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Abstract: A simple modeling method to extend first-principles electronic structure calculations to
finite temperatures is presented. The method is applicable to crystalline solids exhibiting complex
thermal disorder and employs quasi-harmonic models to represent the vibrational and magnetic
free energy contributions. The main outcome is the Helmholtz free energy, calculated as a func-
tion of volume and temperature, from which the other related thermophysical properties (such as
temperature-dependent lattice and elastic constants) can be derived. Our test calculations for Fe, Ni,
Ti, and W metals in the paramagnetic state at temperatures of up to 1600 K show that the predictive
capability of the quasi-harmonic modeling approach is mainly limited by the electron density func-
tional approximation used and, in the second place, by the neglect of higher-order anharmonic effects.
The developed methodology is equally applicable to disordered alloys and ordered compounds and
can therefore be useful in modeling realistically complex materials.

Keywords: quasi-harmonic approximation; Debye model; first-principles calculations; Helmholtz
free energy; thermophysical properties; cubic metals

1. Introduction

The first successful applications of Debye–Grüneisen theory to derive thermal proper-
ties of metals [1] from the total energies calculated on the basis of density functional theory
(DFT) [2,3] were later overshadowed by the great success of quasi-harmonic evaluation
of the phonon free energy from DFT-computed phonon spectra [4–9]. Furthermore, free
energy evaluation by means of thermodynamic integration of ab initio (or classical ab-initio
based) molecular dynamical simulation is now often used for describing systems with
strong anharmonic effects at high temperatures [10–12]. All these recent developments are
truly impressive and yield extremely valuable data about the behaviors of anharmonic
systems, but at an extremely high computational cost.

A number of approaches for reducing the computational cost have been proposed, to
enable modeling realistically complex systems [11,13–17]. In multi-scale modeling, the data
obtained from very detailed atomic-scale models [18] must be represented in the form of
effective parameters of coarser-grained models, for example as thermophysical properties
of alloy phases considered in continual models [19–25]. In the context of coarse-graining,
as a part multiscale modeling, most useful are simple models that can capture the essential
physics of complex behavior of a real system.

Due to its nice analytic properties, the Debye model is a very attractive choice for
representing vibrational free energy of close-packed crystalline systems (such as elemental
metals, substitutional metallic alloys, or intermetallic compounds) at temperatures much
below the melting point [19,20]. One clear advantage of Debye model is that it yields
the vibrational energy and entropy contributions to the Helmholtz free energy as closed
expressions, from which all related thermodynamic properties can be derived.
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In this work, we follow the idea of Ehteshami and Korzhavyi [26] to connect the Debye
model to finite-temperature electronic structure calculations via Debye temperature ΘD
parameter evaluated from the elastic constants. In contrast to previous formulations of
the Debye model [1], we do not introduce an “isotropic” Grüneisen constant to represent
the volume dependence of compressibility, but describe the volume dependence of ΘD
through directionally-averaged longitudinal and transverse stiffness constants [27–30] that
are computed as functions of volume and temperature.

Performance of the so-formulated quasi-harmonic Debye model is tested here for
selected elemental metals with the face-centered cubic (fcc) and body-centered cubic (bcc)
crystal structures. Equilibrium lattice parameters, elastic constants, and their temperature
dependencies are derived from the modeled Helmholtz free energy containing the elec-
tronic and vibrational contributions. By comparing the calculated results with available
experimental data, we demonstrate the advantages and limitations of the present formula-
tion of quasi-harmonic Debye model (QDM) and discuss its possible generalizations.

2. Materials and Methods

First-principles calculations, interfaced to a quasi-harmonic formulation of the Debye
model, are employed in this work for modeling the Helmholtz free energy of fcc Cu, Ni,
and γ-Fe metals (the latter two are considered in the high-temperature paramagnetic state),
as well as for bcc β-Ti, Cr, Mo, and W metals. Anharmonic effects are known to play
a crucial role in the stabilization of β-Ti at high temperature, so that a quasi-harmonic
treatment is clearly insufficient in this case, which is included in the present study mainly
for pedagogic reasons.

Self-consistent electronic structure calculations were performed in the generalized
gradient approximation (GGA) using the PBE (parameterized by Perdew, Burke, and
Ernzerhof) exchange-correlation functional [31] and the exact muffin-tin orbital (EMTO)
method [32], implemented within Green’s function formalism augmented by the coherent
potential approximation (CPA) [33,34]. The electronic free energy was calculated from the
self-consistent electron density using the full charge density technique [35,36]. The method
allows for evaluating the electronic and magnetic free energy contributions associated,
respectively, with partial occupancy of electron states [37] and with paramagnetism of dis-
ordered local moments (DLM) [38] at a non-zero electronic temperature, see Reference [26]
for further details of the theoretical treatment.

Technical details of the calculations were as follows. Monkhorst–Pack meshes of
special points [39] were used for Brillouin zone integration, 33 × 33 × 33 for bcc and
29 × 29 × 29 for fcc metals. For each metal, the electronic free energy and its derivatives
with respect to two volume-conserving shear distortions (related to cubic elastic constants
C44 and C′) were evaluated on a grid of temperature and Wigner–Seitz radius (RWS, related
to atomic volume as V = 4πR3

WS/3) values. The results of such calculations for fcc Cu
metal are presented in Figure 1a,b.

For the two types of shear, the partial (electronic) free energy of Cu shown in Figure 1a
is a quadratic function of the distortion, with the proportionality coefficients that are almost
temperature-independent, especially C44. The volume dependence of partial free energy
shown in Figure 1b is a function that changes very little with temperature, indicating
a small value of the electronic heat capacity typical of a metal with a closed d-electron
shell. As a result, the Debye temperature, Figure 1c, evaluated from the elastic constants,
is practically independent of electronic temperature in the range from 800 to 1200 K. Its
volume dependence is rather strong and slightly non-linear. By plugging the calculated
Debye temperature into the Debye model and adding the modeled vibrational free energy
to the partial free energy, one gets the Helmholtz free energy plotted in Figure 1d. Its
minimum at each temperature corresponds to the equilibrium Wigner–Seitz radius; by
following the evolution of the minimum point with temperature (down triangles connected
with a dashed line) one can derive thermal properties such as heat capacity and thermal
expansion coefficient (TEC).
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from 𝐶44, 𝐶′, and 𝐵el; (d) Helmholtz free energy obtained by adding the vibrational free energy in the Debye model to 

the electronic free energy. Dashed line with down triangles indicates the temperature-dependent equilibrium volume. 

Figure 2 illustrates the application of a similar computational procedure to the case 

of fcc Ni, the element preceding Cu in the Periodic table. The 3d-electron shell of Ni is 

incompletely filled, giving rise to its local magnetic moment. The high-temperature para-

magnetic state of Ni is considered here.  

Several schemes based on the DLM approach have been proposed for the treatment 

of paramagnetic disorder [26,40–43]. Here we use the self-consistent mean-field approach 

of Reference [26], where an average magnetic-moment magnitude 𝑚 (in Bohr magneton 

units) is ascribed to every atom. The orientation of each atomic moment is completely 

arbitrary in the paramagnetic state, generating a magnetic entropy 𝑆mag = 𝑘Bln⁡(𝑚 + 1) 

per magnetic atom. Here 𝑘B is the Boltzmann constant. For an integer magnetic moment, 
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Figure 1. Parameterization of the Debye model using elastic property calculations for fcc Cu, a metal with a closed d-electron
shell: (a) electronic free energy dependencies on two volume-conserving distortions, to calculate shear elastic moduli C44

and C′ at each considered Wigner–Seitz radius RWS and electronic temperature Tel; (b) electronic free energy dependence
upon isotropic strain, to calculate adiabatic bulk modulus Bel(V, Tel); (c) Debye temperature estimated from C44, C′, and Bel;
(d) Helmholtz free energy obtained by adding the vibrational free energy in the Debye model to the electronic free energy.
Dashed line with down triangles indicates the temperature-dependent equilibrium volume.

Figure 2 illustrates the application of a similar computational procedure to the case
of fcc Ni, the element preceding Cu in the Periodic table. The 3d-electron shell of Ni
is incompletely filled, giving rise to its local magnetic moment. The high-temperature
paramagnetic state of Ni is considered here.
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Figure 2. Parameterization of the Debye model using elastic property calculations for paramagnetic fcc Ni, a metal with
an open d-electron shell: (a) electronic free energy dependencies on two shear distortions, to calculate C44 and C′ at each
considered RWS and Tel; (b) electronic free energy dependence upon isotropic strain, to calculate adiabatic bulk modulus
Bel(V, Tel); (c) Debye temperature estimated from C44, C′, and Bel; (d) Helmholtz free energy obtained by adding the
vibrational free energy in the Debye model to the electronic free energy. Dashed line with down triangles indicates the
temperature-dependent equilibrium volume.

Several schemes based on the DLM approach have been proposed for the treatment of
paramagnetic disorder [26,40–43]. Here we use the self-consistent mean-field approach of
Reference [26], where an average magnetic-moment magnitude m (in Bohr magneton units)
is ascribed to every atom. The orientation of each atomic moment is completely arbitrary in
the paramagnetic state, generating a magnetic entropy Smag = kB ln(m + 1) per magnetic
atom. Here kB is the Boltzmann constant. For an integer magnetic moment, m + 1 gives
the number of its possible projections on a quantization axis. It can be shown that, in the
harmonic approximation where the energy is assumed to be a parabolic function of m,
longitudinal fluctuations of magnetic moment around its average value do not additionally
contribute to Smag.
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By self-consistently including the magnetic entropy contribution into the electronic
free energy, one gets a splitting of the one-electron potential by ∆U↑,↓ = ∓kBT/(m + 1),
where the up- and down-arrows denote, respectively, the majority and minority spin
channels in the spin coordinate framework associated with an atom. It is noteworthy that
this mean-field potential shift does not depend on the curvature of the parabolic function,
but is temperature-dependent, favoring larger values of m at a higher temperature.

This makes the values of m and Smag depend not only on volume, but also on temper-
ature. This magnetic contribution, in addition to the electronic contribution proportional
to the density of states at the Fermi level (which is higher in the case of Ni with an open
d-shell), causes a stronger temperature dependence of the partial (electronic) free energy
in the case of Ni as compared to Cu, see Figure 2a,b. The onset of magnetic moment and
electronic excitations contribute to the Debye temperature shown in Figure 2c, whose vol-
ume dependence exhibits a kink at RWS ∼= 2.65 bohr and whose temperature dependence
becomes more pronounced at larger volumes.

By comparing the rates at which the free energy curves accelerate down with tem-
perature (Figures 1b and 2b), one can deduce that electronic contributions to the thermal
properties are much stronger in the case of Ni (paramagnetic transition metal) than in the
case of Cu (normal metal with no atomic moments). Still, the magnetic moment on Ni
is relatively small, so the magnetic contributions to thermal expansion and heat capacity
of Ni, which can be deduced from Figure 2b,d, are also small compared to the respective
vibrational contributions, see Reference [44] for further details.

Iron, as an element from the middle of the 3d transition series, exhibits high values
of magnetic moment, exceeding 2 Bohr magnetons at large volumes. The strong volume
dependence of magnetic moment enhances the volume dependencies of elastic constants,
Figure 3a,b, to make the Debye temperature non-linear at large volumes, showing increas-
ingly strong positive deviations from linearity at higher temperatures, see Figure 3c. The
origin of this “upturn” of Debye temperature at large volumes is due to a competition of
magnetic entropy and energy contributions: The entropy gain is overwhelmed by the high
energy cost of increasing an already large paramagnetic moment.

This interplay of magnetic contributions has important consequences for the equilib-
rium volume and other thermal propertied of fcc Fe. As Figure 3b shows, the minimum of
partial free energy occurs at a much lower RWS value of about 2.62 bohr, to be compared to
about 2.70 corresponding to the Helmholtz free energy minimum in Figure 3d at 1250 K.
As the Figure also shows, the initially very rapid thermal expansion slows down at high
temperature (anti-invar effect).

Another well-known example of strong temperature effect is the case of β-Ti, which is
mechanically unstable in the bcc structure at low temperature but is stabilized at elevated
temperatures due to a complex interplay of electronic and vibrational (both harmonic and
anharmonic) contributions [12,45–47]. Although it is clear that the present quasi-harmonic
treatment of lattice vibrations is insufficient in such a complex case, it is instructive to
analyze it to see the capabilities and the limits of our methodology.

The instability of facilitates itself in the negative values of tetragonal shear constant
C′, that makes both Debye temperature and vibrational free energy ill-defined (imaginary)
at large volumes and low temperatures. However, electronic temperature tends to remove
this instability by changing the slope of the partial free energy as a function of tetragonal
distortion, Figure 4a so that at 1500 K the C′ attains a positive value, making the Debye
temperature and Helmholtz free energy of β-Ti real-valued. They are shown as full lines in
Figure 4c,d. It is noteworthy that, in the present model, this stabilization (i.e., removal of an
electronic instability) is caused solely by the Fermi smearing of electron state occupancy. In
reality, there is another strong contribution to the stabilization, coming from anharmonicity
(namely, changes in the electron structure caused by large amplitudes of random atomic
displacements from the ideal bcc lattice sites) [10–14,45–47]. An extension of the CPA
methodology can take this effect into account [48], but has yet to be implemented on the
basis of EMTO method.
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Figure 3. Parameterization of the Debye model using elastic constant calculations for paramagnetic fcc Fe, a metal with
an open d-electron shell: (a) electronic free energy dependencies on two shear distortions, to calculate C44 and C′ at each
considered RWS and Tel; (b) electronic free energy dependence upon isotropic strain, to calculate adiabatic bulk modulus
Bel(V, Tel); (c) Debye temperature estimated from C44, C′, and Bel; (d) Helmholtz free energy obtained by adding the
vibrational free energy in the Debye model to the electronic free energy. Dashed line with down triangles indicates the
temperature-dependent equilibrium volume.
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with an open d-electron shell: (a) electronic free energy dependencies on two shear distortions, to calculate C44 and C′

at each considered RWS and Tel; (b) electronic free energy dependence upon isotropic strain, to calculate adiabatic bulk
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the three elastic moduli are positive, missing points mean elastic instability of bcc lattice; (d) Helmholtz free energy obtained
by adding the vibrational free energy in the Debye model to the electronic free energy. Dotted lines indicate temperatures at
which ΘD is partly imaginary. Dashed line with down triangles indicates the temperature-dependent equilibrium volume.

Despite the limitations of quasi-harmonic Debye model in the present formulation, it
is able to describe the thermal stabilization of the bcc crystal structure of β-Ti and even to
closely reproduce the large value of its lattice parameter measured at high temperature [49]:
the free energy minimum in Figure 4d occurs at RWS ∼= 3.08 bohr, which corresponds to a
lattice parameter of 3.31 Å. This observation shows that the present modeling methodology,
in the present or extended [48] form, may be very useful in studies of the alloy phases that
exhibit a lattice instability in a certain domain of temperature and composition. However,
we leave this interesting subject for future studies.



Metals 2021, 11, 195 8 of 16

In the rest of this paper, let us consider elemental metals that are stable in a cubic
crystal structure, fcc (Cu, Ni, and γ-Fe) and bcc (Cr, Mo, W). These elements are relevant
to many technological applications and exhibit a variety of thermal properties, such as
thermal expansion and temperature-dependent elastic moduli, for which experimental
data are available.

3. Results

In this section we benchmark the present modeling approach by comparing its results for
the selected fcc and bcc metals with experimental data on their respective equilibrium lattice
parameter, thermal expansion coefficient, and elastic constants. When comparing the theory
and experiment, one should keep in mind that more approximations underlie the theoretical
results than those involved in the present formulation of quasi-harmonic Debye model. Such
approximations as the GGA may be the main cause for the discrepancy with experiment in
some cases [50]. Additionally, in some cases the scatter of experimental data is too large to
make a quantitative comparison, so it is important to analyze qualitative trends, as well.

3.1. Face-Centered Cubic Metals

We begin our analysis with the three fcc metals of the 3d series, of which Cu and Ni
exist as fcc in the whole temperature range below the melting temperature, while γ-Fe is a
medium-temperature crystalline phase sandwiched between two bcc phases, α- and δ-Fe.
As Figure 2a,b and Figure 3a,b show, the fcc crystal structure of Ni and Fe is mechanically
stable when these metals are treated as disordered-local-moment paramagnets. To describe
Pauli-paramagnetic state of fcc Cu, standard non-spin-polarized calculations are sufficient.
In the GGA approximation, they reproduce the mechanical stability of the fcc crystal
structure, Figure 1a,b, but slightly overestimate its equilibrium lattice parameter [50], see
Figure 5a. The calculated lattice parameters of Ni and γ-Fe presented in Figure 5a are
much closer to the experimental data points, as compared to the case of Cu. The slopes of
temperature dependence for the lattice parameters of Cu, Ni, and γ-Fe are qualitatively
reproduced by the model; a more quantitative comparison will be made below.
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The GGA-calculated elastic constants of Cu metal are compared with two sets of
experimental data in Figure 5b. The tendency of elastic constants to decrease with increas-
ing temperature is reproduced well by the calculations, but the C11 and C12 values, as
well as the value of bulk modulus BT = (C11 + 2C12)/3, are underestimated compared to
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experiment, which is a consequence of the overestimated lattice parameter aT of Cu by the
GGA [50], see Figure 5a.

Our calculations for other metals, summarized in Table 1, show a clear anti-correlation
tendency between the errors in theoretical estimates of the lattice parameter and bulk
modulus: if the lattice parameter aT is overestimated by the GGA, then the bulk modulus
BT is underestimated (as in the cases of Cu, Mo, and W) and vice versa (as in the case of
Cr). It is remarkable that for the two other fcc metals studied, Ni and γ-Fe, our calculations
yield very close estimates of their lattice parameters and bulk moduli.

Table 1. Calculated lattice parameters and bulk moduli of selected cubic metals at elevated tempera-
tures, in comparison with experimental data. “Electronic” ael and Bel are determined, respectively,
from the minimum and the curvature of the partial free energy curve as in Figure 1b. Equilibrium
aT and BT are calculated from the minimum and the curvature of the Helmholtz free energy curve
corresponding to temperature T, see Figure 1d for example.

Metal T, K Lattice Parameter, Å Bulk Modulus, GPa

ael aT aexp
1 Bel BT Bexp

1

Cu 800 3.638 3.682 3.646 140.0 118.0 124.8
% error, Reference −0.2 +1.0 [51] +12.2 −5.4 [53]

Ni 800 3.526 3.555 3.550 194.1 174.4 171.0
% error, Reference −0.7 +0.1 [51] +13.5 +2.0 [55]
γ-Fe 1250 3.540 3.640 3.652 136.7 103.1 102.7

% error, Reference −3.0 −0.3 [52] +33.1 +0.4 [56]
β-Ti 1250 3.27 3.32 3.31 106.2 90.9 87.7

% error, Reference −1.3 +0.3 [49] +21.0 +3.6 [57]
Cr 1000 2.851 2.871 2.901 249.7 229.6 190

% error, Reference −1.7 −1.0 [58] +31.4 +20.8 [59]
Mo 1000 3.164 3.181 3.159 249.1 231.5 247.5

% error, Reference +0.2 +0.7 [60] +0.6 −6.5 [61]
W 1000 3.192 3.206 3.175 294.2 275.9 298.3

% error, Reference +0.5 +1.0 [62] +12.2 −5.4 [63]
1 Experimental data have been interpolated or extrapolated to the given temperature.

3.2. Body-Centered Cubic Metals

Of the studied bcc metals, β-Ti represents a special case as its cubic crystal structure
is temperature-stabilized due to electronic and vibrational effects. Since the anharmonic
vibrational effects are not fully incorporated into the present model, it predicts the bcc
structure to become fully stable at too high temperature of about 1500 K, see Figure 4d.

However, Table 1 shows that the quasi-harmonic Debye model predicts the lattice
parameter and the bulk modulus of β-Ti quite accurately. It also shows that the vibrational
contributions to these properties are essential because the estimates based on partial
“electronic” free energies, ael and Bel, are too far from the experimental data, deviating
by −1.3% and +21.0%, respectively. The lattice parameters of Mo and W metals are
overestimated in the GGA, which is expectable [31,50]. An overestimation of aT by 1%
corresponds to a 3% error in the unit cell volume and in a bulk modulus that is smaller by
about 6% in comparison with experiment.

However, in the case of Cr, the theory fails in a very different way. First of all, the
lattice parameter is quite strongly underestimated, see Table 1. Although the inclusion of
vibrational effects brings the calculated values of lattice parameter and bulk modulus at
1000 K closer to the experimental values, still the errors are quite large.

Secondly, one can try to cancel out some of the systematic errors by calculating the linear
thermal expansion coefficient, defined relative to the calculated room-temperature lattice
parameter a0 as α = a−1

0 ∆(daT/dT). As Figure 6 shows [51,52,58,62,64–66], for most of the
studied metals, one finds the calculated TEC values (open circles) are in reasonable agreement
with experimental data (lines representing the original or new fits through the data points).
The calculated values are systematically below the measured values; the difference between
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them increases with temperature. This is consistent with the fact that some anharmonic
contributions are missing in the present model, they become more important at temperatures
approaching the melting point. Exceptions are paramagnetic metals γ-Fe and bcc Cr. The
present model predicts the high value of TEC of γ-Fe correctly, but fails to accurately describe
its temperature (in)dependence [67]. For Cr, the model seems to work well below about 1000
K, but at higher temperatures, where an accelerated thermal expansion of Cr begins, the
theory fails to predict the strongly increased TEC values.

The case of β-Ti is not considered here because it is clearly beyond the capability of the
present model. However, the model is capable of describing the differences in TEC between
the other considered elements, at temperatures that are not too high, predicting their values
to decrease along the sequence Fe, Cu, Ni, Cr, Mo, W. The case of Cr at T > 1000 K deserves
a special consideration.
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4. Discussion

The ability to model thermodynamic properties of materials, as a function of tem-
perature and composition, is in the core of materials design [21]. Approaches starting
from first-principles calculations of material’s electronic structure make the modeling truly
predictive, but they become computationally very expensive when taking into account
various kinds of temperature-induced disorder. Therefore, simple and capable models
such as the Debye model are of practical interest, especially for extending the modeling to
complex multicomponent alloys [17,68–70].

The Debye model is fully set up by specifying the Debye temperature, treated as a
volume-dependent parameter in the quasi-harmonic approximation is. Some previous
formulations of quasi-harmonic Debye model describe the volume dependence in terms of
another parameter called Grüneisen constant [1,71]. Both parameters are determined from
the DFT-calculated equation of state for the solid considered under hydrostatic pressure
conditions (corresponding to a uniform volume distortion in the case of a cubic crystal).
This “isotropic” parameterization is known to overestimate the Grüneisen constant and
predict a too strong temperature dependence of the properties [8].

In the present formulation of QDM, the volume dependence of Debye temperature is
not parameterized, but is evaluated [27] from the whole set of anisotropic elastic constants
calculated as a function of volume and temperature. Its results for selected fcc and bcc metals,
summarized in Table 1 and Figures 5 and 6, demonstrates that QDM can adequately describe
the temperature-dependent properties of these industrial-relevant metals. The accuracy, in
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the present formulation, is limited mainly by the other approximations involved, such as the
GGA or CPA, as well as by the neglect of higher-order anharmonic effects in the electronic
structure caused by the large amplitude of atomic displacements at high temperatures.

For 3d transition metals with the fcc structure, Cu, Ni, and γ-Fe, the quasi-harmonic
Debye model gives reasonably accurate descriptions of the effect of temperature on the
equilibrium lattice parameter and elastic properties, see also References [26,44]. Also, the
fact that the present modeling is based on the EMTO-CPA electronic structure method
makes it easily extendable to random alloys in the high-temperature paramagnetic state,
such as austenitic steels [70].

This work and some previous applications of the present model have established
certain limits of its applicability. Thus, in the important case of Fe, the model fails to describe
the α→ γ and γ→ δ phase transitions, yielding the Helmholtz free energy of paramagnetic
bcc Fe always lower than that of fcc Fe [44]. In view of the small energy free difference
between these two structures in the temperature range of thermodynamic stability of γ-Fe,
this failure is not surprising. The case of Cr is more alarming, because nearly all properties
that one derives from the modeled free energy deviate quite strongly from the experimental
values, especially at high temperatures. These discrepancies obtained for bcc Fe and Cr
may be traced back to the (quasi)harmonic approximations used in the description of their
vibrational and magnetic degrees of freedom.

One of these harmonic approximations deals with paramagnetism of γ-Fe and Cr at
high temperatures. The dependence of energy on the absolute magnitude of the paramag-
netic moment is approximated (locally) by a parabola, to simplify the theoretical treatment
of longitudinal fluctuations of the disordered local moments. It seems that this approxi-
mation becomes too crude at high temperatures, especially in the case of Cr. Moreover,
a strong coupling of magnetic and vibrational degrees of freedom may be responsible
for the anomalous thermal expansion of Cr at high temperatures [72], but this complex
anharmonic effect is not captured by the present quasi-harmonic model.

In this connection, the limited success of QDM in describing the high-temperature
properties of β-Ti looks quite unexpected, but may be related to the fact that here, in
contrast to Fe and Cr, one does not have the complications due to magnetism. However, the
neglect of higher-order anharmonic effects does not permit for a quantitative description
of temperature-induced stabilization of β-Ti.

To illustrate and additionally emphasize the importance of the neglected anharmonic
effects, in Figure 7 we plot, as functions of temperature, the calculated and experimental
elastic properties of bcc W. Figure 7a shows a good agreement between the calculated and
measured elastic constants at room temperature. With increasing temperature, softening of
C44 takes place, and this effect is well reproduced by the quasi-harmonic theory. However, C11
softens much faster in experiment than in theory, while the experimentally derived C12 grows
with temperature, in striking contrast with calculations. The anomalous softening of C11 and
“hardening” of C12 are related to each other. Figure 7b shows that, when these two elastic
constants are combined as (C11 + 2C12)/3 into the bulk modulus, the anomaly disappears:
the temperature dependence of BT is accurately reproduced by the QDM. On the contrary,
when the two constants are combined to form C′ = (C11 − C12)/2, the anomaly is enhanced.
In fact, the very rapid softening of the tetragonal shear modulus C’ with temperature is the
origin of the anomalous temperature dependencies of both C11 and C12.

The shear distortion corresponding to C’ is also related to Bain’s path connecting the
bcc and fcc structures. Therefore, the softening of C’ may be indicative of changes in the
relative stability of the two structures. These changes, in turn, are due to anharmonic effects
of the same kind as those involved in the stabilization of β-Ti. This chain of reasoning
allows us to link the discrepancies between the calculated and experimental temperature
dependencies of elastic properties of W (and, possibly, of other bcc metals) with anharmonic
vibrational effects in the electronic structure and in the lattice stability.
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In view of the discussed advantages and shortcomings of the present QDM imple-
mentation, the following extensions of the model seem to be necessary. In its present form,
the QDM in conjunction with EMTO-CPA calculations can be applied to model the free
energy and derived properties of substitutional alloys such as Ni-based alloys or austenitic
steels based on γ-Fe at temperatures not too close to the melting point. To achieve quanti-
tatively accurate descriptions of Cu-based alloys, one has to use an exchange-correlation
functional that performs for this metal better than the PBE [50]. For all the considered
metals, the quality of finite-temperature modeling will greatly improve by extending the
model beyond the quasi-harmonic approximations for magnetic and vibrational degrees
of freedom. CPA-based approaches using alloy analogy [48] provide a possible way of
including longitudinal spin fluctuations and random atomic displacement directly into the
electronic structure calculations.

5. Conclusions

We have tested the performance of a new implementation of the quasi-harmonic Debye
model on selected cubic metals of technological importance. The Debye model is parame-
terized using the full set of elastic constants calculated from first principles as functions of
volume and temperature. The first-principles calculations self-consistently take into account
the thermal disorder associated with “fast” (electronic and magnetic) degrees of freedom in
the solid, while considering ions as static (the vibrational free energy contributions in the
Debye model are added to the electronic free energy in a post-processing).

In this formulation, the model has the following advantages:

(1) The present modeling approach is faster than existing quasi-harmonic approaches
that rely on full phonon spectrum calculations, molecular dynamics, or spin-lattice
dynamics simulations.

(2) It is more accurate than the previous Debye model implementations, as it does not
involve a Grüneisen parameter. Instead, the full volume dependence (and also the
temperature dependence) of the Debye temperature is evaluated.

(3) The temperature dependence of the model parameter (Debye temperature) allows
one to treat high-temperature phases such as γ-Fe and β-Ti.

(4) It yields the Helmholtz free energy in a numerical or semi-analytic form that is easy
use for the evaluation of thermodynamic properties that are high-order derivatives of
the free energy.
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(5) At temperatures far below the melting point, the model yields lattice parameters,
elastic moduli, and thermal expansion coefficients of the studied metals in good
agreement with experiment (the agreement is limited mainly by the approximate
exchange-correlation functional used in the electronic structure calculations).

(6) Thanks to the coherent potential approximation used in the electronic structure
calculations, the model is naturally applicable to random alloys or disordered alloy
phases (including cases of magnetic disorder).

As a result of our analysis, the following limitations of the present modeling approach
have been identified:

(1) The present modeling, already at the stage of electronic structure calculations, inaccu-
rately reproduces the low-temperature equilibrium lattice parameter of non-magnetic
Cu, Cr, Mo, and W metals. Although the errors are of the order of 1%, they cause
further errors in the elastic constant and Debye temperature calculations, thereby
limiting the accuracy of free-energy modeling.

(2) The model falls short in describing the explosive thermal expansion of Cr metal at
high-temperatures (above 1000 K), which identifies the need to extend the presently
used model of paramagnetic state beyond the quasi-harmonic approximation.

(3) For the considered bcc metals, the quasi-harmonic treatment of vibrational free energy is
clearly insufficient for describing the temperature dependence of their thermodynamic
properties such as elastic constants and thermal expansion coefficients at high temperatures.

However, the present model may be systematically improved by including random
atomic displacements and magnetic moment fluctuations directly into the electronic struc-
ture calculations, to go beyond the quasi-harmonic approximations. This task is to be
undertaken in our future studies.
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