−2 and 2.323 × 10−6 m s−1 K−3.
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The grid size for the temperature field calculation was 0.5 mm. In the CA model, the
cell size was 250 µm. To satisfy the numerical stability, the time step ∆t was determined as

∆t = min

(
ρCp(∆xT)

2

6k
,
(∆xCA)

2

6Dl
, λ

∆xCA
Vm

)
(3)

where ρ is alloy density, Cp is the specific heat, ∆xT is the grid size used for the temperature
field, k is the thermal conductivity, Dl is the liquid diffusion coefficient, ∆xCA is the grid
size used for CA model and Vm is the maximum speed of grain growth. The parameter λ is
set as 0.01 to ensure acceptable accuracy.

The grain structure of the specimen and grain structure at each section with different
heights are shown in Figure 9a,b. Grain density decreases as the height increases due to the
competitive growth as indicated in Figure 9b. The grain density obtained by simulation was
compared with the experimental data and the simulation results were in good agreement
with the experimental data as shown in Figure 9c.
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4.2. Grain Growth in Directional Solidified Al-7 wt% Si Ingot

The developed CA model was applied to the solidification process of an Al-7 wt%
Si cylindrical ingot which has a detailed description in [36] and [39]. Both 2D and 3D
simulation were conducted to demonstrate the capability of the model. The size of the
ingot was φ70× 170 mm. The bottom of the ingot was cooled by a copper chill. The other
face was adiabatic boundary condition. Temperature curves of the points at the center line
with the height of 20, 40, 600, 80, 100, 120 and 140 mm were recorded by the corresponding
thermal couples. Temperature at the bottom of the ingot was deduced by the extrapolation
of the temperature curves of the 20, 40, 60 and 80 mm thermal couples, which was imposed
as the boundary condition of the bottom surface as indicated in literature [40]. The detailed
parameters used in simulation can be found in [36]. The cell size was 100 µm and the
grid size for the temperature field was 0.5 mm for 2D simulation. In the 3D simulation, a
cell size of 250 µm and a grid size of 1.0 mm for the temperature field were used due to
memory restriction of the GPU. A good agreement was observed between the grain texture
from experiment [39] and 2D simulation as shown in Figure 10. The simulated temperature
curves were compared with the experimental data; the temperature curves obtained by
simulation were consistent with the experimental data except a little deviation during the
mushy zone as shown in Figure 11. As the release of latent heat for eutectic reaction is not
considered in the current model, the difference of the temperature curve is acceptable. The
columnar grains grow from the bottom to the height of 110 mm and then the equiaxed
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grains formed on the top zone of the ingot. The height where the CET transition happens
is consistent with the experimental grain texture. Similar 3D simulation results at different
times are shown in Figure 12.
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4.3. Parallel Performance Evaluation

The parallel performance was evaluated in detail by 2D CA model, where the grain
growth of Al-7 wt% Si specimen with imposed temperature field of constant cooling rate
was simulated. The million lattice unit per second (MLUPS) was adopted to evaluate
both CPU- and GPU-based computing performance. The parallelization on CPU-based
calculation was implemented with the Open Multi-Processing (OpenMP) technique. The
parallelization method on GPU was CUDA. The tested CPU was Intel Core i7-7700 (3.6 GHz,
Intel Corporation, Santa Clara, CA, USA) with eight cores, and a single NVIDIA RTX 2070
GPU (NVIDIA Corporation, Santa Clara, CA, USA) and 8 gigabyte memory was used for
testing. The speedup ratio was computed based on the reference of a serial CPU code on the
same CPU. The cell number for performance evaluation ranges from 1.0 × 106 to 4.9 × 107

and the largest cell number tested in GPU-based parallelization is limited to 3.6 × 107 due
to the memory restriction of the used GPU. The parallel performance and speedup ratio are
shown in Figure 13. The CPU-based parallelization shows approximately 4 times speedup
ratio compared with the use of a single CPU core. The maximum parallel performance of
the GPU-based parallelization reaches 213.45 MLUPS and the corresponding speedup ratio
is 37, approximately. The maximum speedup ratio obtained on a single GPU card is higher
compared with the performance of Lian’s work [28], where a maximum speedup ratio of
29.3 was obtained using 64 CPU processors with an efficiency of 45.85%. In MPI-based
parallelization models, the efficiency of each processor usually decreases as the process
number increases, due to the difficulty in load balance and the cost of communication
between processors. These restrictions were avoided by the computation based on GPU,
where the global memory in GPU card was continuous. By utilizing the GPU card with
larger memory, large-scale simulation can be performed based on the proposed model. The
GPU-based CA model shows high speedup ratio and stable performance over a wide range
of cell number compared with the CPU-based parallelization. In addition, the performance
does not decrease significantly as the cell number increases due to the computational
locality of the CA model.
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5. Conclusions

In this work, a GPU-based parallel CA model for grain growth was developed to ac-
celerate the grain growth simulation. The accuracy of the developed model was verified by
detailed comparison of the grain texture, grain size distribution and the CET phenomenon
during grain growth for both 2D and 3D simulation. The testing demonstrated that a
maximum performance of 213.45 MLUPS and a speedup ratio of 37 can be obtained by
utilization of a single GPU. The proposed GPU-based parallelization of the CA model can
be extended to CA model for dendritic growth.
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