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Abstract: The thermo-mechanical control processing of Nb-Ti micro-alloyed steel by induction heat-
ing in the endless strip production (ESP) line was analyzed to better understand the microstructural
evolution and Nb precipitation and dissolution behavior in austenite during rapid heating to high
temperatures. The Nb-Ti micro-alloyed steel consisting of 0.05 wt% C and 0.05 wt% Nb was pro-
cessed through simulated rough rolling at 1050 ◦C followed by rapid isothermal reheating at 1150 ◦C.
The austenite coarsening behavior and the Nb dissolution behavior at different holding times were
compared, and the coarsening kinetics of austenite grains and the dissolution kinetics of precipitates
were investigated. It was found that during induction heating, the size of austenite grains gradually
increased with the isothermal time, and the amounts of precipitates were greatly reduced. Round
precipitates of (Ti, Nb) (C, N) and square precipitates of Ti (C, N) gradually dissolved into the
austenite matrix with the holding time. The Nb content in the solution increased from 0.0137 to
0.0299 wt% as the holding time increased from 1 to 40 s; therefore, about 59.8% of the total Nb content
dissolved into the austenite matrix during the induction heating process.

Keywords: Nb-Ti micro-alloyed steel; ESP; induction heating; precipitation; dissolution

1. Introduction

Microalloying is a valid method to enhance the mechanical properties of steel. High-
strength low-alloy (HSLA) steels micro-alloyed with Nb, Ti, and V are extensively applied
to automobiles, ships, oil, and gas transmission lines [1–4]. Microalloying elements can
enhance the strength and toughness of HSLA steels by grain refinement, solid solution
hardening, and precipitation hardening. The study on the precipitation hardening of Ti-Nb
microalloyed steels with Mo and W has shown that the steel with Nb-Mo precipitates turned
out to be most effective in precipitation hardening [5]. Development of austenite grain
structures has been studied in microalloyed steels (Nb-Ti and Nb-V steels) and C-Mn steel
after soaking at 950–1250 ◦C for 1 h. The results have shown that the fine austenite grain
size in microalloyed steel at the lower soaking temperature can be attributed to the pinning
effect from Nb (C, N) and V (C, N) precipitates. At higher soaking temperatures, dissolution
of Nb precipitates led to austenite grain growth in microalloyed steels. Compared to C-Mn
steel, microalloyed steels showed a significantly refined grain size [6]. Ti has frequently
been added to HSLA steels to control the grain sizes of austenite and transformed ferrite
during hot deformation, as well as the subsequent heat treatment. Nb facilitates grain
refinement through carbide or carbonitride precipitation in austenite, restrains the static
recrystallization of austenite, and contributes to dispersion hardening through ferrite
precipitation during or after austenite-to-ferrite transformation [7,8]. The study on Nb
precipitation and recrystallization kinetics for a Ti-Nb steel containing 0.021 Ti and 0.064 Nb
(wt%) has shown that the Nb solute atoms and Nb precipitates in the <5 nm size range were
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effectively retarding the recrystallization of austenite [9]. The study on the precipitation
behavior and mechanical properties of Ti-Nb steel has shown that the fine-scale strain-
induced precipitation of carbides occurred on dislocations and in the ferrite matrix. The
Ti-Nb steel exhibited a yield strength and tensile strength of 562–600 and 629–687 MPa,
respectively, with an elongation of 22–27% [10].

Thermo-mechanical control processing (TMCP) including controlled hot rolling and
subsequent controlled cooling is another effective route to improve the mechanical prop-
erties of HSLA steels [11,12]. Endless strip production (ESP) continuous casting-rolling
line (characterized by the short processing time and fast strip speed) is the most advanced
endless rolling production line in the world today. In comparison to the traditional thin-
slab continuous casting-rolling process, the energy consumption is reduced by 50–70%
and the water consumption is reduced by 60–80% in the ESP line [13–17]. In the ESP
line, the induction heating process between rough rolling and finish rolling can rapidly
reheat the intermediate billet to the required finish rolling entry temperature, improve the
productivity and reduce the energy consumption for hot strip production, and maximize
the microalloying effects during subsequent finish rolling, laminar cooling, and coiling
by deformation-induced ferrite transformation (DIFT) and strain-induced precipitation
(SIP) [18]. However, the Ti helps to improve the thermodynamic stability of precipitates
and suppresses the dissolution behavior of Nb and C in Nb-Ti microalloying steels at high
temperatures [19,20]. This resulted in a completely different dissolution behavior of Ti and
Nb in the ESP process.

Introducing heating between rough rolling and finishing rolling is a brand-new pro-
cess. Few works have studied how this process affects the microalloying elements in HSLA
steels. In addition, the research on microalloying of HSLA steels has been more focused on
the morphology, size, and distribution of precipitates, while less work has quantitatively
determined the amounts of microalloying elements (in solution or as a precipitate). The
present work focused on the effects of induction heating on the microstructural evolution
and Nb dissolution behavior of Nb-Ti micro-alloyed steel with an amount of 0.05 wt%
Nb. The dissolution kinetics of Nb and the coarsening kinetics of austenite grains were
investigated by quantitatively analyzing the amount of Nb in solution and austenite grain
size as a function of isothermal time. The research results will provide a guidance for
improving the mechanical properties of Nb-Ti microalloyed steel.

2. Materials and Methods

The chemical composition of the experimental steel is presented in Table 1. The Nb-Ti
microalloyed steel discussed here was industrially produced on the ESP line in Rizhao steel
Co., Ltd. of China.

Table 1. Chemical composition of the experimental steel in wt%.

Elements C Mn Si Als Ti Nb P S

wt% 0.05 1.65 0.25 0.025 0.06 0.05 0.012 0.0008

Specimens of size Φ10 (diameter) mm × 15 (length) mm were obtained from the
experimental steel. The induction heating process of the ESP line was simulated in a
Gleeble-3500 thermal simulator (DSI, Gleeble-3500). The specimens were heated at 1300 ◦C
for 120 s and cooled to a compression temperature of 1050 ◦C, and then a strain of 50%
was applied at a constant true strain rate of 5 s–1 and then cooled to 900 ◦C at a rate of
2.2 ◦C/s. In the simulated induction heating stage, the specimens were reheated to 1150 ◦C
at a rate of 15 ◦C/s, then held for different times at this temperature (1, 10, 20, 40, 100,
and 500 s), and quickly cooled to room temperature at a rate of 50 ◦C/s to maintain the
high-temperature morphology (Figure 1).
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Figure 1. Process specification of the experimental steel by Gleeble-3500 thermal simulator.

The amount of niobium (Nb) in the solution was determined by inductively coupled
plasma optical emission spectrometry (ICP-OES: Varian 715-ES. VARIAN, Palo Alto, CA,
USA). Metal scraps were dissolved completely in a mixed solution of hydrochloric acid,
stannous chloride, and distilled water (volume ratio = 46:2:52) at 70 ◦C for 3–4 h, and
the metal scraps weighing M (g) were taken from the above heat-treated specimens. Af-
ter filtering, the prepared solution was transferred to a flask and diluted with distilled
water to a volume of V (mL). According to the spectral intensity of the solution, the
mass concentration of Nb (X in µg/mL) was measured by ICP-OES with an accuracy of
0.005 µg/mL. Eventually, the mass fraction (wt%) of Nb in the solution was calculated by
Equation (1) [21–23].

WNb(%) =
X×V

M× 106 × 100% (1)

Longitudinal samples in the direction of hot compression were prepared for mi-
crostructural observations using a standard technique. The samples were mechanically
ground using silicon carbide papers (200-grit to 2000-grit, Gold Sun Co., Ltd., Dongguan,
China) and polished with diamond pastes (W1.5 10000-grit, Aotai Abrasives Co., Ltd.,
Hangzhou, China), and then eroded in 4% nitric acid alcohol solution for 10–15 s. The
microstructures of samples were observed by scanning electron microscopy (SEM: Quanta
FEG450. FEI Company, Hillsboro, OR, USA), and the average grains’ diameter of austen-
ite was determined by the linear intercept method. The microstructures and dislocation
morphologies were observed by transmission electron microscopy (TEM: Tecnai F20. FEI
Company, Hillsboro, OR, USA). Foil samples of thickness 0.5 mm for TEM analysis were
obtained from the hot compression samples and thinned down to 50 ± 10 µm using silicon
carbide papers, then polished by a twin-jet electro-polisher (Tenupoi-5. STRUERS Ltd.,
Shanghai, China) in a solution of perchloric acid and ethanol (volume ratio = 15:85) at 20 V
and –20 ◦C for 20–25 s [24].

The morphological observation and qualitative analysis of precipitates at different
holding times were conducted by TEM and energy-dispersive spectroscopy (EDS: Inca X-
Max50. Oxford Instrument, Oxford, UK). Carbon-extracted replica samples were prepared
for TEM analysis. Samples were mechanically ground with silicon carbide papers and
polished with W1.5 diamond pastes, and then chemically etched in 4% nitric acid alcohol
solution for 10 s. After spraying the carbon films on the surface of samples, the carbon
films were floated to the surface by etching in 7% nitric acid alcohol solution. The carbon
replica films were washed in a mixed solution of 70% ethanol (purity >99.7%) + 30%
deionized water, 50% ethanol (purity >99.7%) + 50% deionized water, and 10% ethanol
(purity >99.7%) + 90% deionized water successively; and finally dried for TEM observation.
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The volume fractions of precipitates in the samples were measured by quantitative image
analysis. The particle diameter distributions in precipitates were quantitatively determined
by Image Pro Plus image processing software (Version 6.0.0.260. Media Cybernetics,
Rockville, MD, USA).

The micro-hardness of the samples was tested in a micro-hardness tester (HXD-
1000TM. SHANGHAI OIF, Shanghai, China). The Vickers hardness test for each sample was
carried out by a diamond indenter tip under a load of 4.9 N for 20 s. Thirty microhardness
measurements were carried out for each sample with a distance of 0.1 mm.

3. Results
3.1. Microstructure

The microstructure of the sample before heating is presented in Figure 2. Figure 2a
displays the morphologies of pearlite and austenite grain boundaries (GBs) of the sample
before heating, and the average austenite grain size was measured as 41.4 ± 3.5 µm by
the linear intercept method. Moreover, partial dislocations were distributed in parallelly-
arranged slab grains (Figure 2b).
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Figure 2. Microstructures of the sample before heating: (a) SEM morphology; (b) TEM morphology.

The SEM morphologies of the samples after heating to 1150 ◦C for different isothermal
times are shown in Figure 3. Figure 3a reveals austenite grain boundaries still present in the
sample after holding for 1 s followed by rapid cooling to room temperature. The average
austenite grain size was measured as 86.7± 4.2 µm, which greatly coarsened in comparison
to the sample before heating. It is clear from Figure 3b–f that the size of austenite grains
gradually increased with the holding time. The average austenite grain size reached
92.2 ± 3.8, 94.1 ± 4.7, and 106.4 ± 5.9 µm after holding for 10, 20, and 40 s, respectively.
The average austenite grain size rapidly increased from 145.1 ± 4.6 to 216.9 ± 6.7 µm as
the holding time increased from 100 to 500 s. The coarsening behavior of austenite grains
is discussed in Section 4.1.

3.2. Dissolution Behavior

The TEM morphologies and the corresponding EDS spectra of strain-induced pre-
cipitates in the sample are displayed in Figure 4. The dispersion of fine precipitates was
observed in the foil. It is evident from the EDS spectra that round precipitates in Figure 4a
and square precipitates in Figure 4c are (Ti, Nb) (C, N) (Figure 4b) and Ti (C, N) (Figure 4d),
respectively. The appearance of (Ti, Nb) (C, N) occurred due to the interchangeability of Ti
and Nb in the precipitate lattice because of their similar crystal structures and lattice pa-
rameters. The amounts of round precipitates were higher than those of square precipitates
in the sample.
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The variation in morphologies and particle diameter distribution of precipitates with
isothermal time after heating to 1150 ◦C are presented in Figure 5. Precipitates continuously
re-dissolved into the austenite matrix, and the amounts of precipitates gradually decreased
with the holding time. The particle size of precipitates ranged between 20 and 30 nm
after holding for 1 s; however, the number of precipitates was significantly reduced after
holding for 10 s. When the holding time reached 40 s, coarsening of the precipitates slightly
occurred and the number of precipitates further decreased. It was found that most of the
undissolved particles had a size between 50 and 70 nm. The average particle diameters of
precipitates were 20 ± 0.8, 37.8 ± 1.3, and 53.3 ± 1.0 nm after holding for 1, 10, and 20 s,
respectively, and it reached 67.5 ± 1.7 nm after holding for 40 s.

The particle size distribution statistics of precipitates at different holding times are
presented in Figure 6. The number of precipitates with a diameter less than 30 nm gradually
decreased with the holding time. The peak value of the distribution for precipitates
moved from 25 nm after holding for 1 s to 60 nm after 40 s. In general, the amounts of
precipitates continuously decreased with the holding time, indicating that fine precipitates
preferentially re-dissolved during the heating process.
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3.3. Dissolution of Niobium

The amounts of Nb in the solution after heating at 1150 ◦C for different holding times
were determined by ICP-OES, and the corresponding results are listed in Table 2.

Table 2. Amounts of Nb in the solution held at 1150 ◦C for different times.

Holding Time/s Before Heating 1 10 20 40

The amount of Nb in solution/wt% 0.0051 0.0137 0.0221 0.0282 0.0299
Account for total additions/% 10.2% 27.4% 44.2% 56.4% 59.8%

The content of Nb in the solution before heating was 0.0051 wt%, which accounted
for 10.2% of the total amount of added Nb. The content of Nb in the solution gradually
increased with holding time. The amounts of Nb in the solution were 0.0137 wt% (account-
ing for 27.4% of the total amount of added Nb), 0.0221 wt%, 0.0282 wt%, and 0.0299 wt%
after holding for 1, 10, 20, and 40 s, respectively. Therefore, about 59.8% of the total amount
of added Nb dissolved into the austenite matrix during the induction heating process.
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3.4. Micro-Hardness

The micro-hardness values of the samples after heating at 1150 ◦C for different isother-
mal times are presented in Figure 7. When the isothermal time was 1 s, the micro-hardness
was measured as 241.1 ± 3.2 HV. When the isothermal time increased to 10 s, the micro-
hardness value decreased to 237.8± 1.6 HV. The micro-hardness value gradually decreased
from 236.5 ± 1.8 HV to 234.1 ± 2.7 HV as the isothermal time increased from 20 to 40 s.
The micro-hardness value further decreased from 230.3 ± 3.5 HV to 225.4 ± 2.9 HV as the
isothermal time increased from 100 and 500 s. Therefore, the micro-hardness of experimen-
tal steel gradually decreased with the isothermal time. It indicates that the coarsening of
austenite grains and the decrease in carbide amount due to the dissolution of microalloying
elements during the heating process had a marked impact on the micro-hardness value.
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4. Discussion
4.1. Coarsening of Austenite Grains during the Heating Process

Figure 3 reveals that austenite grains continuously coarsened at 1150 ◦C with the
increase in holding time. The coarsening behavior of austenite grains during isothermal
heating can be better understood by the theory of Feltham [25]. The change in the austenite
grain size with the holding time can be calculated by Equation (2).

(D∗)2 − (D∗0 )
2 = (λVaσ)t exp(−H/TK) = K× t (2)

where D∗0 represents the grain size at t of zero, D∗ represents the grain size at a specific time,
λ is a constant, V represents the volume per atom, a denotes the lattice spacing, σ denotes
the specific grain boundary energy, and H represents Planck’s constant. In the isothermal
process, Equation (2) is equivalent to K × t, where K denotes a constant. Therefore, using
Equation (2) and the grain size data at the holding times of 1 and 10 s, the value of K is
equal to 97.85. The austenite grain diameters calculated by Equation (2) are presented in
Figure 8. The predicted austenite grain sizes after 20, 40, 100, and 500 s were 97.3, 106.9,
131.5, and 237.7 µm, respectively. The austenite grain sizes predicted by the theory of
Feltham are well consistent with the experimental data.

The Zener pinning effect indicates that the grain growth can be hindered due to
the pinning of austenite grain boundaries by precipitates. The continuous dissolution of
niobium and titanium weakened the pinning force of the precipitates on the austenite grain
boundaries; thus, the coarsening of austenite grains occurred during the heating process.
However, after isothermal holding for a certain time, the coarsening rate of austenite grains
was restrained due to the dragging effect of dissolved microalloying elements.



Metals 2021, 11, 251 9 of 13

Metals 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

97.3, 106.9, 131.5, and 237.7 µm, respectively. The austenite grain sizes predicted by the 
theory of Feltham are well consistent with the experimental data. 

 
Figure 8. Experimental data and calculated data for grain diameters of the samples under different 
isothermal times at 1150 °C. 

The Zener pinning effect indicates that the grain growth can be hindered due to the 
pinning of austenite grain boundaries by precipitates. The continuous dissolution of nio-
bium and titanium weakened the pinning force of the precipitates on the austenite grain 
boundaries; thus, the coarsening of austenite grains occurred during the heating process. 
However, after isothermal holding for a certain time, the coarsening rate of austenite 
grains was restrained due to the dragging effect of dissolved microalloying elements. 

4.2. Dissolution Behavior of Nb during the Heating Process 
The volume fraction of precipitates measured from replica samples by TEM is pre-

sented in Table 3. It is noticeable that the volume fraction of precipitates decreased with 
the isothermal time at 1150 °C. The contents of Nb in the solution after heating at 1150 °C 
for different holding times were determined by ICP-OES (listed in Table 2), and its simu-
lated data were calculated by Equations (3) and (4) [26]. = ∕ × + 1 ∕100 × −  (3)= ∕  (4)

where f(t) represents the volume fraction of precipitates that changes with the holding 
time, ρr and ρprecipitate are the austenite density and the precipitate density, respectively, Wm 
is the total amount of added Nb in the test steel, [Nb] represents the dissolved Nb content, 
and {Nb} and {C} represent Nb and C in the equilibrium state of NbC precipitates, respec-
tively. According to the theory of Johnson–Mehl [27], the relationship between the volume 
fraction of precipitates and the isothermal time can be determined by Equation (5).    = 1 − exp −  (5)

where f(t) represents the volume fraction of precipitates that changes with the holding 
time, k represents a factor associated with the nucleation rate and the growth rate, t rep-
resents the isothermal holding time, and n represents the nucleation rate factor. The vol-
ume fraction of precipitates is zero at the initial holding time, but in this experiment, un-
dissolved precipitates still existed when the test steel was reheated to 1150 °C and held 
for 1 s. Therefore, the increase in volume fraction of precipitates for the holding time of 1 
s can be expressed by Equation (6). 

Figure 8. Experimental data and calculated data for grain diameters of the samples under different
isothermal times at 1150 ◦C.

4.2. Dissolution Behavior of Nb during the Heating Process

The volume fraction of precipitates measured from replica samples by TEM is pre-
sented in Table 3. It is noticeable that the volume fraction of precipitates decreased with the
isothermal time at 1150 ◦C. The contents of Nb in the solution after heating at 1150 ◦C for
different holding times were determined by ICP-OES (listed in Table 2), and its simulated
data were calculated by Equations (3) and (4) [26].

f (t) =
[

ρr/ρprecipitate × ((Z + 1)/Z)
100

]
× (Wm − [Nb]) (3)

Z = {Nb}/{C} (4)

where f(t) represents the volume fraction of precipitates that changes with the holding
time, ρr and ρprecipitate are the austenite density and the precipitate density, respectively,
Wm is the total amount of added Nb in the test steel, [Nb] represents the dissolved Nb
content, and {Nb} and {C} represent Nb and C in the equilibrium state of NbC precipitates,
respectively. According to the theory of Johnson–Mehl [27], the relationship between the
volume fraction of precipitates and the isothermal time can be determined by Equation (5).

f (t) = 1− exp(−ktn) (5)

where f(t) represents the volume fraction of precipitates that changes with the holding time,
k represents a factor associated with the nucleation rate and the growth rate, t represents the
isothermal holding time, and n represents the nucleation rate factor. The volume fraction
of precipitates is zero at the initial holding time, but in this experiment, undissolved
precipitates still existed when the test steel was reheated to 1150 ◦C and held for 1 s.
Therefore, the increase in volume fraction of precipitates for the holding time of 1 s can be
expressed by Equation (6).

f (t) = 1 + f1 − exp(−ktn) (6)

where f 1 represents the volume fraction of precipitates at holding for 1 s. Eventually,
the changes in the Nb content in the solution with isothermal time can be calculated by
Equation (7).

1 + f1 − exp(−ktn) =

[
ρr/ρprecipitate × ((Z + 1)/Z)

100

]
× (Wm − [Nb]) (7)
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Table 3. Volume fraction of precipitates and the calculated values of Nb content in the solution at
various isothermal times.

Isothermal Time/s Volume Fraction of
Precipitates/10−5 µm−3

The Content of Nb in the
Solution/wt%

1 63.5 ± 1.9 0.0122
10 51.8 ± 2.8 0.0245
20 37.2 ± 3.1 0.0291
40 32.7 ± 2.3 0.0322

The values of k and n were obtained from the measured data for the holding times of
1 and 10 s. The contents of Nb in the solution at various isothermal times calculated by
Equation (7) are presented in Table 3. As the holding time increased from 1 to 40 s, the
mass fraction of Nb in the solution increased from 0.0122 to 0.0322 (wt%); thus, most of the
added Nb dissolved into the austenite matrix during isothermal heating.

The comparison between the experimental data and the simulation data by Equation (7)
is presented in Figure 9. It is evident that the dissolution model in Equation (7) provides an
appropriate prediction for the Nb dissolution behavior.
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The precipitation and dissolution of Nb were greatly affected by different holding
times. The amount of Nb in the solution predicted by Equation (7) was well consistent
with the measured data when the isothermal holding time was less than 20 s; however, the
measured data gradually became smaller than the calculated values with the holding time.
Generally, the addition of Ti improves the high-temperature stability of precipitates and
inhibits the dissolution of alloying elements (Nb and C) at high temperature. Therefore,
the addition of Ti suppressed the dissolution kinetics of Nb in the test steels.

4.3. Effects of the Heating Process on DIFT

To study the influence of induction heating on the dissolution behavior of Nb, the
test steel cooled to 900 ◦C after rough rolling was rapidly cooled to room temperature at a
rate of 50 ◦C/s (as shown by red line in Figure 1). It is noticeable from Figures 2 and 4 that
the microstructure was fine and the average grain diameters were 41.4 ± 3.5 µm before
heating; however, the austenite grain size gradually increased from 86.7 ± 4.2 µm at 1 s
to 216.9 ± 6.7 µm at 500 s. A large amount of precipitates existed in the sample before
heating, and the content of Nb in the solution accounted for only 10.2% of the total added
amount. The amounts of precipitates gradually decreased with the isothermal time at
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1150 ◦C, and about 59.8% of Nb dissolved into the austenite matrix at an isothermal time of
40 s. The induction heating process promoted the dissolution of microalloying elements,
which exerted their precipitation strengthening effects during the finish rolling process.

The induction heating of the ESP line generally refines the microstructure through
deformation-induced ferrite transformation. In the special thermomechanical process of
induction heating, the precipitates formed in the roughing stage dissolved again by rapid
reheating to 1150 ◦C in a period after roughing at 1050 ◦C, and the dissolution of a large
amount of Nb and Ti into the austenite matrix increased the recrystallization temperature
of austenite by solid solution dragging [28]. Hence, the incomplete recrystallization of
austenite occurred during the rolling process at the high temperature, and the storage
energy and accumulation of deformation defects increased the nucleation rate of ferrite
during the finish rolling process, thereby accelerating the conversion rate of the γ to α

phase transformation and refining the ferrite grains. Finally, the mechanical properties of
test steel are improved by fine-grain strengthening.

The dissolution of precipitates during induction heating increased the supersaturation
of Nb and Ti in the austenite matrix and increased the driving force for microalloying
precipitation in the test steel. In addition, the volume fraction and average particle size
of strain-induced precipitates are also directly affected by the deformation law [29,30].
The sufficient deformation strain and the incomplete recrystallization of austenite during
finish rolling increased the deformation storage energy, increased the driving force for
precipitation, and promoted the influence of supersaturation on the precipitation behavior.
Therefore, microalloying elements (Nb and Ti) dissolved into the matrix during induction
heating, and the finish rolling process was completed in the region where austenite grains
were not completely recrystallized. This phenomenon promoted the precipitation of large
amounts of fine particles by strain-induced precipitation and enhanced the mechanical
properties of the Nb-Ti micro-alloyed steel by precipitation strengthening.

Based on the above study, the Nb-Ti micro-alloyed steel with an amount of 0.05 wt%
Nb was industrially produced on an ESP line. The cast billets were rough-rolled with a
strain of 50% in the range of 1150–1050 ◦C, and cooled to 900 ◦C at a rate of 2.2 ◦C/s; the
intermediate billets were immediately reheated to 1150 ◦C at a rate of 15 ◦C/s, was held
for 20 s, and then continuously rolled to the required thin strips through five finishing
mills with an average reduction of 30% in the range 1000–850 ◦C. Finally, the thin strips
were water-cooled to 620 ◦C for coiling and then air-cooled to room temperature. The
microstructure of the experimental steel contains mainly polygonal ferrite and a small
content of quasi-polygonal ferrite, with an average grain size of 2.97 µm. At the same time,
many precipitates with a size less than 18 nm appeared. The experimental steel displayed
a yield strength and tensile strength of 684 and 745 MPa, respectively, with an elongation
of 18.9% due to the combined effects of DIFT and SIP.

5. Conclusions

1. The average sizes of austenite grains were 92.2± 3.8, 94.1± 4.7, 106.4± 5.9, 145.1 ± 4.6,
and 216.9 ± 6.7 µm after holding for 10, 20, 40, 100, and 500 s, respectively, and the
predicted austenite grain sizes after 20, 40, 100, and 500 s were 97.3, 106.9, 131.5, and
237.7 µm, respectively. Therefore, the coarsening behavior of austenite predicted by
Feltham’s theory was consistent with the obtained experimental data.

2. Round precipitates of (Ti, Nb) (C, N) and square precipitates of Ti (C, N) gradually
dissolved into the austenite matrix with the holding time. The amounts of Nb in
the solution were 0.0137, 0.0221, 0.0282, and 0.0299 wt% after holding for 1, 10, 20,
and 40 s, respectively. The amounts of Nb in the solution accounting for the total
amount of added Nb increased from 27.4% to 59.8% as the holding time increased
from 1 to 40 s.

3. The contents of Nb in the solution calculated by the JMAK equation were 0.0122,
0.0245, 0.0291, and 0.0322 wt% after holding for 1, 10, 20, and 40 s, respectively. The
Nb dissolution behavior with the isothermal time simulated by the Johnson–Mehl
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theory was consistent with the measured data when the isothermal time was less
than 20 s; however, the measured data gradually became smaller than the calculated
values with the holding time; thus, the addition of Ti inhibited the dissolution of Nb.

4. Nb-Ti micro-alloyed steel with an amount of 0.05 wt% Nb was industrially produced
on an ESP line. The microstructure of the test steel contains mainly polygonal ferrite
and a small content of quasi-polygonal ferrite, with an average grain size of 2.97 µm.
The test steel displayed a yield strength and tensile strength of 684 and 745 MPa,
respectively, with an elongation of 18.9%.
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