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Abstract: Two B400B-R and B500B grade rebars were industrially produced through a Tempcore
process. The standard chemical composition of B500B grade was additionally alloyed with 0.067 wt.%
V to enhance its mechanical properties. A set of optimized processing parameters were applied
to manufacture two different diameters D20 (Ø 20 mm) and D32 (Ø 32 mm). The microstructure
-mechanical properties relationships were evaluated using optical and scanning electron microscopes,
hardness, and tensile testing. In addition, a thermal model was developed to define the thermal cycle
evolution during cooling in the quenching & tempering box (QTB) to simulate the kinetics of V(C,N)
precipitation. The microstructure observations showed a typical graded microstructure consisting
of ferrite-pearlite core and outer tempered martensite ring for both grades of both diameters. The
optimized processing parameters for B400B-R of D32 (compared with D20) resulted in softening
of the core (from 160 to 135 HV10) and tempered martensite surface (from 220 to 200 HV10) as
well as in decreasing the yield strength (from 455 to 413 MPa) and tensile strength (from 580 to
559 MPa). On the contrary, an increase in hardness of the core (from 165 to 175 HV10) and the outer
tempered martensite (from 240 to 270 HV10), in addition to an increase in yield strength (from 510 to
537 MPa) at almost the same level of tensile strength of 624–626 MPa are observed for B500B grade
D32 compared with D20. The modeling and simulation calculations suggest that the manufacturing
D32 rebars of B500B grade involves longer quenching time in the QTB which allow deeper tempered
martensite surface along with a relatively higher core temperature that renders faster kinetics and
larger volume fraction of V(C,N) precipitates. The current study demonstrates that the full potential
of V-alloying can be exploited when a sufficient quenching time at the equalization temperature is
achieved, which is valid for D32 rebars.

Keywords: Tempcore processing; quenching & tempering box (QTB); V-alloyed steel; V(C,N) precipi-
tations; microstructure; mechanical properties

1. Introduction

Searching for more energy efficient solutions has led to an increased interest in the de-
velopment of structural steels using cost effective production processes [1,2]. The quenching
and self-tempering (QST) or Tempcore process has been widely applied in the production of
low C-Mn steel rebars due to its relatively low cost compared to processes based on microal-
loying addition or conventional cold working [3–5]. The Tempcore technique allows the
production of concrete reinforcing bars with high mechanical properties alongside excellent
weldability and superior ductility and bendability. This technique can guarantee excellent
process controllability and high flexibility. However, it requires reducing the rolling line
speed for efficient cooling to achieve the required mechanical properties, compared with
that of the ordinary hot rolling. Thus, a high quenching time for the steel rebars, inside the
cooling box, will be on the expense of in-line productivity. The Tempcore process can be
summarized as follows: following the hot- rolling stage, at ~1000 ◦C, the hot rolled rebar
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enters the cooling zone in which it is quenched. Quenching is done using water sprays that
rapidly cool the surface of the bar below the martensite start (Ms) temperature [6]. Thus, a
hardened surface layer “case” is created while the central zone/core of the bar remains
austenitic until it transforms during further air cooling. Between the surface and core zones
a transition zone develops, where the cooling rate could be sufficient to trigger lower or
upper bainitic phase transformation depending on the applied process parameters. In a
subsequent step, heat transfers from the core towards the outer surface rim, tempering
the martensite [7–9] and hence, developing a self-tempering process. Tempering results in
stress relief due to the diffusion of carbon out of the martensite depending on the carbon
content. Within this step, the surface of the bar is reheated to approximately 600–700 ◦C
(the equalization temperature) and subsequently cooled naturally until reaching ambient
temperatures on the cooling bed. The Tempcore process route is distinguished from the
conventional normalizing hot-rolling route, where the rebars leave the finishing rolling mill
and cool down directly in air [10]. The major difference between the two processes lies in
the final temperature before air cooling of rebars. The Tempcore process allows lower final
temperatures compared to normalizing rolling route resulting in a graded microstructure
consisting of outer hard self-tempered martensite case and soft ferrite-pearlite core. The
core is softer and more ductile than that of the other fully micro-alloyed counterparts,
which can be achieved by the reduction of alloying additions [11]. The Tempcore process
that take place in the quenching and tempering box (QTB) has many input variables that
must be kept under control to obtain the desired properties. These input variables are the
finishing temperature, number of coolers, number of strippers, water pressure, water flow,
finishing speed and cooler size relative to the bar size. The most important output variable
is achieving the desired mechanical properties [12,13]. Assuming the same chemistry, the
primary determining factor of the strength of the bar is the quench depth or the tempered
zone. As such, measuring the tensile properties of the bar gives a very good indication
of the quenching systems. Microalloying elements, such as vanadium, are often added
in the steel rebar to enhance mechanical properties through grain refinement of ferrite
and nanoscale precipitates strengthening [14–16]. Weldability criteria are used to estimate
allowable carbon equivalent values according to Equation (1) [17] (Ceq. = 0.35 and 0.45),
i.e., values at which no cold cracks or other welding defects are formed. The alloying
elements content in steels of the C–Mn–Si–V system are optimized for the assembly of
welded reinforcing cages [18]. So far, a systematic investigation to explore the extent
of exploitation of the full potential of V-alloying during manufacturing different rebar
diameters is missing. Moreover, the influence of temperature evolution throughout the
whole diameter of rebars on the kinetics of V(C,N) precipitation to tailor the corresponding
microstructure and the mechanical properties is not fully understood yet. In the present
work, a set of optimized Tempcore processing parameters are applied to manufacture
two different rebar steel grades (B400B-R and V-alloyed B500B) with different diameters,
namely, D20 (20 mm) and D32 (32 mm). In addition, a finite element model is developed
to predict the evolution of temperature profile during cooling in the QTB and after air-
cooling, which is used to calculate the precipitation kinetics of V(C,N). The differences in
microstructure and mechanical properties due to manufacturing different of the examined
rebars grades are investigated and discussed and correlated with the potential of V(C,N)
precipitations for B500B grade.

2. Materials and Methods

The investigated two steel variants B400B-R (containing 0.003 wt.% V) and B500B
(containing 0.067 wt.% V) were industrially manufactured on a mass-production scale at
the bar mill of Ezz Dekheila Steel Co. (EZDK, Alexandria, Egypt). The target chemical
compositions of B400B-R and B500B were adjusted in the ladle furnace according to
Egyptian and British standards, respectively. Table 1 lists the measured chemistries of the
corresponding produced steel bars using an optical emission spectroscopy (DP73, Olympus,
Tokyo, Japan). The continuously casted billets with a cross-section of 130 mm × 130 mm
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are further thermo-mechanically processed in 16 stands bar hot rolling-mill before they
experience a controlled cooling in the QTB. The typical operation parameters used for
rebars with 20 and 32 mm diameters of different steel compositions are summarized
in Table 2.

Ceq = %C +
%Mn

6
+

%Cu
40

+
%Ni
20

+
%Cr
10
− %V

10
− %Mo

50
(1)

Table 1. Chemical composition of used steels rebars.

Steel Grade
Chemical Analysis, wt.%

C Si Mn P S Cr Ni V Cu N Ceq.

B400B-R 0.28 0.14 0.73 0.015 0.025 0.05 0.07 0.003 0.29 0.0068 0.42
B500B 0.22 0.17 1.37 0.017 0.025 0.05 0.08 0.067 0.15 0.0057 0.45

Table 2. Typical operation parameters for the QTB rebars production.

Bar Diameter
(mm)

QTB Normal
Rolling Speed (m/s)

Actual
Hot Rolling
Speed (m/s)

Achieved Rolling
Speed with QTB * (m/s)

Water Flow
(m3/h)

Equalization
Temperature (◦C)

20 8 13 13 600 665
32 4 7 7 620 670

* Nearly the same rolling speed is achieved with modified QTB when compared to ordinary hot rolling (no reduction in productivity). The
finishing rolling temperature, number of cooling pipes, and water pressure are fixed at 1000 ◦C, 10, and 12 Bar, respectively.

The microstructure characteristics of the different developed zones were observed for
both steel grades using an optical microscope (DP73, Olympus, Tokyo, Japan) as well as a
Quanta FEG 250 scanning electron microscope, FEI company (Hillsboro, OR, USA). The
standard sample preparation procedures were applied. The metallographic samples were
ground progressively using wet silicon carbide emery papers with grit number starting
with 180-grit and proceeding to 240-, 400-, 500-, 600-, 800-, 1000- and 1200-grit papers,
and finally polished on a low-speed wheel covered with micro-cloth using 0.05 µm Al2O3
suspension. To reveal the microstructure, the samples were etched using nital reagent for a
period of 4–6 s at room temperature. The line intercept method was applied to measure the
average grain size according to the guidelines of ASTM E-112 standard.

The case depths and thus case areas are measured using a micrometer fitted with
the microscope. The mechanical properties: yield strength (YS), ultimate tensile strength
(UTS), and total elongation percentage (El%) of the steel rebars were evaluated by means of
quasi-static tensile testing. The tensile tests were conducted using a universal tensile testing
machine Instron 4210 at room temperature with a cross-head speed of 0.1 mm/s on cylin-
drical specimens of 100, and 160 mm parallel gauge length for D20 and D32, respectively,
according to the DIN EN10002-1 2001 standard. Vickers hardness measurements were
carried out to visualize the hardness distribution over the microstructurally distinguished
zones with applying a test load of 10 kgf and dwell time of 15 s. The mechanical prop-
erties were evaluated based on average values calculated from at least three successfully
tested samples.

A thermal model is developed to predict the heat transfer process and the temperature
distribution for both the quenching and the subsequent cooling processes on reaching the
rebar equalization temperature. The temperature distribution is predicted by finite element
analysis using ABAQUS (version 6.14.1, Dassault Systèmes Simulia Corp., Providence,
RI, USA) software. The model is conducted on two-dimensional uniform semi circles.
The heat transfer is assumed to be negligible along the rebar length. Only the radial flow
across the cross section is considered [19]. The quenching and self-tempering processes are
carried out through a conduction/convection heat transfer transient problem, which can
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be summarized into three main steps. The first step is to calculate the film coefficient (h)
between the rebar and water during quenching. The film coefficient depends mainly on
temperature among other variables such as: rebar diameter, tube diameter, water flow rate,
and water pressure [20–22]. For simplicity, the coefficient could be taken as an average
fixed value, for each rebar diameter, throughout the model. Several studies have managed
to estimate this value after intensive numerical analysis that relates the heat transfer
coefficient to the cooling process parameters [23,24]. The analysis is based on adjusting the
film coefficient to obtain temperatures that are equal or nearly equal to that measured at
the inlet and outlet of the Tempcore box. Dimatteo et al. [22], established an equation that
predicts h from the rebar geometry and of the cooling water flow, Equation (2):

h = a1 + a2
(

D + D′
)
+ a3

D
D′

+ a4 x W (2)

where D and D′ are the rebar and the cooling tube diameters, respectively. Ẇ is the water
flow rate in the cooling tube, and a1, a2, a3, and a4 are the equation constant parameters.
Bandyopadhyay et al. [23] found that the heat transfer coefficients of water in the Tempcore
box with values 15 and 40 kW/m2 K for the 16 and 32 mm steel rebar diameters, respectively,
gave adequate results. In the present work, the film coefficients are estimated for each
rebar diameter from [23,24] by which a good agreement is shown between measured and
calculated temperatures as illustrated in the following section. The second step is the
water quenching process, modeled numerically, by which temperature distribution after
quenching is predicted. A uniform initial temperature of 1000 ◦C is applied to the steel
rebar. The temperature distribution across the rebar cross-section with time is given in the
following equation:

∂

∂r

(
k

∂T
∂r

)
+

k
r

(
∂T
∂r

)
= ρCp

∂T
∂t

(3)

where, T is the temperature, r is the distance from cold surface, k is the thermal con-
ductivity, Cp is the specific heat, ρ is the steel density and t is the time [25]. The steel
thermal conductivity (k) and the specific heat (Cp) are added to the model as functions of
temperature [26,27]. The boundary conditions adopted in the thermal model are as follows:

At the rebar cross section center:

∂T
∂r r=0

= 0 (4)

At the rebar surface:
− k

∂T
∂r r=R

= h[T(R, t)− T∞] (5)

where, T∞ is the temperature of the surrounding medium (water) which is taken here as
25 ◦C (298 K). The final step is self-tempering where the equalization temperature is reached
during an air-cooling process. The film coefficient in this step has a relatively small value
which could be taken as 40 W/m2 K [24]. It is worth mentioning that the numerical model,
in this work, is concerned only with the heat treatment process the rebar experiences,
while the thermodynamic equilibrium phase evolution was calculated using Thermo-Calc
software TCFE Steels/Fe-alloys database version 10 (Thermo-Calc Software, Stochholm,
Sweden). The main aim of this model is to determine the temperature distribution and
to predict the thermal cycles (the minimum and equalization temperatures) achieved,
which were applied to simulate the precipitation kinetics of V(C,N) using MatCalc software
version 6.03 (MatCalc Engineering GmbH, Vienna, Austria). The thermal analysis is
performed with input data related to processing parameters used in the present steel rebar
production. The thermal model results are validated with experimental ones.
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3. Results and Discussion
3.1. Thermo Dynamic Calculations

The equilibrium phase evolutions of the investigated steels are represented in Figure 1.
Obviously, the B500B steel grade containing 0.067 wt.% V shows the formation of FCC_A1#2
phase almost below 1000 ◦C referring to the start of precipitation of V(C,N) particles in the
austenite phase and extends into ferrite phase as well under the equilibrium conditions
(Figure 1a). On the contrary, the phase evolution diagram of B400B-R steel grade does
not indicate the formation of FCC_A1#2 phase (Figure 1b). The equilibrium ferrite start
temperature for both steel grades is around 800 ◦C, however, the cementite starts to form
when the temperature firstly drops to approximately 700 ◦C, below which the austenite
completely decomposes.

Figure 1. Phase evolutions of the investigated steel grades calculated using ThermoCalc software (TCFE 10 database). The
equilibrium amount of all phases vs. temperature for B500B and B400B-R steel grades are shown in (a) and (b), respectively.
FCC_A1, FCC_A1#2 and BCC_A2 phases stand for austenite, V(C,N) and ferrite, respectively.

3.2. Microstructure Characteristics
3.2.1. Outer Surface (rim)

From microstructural examination, a tempered martensite with lath like morphology
is observed. Figure 2 shows that the grain structure of martensite is consisting of differently
oriented martensite packets containing various blocks of martensite lathes. Such typical
martensitic microstructure with three level-hierarchy i.e., packets, blocks and lathes were
reported by Krauss [28]. The pronounced variation in orientations of the developed
martensitic microstructure emerges from the several possible crystallographic orientation
relationships between martensite and the parent phase austenite. Although the Kurdjumov-
Sachs (K-S) orientation relationship model considers 24 variants to form martensite from
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austenite grains and 6 possible variants in each packet. Kitahara et al. [29] pointed out that
neither all the 24 austenite grain variants nor the 6 packet variants can essentially appear. A
narrower lath is obtained for the smaller 20 mm rebar as shown in Figure 2a,c attributable
to the relatively lower equalization temperature achieved after during process. The SEM
micrographs of the outer layer of the B500B steel grade shown in Figure 3a,b indicate
the possible carbonitride precipitates during the Tempcore process. The boundaries of
martensite packets seem to be decorated with fine carbonitride precipitates, which could
not be resolved at the applied magnification.

Figure 2. Optical micrographs showing the developed microstructures in the outer surfaces (a,b) and (c,d) of the D20 and
D32 B400B-R and B500B steel grades, respectively.

Figure 3. SEM micrographs of B500B steel grade. (a,b) show the tempered martensite surface layer for both D20 and
D32, respectively.
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The average tempered martensite depth (Md), rim distance, is found to increase with
increasing rebar diameter. In Table 3 the Md for the D20 mm rebar is ~1.52 mm whereas
for the D32 mm rebar is ~1.9 mm. However, the tempered depth to the rebar diameter
ratio is almost constant and ranging from 0.05–0.08, indicating that the water amount is
proportional to rebar diameter. In addition, quenching time, as a rolling speed dependent,
is generally known to affect the rim depth. Therefore, both water amount and time are
modified for each rebar diameter while maintaining the rolling speed as in initial hot-
rolling design. Table 3 also shows the effect of rebar diameter (D, mm) on the tempered
martensite depth (Md, mm), tempered martensite volume fraction (Mv, %), and tempering
temperature (Te, ◦C) values of different steels composition. Mv can be calculated as follows:

Mv, % = [1− 4
(

Rm, mm
D, mm

)2
] ∗ 100 (6)

where, Rm and D are represented in Figure 4. For the B500B steel grade, changing the
steel composition mainly increasing the Mn content besides V-addition and adjusting the
process-parameters could be the reason behind the higher martensite depths observed
in Table 3. The second phase precipitate of VC or V(CN) are expected to form during
the austenite to ferrite transformation and these formations can enhance the ferrite grain
refinement through increasing the potential nucleation sites. The addition of V slightly
reduces ferrite grain size from 7 to ~4.5µm. However, in a rather small volume fraction,
upper bainite appears in the microstructure of the core zone and it has been indicated
that the breaking cementite lamellar into a small fragment is mainly due to a decrease in
transformation temperature [30].

Table 3. The effect of different steel compositions on the formed tempered zone for rebars.

Steel Grade

20 mm
(13 m/s: Rebar
Rolling Speed)

32 mm
(7 m/s: Rebar

Rolling Speed)

Md, mm Mv, % Te, ◦C Quenching
Time, s Md, mm Mv, % Te, ◦C Quenching

Time, s

B400B-R 1.52 25.73 670 1.06 1.90 22.53 670 1.57
B500B 1.76 29.44 655 1.06 2.25 26.15 655 1.57

Figure 4. Schematic presentation of a cross-section of Tempcore rebar showing the different outer-
surface rim and core zones with relative dimensions.
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3.2.2. Core Zone

The microstructures of the core zone for both the steel grades B400B-R and V-alloyed
B500B are shown in Figure 5. The optical micrographs generally revealed ferrite-pearlite
cores for both diameters of each grade, however, the cores of D32 for both steels show
relatively larger amounts of pearlite and coarser ferrite grains. Such coarser ferrite grains
developed in the core of D32 rebars for both grades can be explained by the relatively higher
core temperature (as indicated by the developed thermal profile using the thermal model)
attained by applying low rolling speed. Processing of D32 rebars involves also slower
cooling rate of the core renders the pearlitic phase transformation to proceed resulting in
relatively larger amount of pearlite compared with that developed during processing of D20
rebars. More detailed microstructure characteristics of core zones for V-alloyed B500B of
D20 and D30 rebars are represented in Figure 6, which reveals the typical lamella structure
of pearlite. The representative areas depicted in Figure 6a,b (D20 and D32, respectively)
indicate a larger pearlite colony of D32 that developed during processing of D20.

Figure 5. Optical micrographs showing the developed microstructures in the core zones (a,b) for D20 and D32 of B400B-R
grade. (c,d) show the microstructure in the core zones for D20 and D32 of B500B steel grade.
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Figure 6. SEM micrographs of B500B steel grade. (a,b) indicate ferritic-pearlitic microstructures developed in the core zones
for both D20 and D32, respectively.

3.3. Mechanical Properties
3.3.1. Hardness Profile

The hardness measurements from the rim surface to the core for the studied steel
rebars are shown in Figure 7. A drop in the hardness values from surface to the rebar center
is generally observed. This result is expected and mainly attributed to the high cooling
rate, which gradually decreases toward the rebar center. The formation of self-tempered
martensite increases the hardness of the surface layer that is found to vary with increasing
rebars diameters, a value of 222 decreases to 198 HV with increasing B400B-R steel diameter
from D20 to D32 mm, respectively, and a value of 275 decreases to 246 HV with increasing
B500B steel diameter from D20 to D32 mm. Similar trend is also observed for the minimum
values of the core hardness, as shown in Figure 7. The measured low hardness values
can be associated with the mixed microstructure of ferrite and pearlite formed in the
core. The addition of Vanadium to steel produces a less steep drop in hardness values
toward the rebars core. The change of the hardness values in the transition zones, between
tempered surface and core, occurred with high rate, being rebars diameter dependent,
and hence formation is a cooling rate dependent. These variations in hardness values can
be attributed to different volume fractions of the consistent phases in the transition zone.
As mentioned above these transition zones have been identified to consist of bainite, AF,
ferrite, and cementite and all contributes to the measured hardness values. These zones
in addition to the tempered martensite are expected to increase the strength level of the
manufactured rebars [31]. The fine microstructure of both areas is a further benefit for
the steel toughness, since it provides a high resistance to crack propagation [27,32], and
furthermore the existing mixture in the soft core can also be advantageous for improving
the impact toughness of rebars.
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Figure 7. Vickers hardness distribution from the center to the surface of B400B-R and B500B
steel grades.

3.3.2. Tensile Strength

The strength of steel rebars, rapidly quenched, depends on the volume fraction of
each microstructure region in the cross section and they are separately contributing to the
overall measured strength. Higher strength contribution can be attributed to the higher area
fraction of tempered martensite rim. The measured yield strength, ultimate strength and
total elongation values of the Tempcore rebars steels are shown in Figure 8. The obtained
results agree with the international and national standards requirements. The estimation
of yield strength for QTB rebars is related to the measured rim thickness and its hardness
through an empirical equation [33]:

YS =
[k1 ∗ rim hardness + k2 ∗ core hardness + k3 ∗ average rim thickness]

3
(7)

where YS is the yield strength (MPa), rim and core hardness in MPa, average rim thickness
in mm, and k1, k2 and k3 are constants. The relation is limited to low carbon steel with
carbon content up to 0.30%, 0.05–1.2% Mn and <0.30% alloying elements. The constants k1,
k2, k3 are taken as 2.130, 2.350, 203.034 respectively [33].

Compared to measured values, the calculated yield strength is slightly lower. For
example, for the D20 mm B400B-R rebar with 1.52 mm rim thickness, the yield strength cal-
culated using Equation (7) is ~401 MPa against ~445 MPa experimentally measured, while
for the D32 mm B400B-R rebar with 1.9 mm rim thickness, the yield strength calculated
using Equation (7) is ~388 MPa against ~413 MPa experimentally measured, see Figure 8.
The difference can be attributed to the absence of the transition zone effect in Equation (7).
Microstructure features such as grain size, precipitations and dislocation density are es-
sential for reaching the required mechanical properties. The impact of microstructure
effect on rebar mechanical properties can be evaluated using the corresponding ultimate
tensile strength (UTS) to the yield strength YS ratio [UTS/YS = UYR]. This ratio is currently
used to define the type of steel application within certain corresponding limits, e.g., the
ASTM A706,2006 standard, in this respect limit of 1.25 ratio, is selected for the seismic rebar
resistance. The different steel composition rebars indicate that micro alloying vanadium
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is very effective and decreases the UYR ratio from around ~1.3 to ~1.22 in D20 mm, and
~1.35 to ~1.17 in D32 mm rebar when vanadium is added (~0.067%) to steel B500B. Such a
decrease in the UTS/YS ratios could also be attributed to the range of carbon content with
the vanadium in the steel composition. A low UYR value can be an indication that there is
a high resistance to impact fracture under load [34]. This behavior is related to the presence
of some microstructure features such as bainite, ferrite and/or martensite, leading to a
higher resistance to dislocation movements and reducing the material uniform elongation.
However, it has been reported that the formation of a small fraction of a ductile phase in
the hard phases can largely improve the yield strength and UYR ratio without altering the
uniform elongation [35]. The vanadium content in the steel could contribute to ferrite grain
refinement through retarding recrystallization of austenite during the hot deformation
stage. Moreover, during hot deformation the accumulated defect can enhance the inter-
granular precipitates of VC or V(C,N) formation [36]. It was reported that the addition of
1 wt.% vanadium to X20CrNiMnVN18-5-10 steel resulted in increasing the yield strength
to ~600 MPa through an interplay among several strengthening mechanisms, namely,
solid solution, Hall-Petch effect and Ashby-Orwan effect [37]. Moreover, the type and size
of V(C,N) precipitates can control not only the mechanical properties and deformation
mechanism [38] but also the corrosion and hydrogen embrittlement behaviors [39].

Figure 8. Evaluated tensile properties of B400B-R and B500B steel grades represented in bar chart for
D20 and D32 rebars. YS, UTS and El stand for yield strength, ultimate tensile strength and percent of
total elongation, respectively.

3.4. Evolution of Thermal Cycles

The thermal profiles of studied rebars, starting from the cooling box entry up to
the equalization temperature, are shown in Figure 9. This is performed by discretizing
the radius of the rebar’s cross section into segments of equal dimensions. A mid node
for each segment is selected at which the temperature is captured and recorded. The
thermal profiles show the temperatures of the rebars’ cross sections at the surface down
through the core. Only couple of internal nodes’ temperature profiles are plotted for clarity.
The predicted lowest temperature reached by quenching is found to vary from 298 to
148 ◦C with increasing the rebar diameters from 20 to 32 mm, respectively, Figure 10. The
temperature reached for the 32 mm rebar is beyond the martensite-finish temperature (Mf)
as a result, a complete transformation can be expected in the rim zone. On the other hand,
only about 50% of martensite transformation can be achieved for the 20 mm rebar diameter.
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Figure 10 also shows the increase of the generated temperature values from the minimum
quenching temperature up to the equalization temperature (Te). This rise in temperature is
generally related to the heat flow effect from the core to the surface causing the tempering
of the martensite zone. A close agreement between calculated Te and the measured one for
the different rebar diameters is shown in Figure 11.

Figure 9. Evolution of thermal cycles in the core as well as surface zones during processing of D20 (a) and D32 (b) rebars.

Figure 10. Temperature distribution after quenching for the studied rebars.
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Figure 11. Equalization temperature after self-tempering process: 4 diameters, 20, 22, 25, and 32 mm rebars are industrially
produced, but onle two rebars (20, and 32 mm) are represented in this article.

The extended time to reach Te from the minimum quenching temperature also in-
creases with an increasing rebar diameter. It is likely that such a time will not affect only the
martensite zone but also the transition zone where tempered martensite has been observed
for the first layer. The former microstructure analyses, in this work, show a multi-phase
structure formation in the transition zone along with their volume fraction, which is a rebar
diameter dependent, i.e., depends on the rate of cooling.

3.5. Precipitation Kinetics

The precipitation kinetics of V(C,N) for B500B grade was simulated based on the
thermal profiles predicted using the thermal model for different diameters i.e., D20 and
D32 rebars. The thermal profiles for the outer surfaces as well as for the cores of the
corresponding diameters (Figure 9) are set as the heat-treatment cycles for precipitations
kinetics simulations. Figure 12 shows the resulting fraction of precipitates vs. time curves
for the predicted thermal cycles, namely, outer surface D20, outer surface D32, core D20
and core D32. During the in-line cooling practices in the QTB the equalization temperature
is the main controlling parameter that can define the extent of precipitation. The kinetics
simulation indicates a variation in precipitation potential depending on the processed
diameters. Obviously, the D32 rebars manifest a greater potential to form higher volume
fractions of V(C,N) precipitates in both of outer surface and core as well. The fractions of
V(C,N) precipitates reach approximately 0.0007, 0.001, 0.0008 and 0.0014 for outer surface
D20, outer surface D32, core D20 and core D32, respectively. Such higher potential for
precipitation during processing of D32 is emerging from: (1) the fact that the eventually
attainable equalization temperature during processing of D32 rebars renders higher surface
and core temperatures, 655 and 750 ◦C respectively, than those could be achieved during
processing of D20 rebars (eventually 620 ◦C); (2) the precipitation kinetics generally shows
a sluggish behavior as the temperature drops implying a larger time-window available for
precipitation when the equalization temperature is high. It is worth mentioning that the
fraction of precipitation approaches the theoretical equilibrium limit (0.0015 as indicated
from the thermodynamic calculations) during processing of D32 rebars, however, the
precipitation potential is not fully exploited during the processing of D20 under the current
applied operational parameters.
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Figure 12. The precipitation kinetics during processing of D20 and D32 rebars for V-alloyed B500B steel grade. The thermal
cycles and fraction of precipitation vs. time curves are represented in (a–d) for the outer surface D20, outer surface D32,
core D20, and core D32, respectively.

4. Conclusions

An optimized set of in-line processing parameters during Tempcore practices in-
cluding hot-rolling speed of 13 and 7 m/s, water flow rate of 600 and 620 m3/h and
equalization temperature of 660–670 ◦C were utilized to industrially manufacture two
different rebars D20 and D32, respectively, for two steel grades, namely, B400B-R and
0.067 wt.% V-alloyed B500B. V-alloyed B500B grade aims to improve its whole mechanical
property profile through V(C,N) precipitation during adopting processing parameters
that render higher productivity than that can be obtained under normal conditions in the
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quenching and tempering box (QTB). The following conclusions can be drawn based on
the current findings:

− Typical graded microstructures consisting of soft ferrite-pearlite core encapsulated
with hard tempered martensite surface were observed for both diameters of each
steel grade.

− For both of B400B-R and B500B grades, the adopted speed of hot rolling-line of 7 m/s
to manufacture D32 rebars is responsible for increasing the quenching time in the QTB
and the corresponding increase in the tempered martensite depth compared with its
counterpart during manufacturing D20 rebars processed by 13 m/s as the speed of
rolling-line.

− For B400B-R grade, D32 rebars show relatively softer microstructure with lower yield
and tensile strength values than D20 rebars exhibit, which can be explained by the
higher attainable core temperature for D32 as indicated from the thermal model.
Such high core temperature leads to a larger degree of tempering for the martensite
surface layer and relatively coarser ferrite-pearlite core, which were reflected by lower
hardness values.

− For V-alloyed B500B grade, an opposite behavior than that of B400B-R grade is ob-
served. The higher attainable core temperature in case of processing D32 rebars
renders the exploitation of full potential of V(N,C) precipitation possible in both of the
core as well as the surface zones, which allows increasing the hardness, yield strength
and tensile strength values compared with their counterparts in case of D20 rebars
that experience relatively short precipitation time at relatively lower temperature.

− The V-addition to B500B steel grade does not scarify the attainable total elongation in
comparison to the B400B-R steel grade, since the observed differences are below 2.5%.

− The current work emphasizes the additional advantages of tuning the microstructure
and mechanical properties that can be realized from V-alloyed rebars processed by
Tempcore practices, when the suitable equalizing temperature and quenching time
can be properly adjusted to control and exploit the full potential of precipitation
process. In the future work, the electrochemical behavior and bending characteristics
of such rebars will be carefully investigated.
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