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Abstract: Alloying has been very common practice in materials engineering to fabricate metals of
desirable properties for specific applications. Traditionally, a small amount of the desired material is
added to the principal metal. However, a new alloying technique emerged in 2004 with the concept
of adding several principal elements in or near equi-atomic concentrations. These are popularly
known as high entropy alloys (HEAs) which can have a wide composition range. A vast area of this
composition range is still unexplored. The HEAs research community is still trying to identify and
characterize the behaviors of these alloys under different scenarios to develop high-performance
materials with desired properties and make the next class of advanced materials. Over the years,
understanding of the thermodynamics theories, phase stability and manufacturing methods of HEAs
has improved. Moreover, HEAs have also shown retention of strength and relevant properties under
extreme tribological conditions and radiation. Recent progresses in these fields are surveyed and
discussed in this review with a focus on HEAs for use under extreme environments (i.e., wear and
irradiation) and their fabrication using additive manufacturing.

Keywords: high entropy alloys (HEAs); additive manufacturing (AM); wear; nuclear applications;
irradiation

1. Introduction
1.1. The History of High Entropy Alloys

Since the first copper-based alloy was developed around 7000 years ago, numerous
metallic alloys have been utilized in various applications [1]. In traditional alloying en-
gineering, the principal metal is used as a matrix to incorporate other alloying elements
as solute. In most cases, alloying has been done to improve the strength and hardness
of ductile metals. Until now, around 30 alloy systems have been introduced, based on
the principal element alloying concept [2]. Increasing demands for advanced materials
under harsher environments led to the innovative alloying strategies which improved
the performance of existing materials against high temperatures, impact, fatigue fracture,
corrosion, or wear. Heat treatments have also been used along with alloying to tailor the
properties of materials for desired applications. In the 1970s, a new class of materials,
named intermetallics, were developed to increase the specific hot hardness. In 1980s, an-
other class of materials named super-alloys were developed. Inconel, Waspalloy, Hastelloy,
MP35N, MP98T, Rene alloys, TMS alloys and CMSX single crystal alloys are widely used
commercial superalloys. Figure 1 shows how engineering materials evolved over human
history. In the beginning of the 21st century, when the alloying technology reached matu-
rity and so did the capability of materials for more advanced applications, a new alloying
concept emerged. These alloys were initially called by several different names, such as
multi-principal elements alloys, equi-molar alloys, equi-atomic ratio alloys, substitutional
alloys and multicomponent alloys. The most common name of these alloys is high entropy
alloys (HEAs) given by J. W. Yeh [3], because these alloys have higher mixing entropy in
their liquid or solid solution states than any other alloying systems. Attractive structural
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properties, wide composition ranges and higher probability to find simpler microstructures
enabled HEAs to gain rapidly growing attention from researchers. HEAs are considered
one of three innovations in the alloying techniques along with bulk metallic glasses and
metal rubbers [2].
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Figure 1. Evolution of Engineering Materials [2].

The Germen scientist Franz Karl Archard could be called the predecessor for HEAs
research [2]. In the 18th century, Archard studied equi-mass multicomponent alloys
containing five to seven different elements from Fe, Sn, Pb, Zn, Bi, Ag, Co, Sb, As and
Cu. He tested these compositions for ductility, hardness, impact resistance, wear and
density, etc. He published his work in a French book entitled, Recherches sur les propriétés
des alliages métalliques [4,5]. In 1981, Brian Cantor and his student Alain Vincent started
to work on Archard’s idea again at University of Sussex in Sussex, England [6]. They
explored various equi-molar combinations out of 20 different elements and found that
the CoCrFeMnNi alloy formed a single face-centered cubic (FCC) structure. In another
independent research (MS thesis of National Tsing Hua University, Taiwan, 1996 [7]), J. W.
Yeh developed different HEAs based on a concept that high entropy of an alloy system
reduces the number of phases that appear in the final product. S. Ranganathan is another
notable pioneering researcher in the field who wrote a review paper on the concept of HEAs
and talked about the possibility of fabricating HEAs in 2003 [8]. In 2004, two independent
studies by Cantor et al. [9] and Yeh et al. [3] introduced the concept of HEAs properly
with the experimental results. They developed metallic alloys having nearly equi-atomic
composition of more than five elements.

The basic idea of HEAs is to use five or more principal elements in or near equi-atomic
compositions. According to the Gibbs phase rule, the number of phases increases with
the increasing number of elements. Most of these phases are expected to be intermetallics
due to their strong negative enthalpies. Binary/ternary phase diagrams also indicate
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that an alloy having several principal elements would develop several phases including
brittle intermetallics, resulting in complex microstructures which will limit their practical
applications [8,10]. For instance, Cu-Zn, Al-Cu and Al-Cu-Zn phase diagrams have 5,
13 and 20 intermetallics or intermediate phases, respectively [11]. By this reasoning,
scientists had been reluctant to work with equi-atomic or near-equi-atomic composition
made of several principal elements. This notion began to change as it was observed that
the number of phases in HEAs was far less than predicted by the Gibbs phase rule [12].
The high configurational entropy of HEAs allowed for forming solid solutions rather
than intermetallics, and thus, resulted in much simpler microstructures [3,9]. The main
hypothesis to explain the much smaller number of phases in HEAs is that by forming an
atomic configuration of high randomness (high entropy, ∆S), the Gibbs free energy of the
system will be lowered (∆G = ∆H − T∆S), and therefore, the formation of intermetallics is
thermodynamically suppressed [3,13,14].

The performance of a HEA is difficult to predict as it often depends on the com-
plicated interactions among the constituents instead of the rule of mixtures. Hence, the
characterization of structure and stability under operational conditions is important before
putting them into practical applications. Most of the literature mentions HEAs have been
developed by “trials and errors” with an aim to get a single phase. The properties of
HEAs are then compared to those of traditional alloys. For example, the wear resistance of
FeCo1.5CrNi1.5Ti and FeAl0.2Co1.5CrNi1.5Ti was reported to be higher by a factor of two
compared to that of steels [15].

Since 2004, two books [2,11] and thousands of research papers on HEAs of numerous
compositions have been published. Most of the review papers focused on basic under-
standing and development [12,13,15–26], four core effects [27,28], physical metallurgy [14],
design strategies [29–31], phase stability [32,33], or thermodynamics [34] and microstruc-
tures [35–39]. As research on the properties of HEAs progressed, various research groups
reviewed the mechanical performances [40–42], heat resistance [43,44], magnetic [45] and
physical properties of HEAs [46,47]. As synthesis techniques for HEAs advanced, various
reviews on simulations and modeling [48,49], fabrication methods [50,51], welding tech-
niques [52–55], high pressure technology [56] were published. Due to the possibility of
having a wide composition range, new HEAs and their properties were reported continu-
ously beyond the existing literature. In recent years, more reviews focused on diffusion
studies [57], deformation behavior [58,59], corrosion [60,61], fracture and fatigue [62,63],
defects and radiation resistance [64–66], refractory HEAs [67], HEAs composites [68] and
ceramics [69] were published. Moreover, high entropy alloys have applications in different
fields such as biomedical [70,71], energy [72], wear [73,74], nuclear [75,76] and creep [63],
corrosion [60,77–79].

In this context, this paper discusses as illustrated in Figure 2 recent updates on the
fabrication of HEAs by additive manufacturing (AM) and the HEAs for applications under
extreme environments (i.e., wear behavior and nuclear applications). Moreover, unlike
previous reviews on these topics, this review would provide more convenience to readers
who have just stepped in this field as well, since the reviewed research publications on AM,
wear behavior and nuclear applications of HEAs are enlisted in a detailed tabular form
with their results. Section 2 discusses additive manufactured HEAs in terms of their com-
position, microstructure and their mechanical properties, such as ultimate tensile strength
(UTS), tensile elongation (ε), yield strength (YS), hardness (H), compressive strength (CS),
compressive yield strength (CYS) and the amount of compression (C). In Section 3, the
behaviors of HEAs under ion irradiation are analyzed in terms of dislocation, microstruc-
ture, irradiation resistance, hardness, phase stability, swelling resistance and self-healing.
Furthermore, the tribological studies of HEAs are surveyed in terms of HEAs content vari-
ation, particle reinforcement, media and nitriding/carburizing/sulfurizing, in comparison
with conventional materials. The wear behaviors of HEAs at higher temperatures and
oxides formation are also reviewed.
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In this context, this paper discusses recent updates on the fabrication of HEAs by
additive manufacturing (AM) and the HEAs for applications under extreme environments
(i.e., wear behavior and nuclear applications). Moreover, unlike previous reviews on these
topics, this review would provide more convenience to readers who have just stepped
into this field as well, since the reviewed research publications on AM, wear behavior
and nuclear applications of HEAs are listed in a detailed tabular form with their results.
Section 2 discusses additive manufactured HEAs in terms of their composition, microstruc-
ture and their mechanical properties, such as ultimate tensile strength (UTS), tensile elon-
gation (ε), yield strength (YS), hardness (H), compressive strength (CS), compressive yield
strength (CYS) and the amount of compression (C). In Section 3, the behaviors of HEAs
under ion irradiation are analyzed in terms of dislocation, microstructure, irradiation
resistance, hardness, phase stability, swelling resistance and self-healing. Furthermore, the
tribological studies of HEAs are surveyed in terms of HEAs content variation, particle rein-
forcement, media and nitriding/carburizing/sulfurizing, in comparison with conventional
materials. The wear behaviors of HEAs at higher temperatures and oxides formation are
also reviewed.

1.2. The Definitions of High Entropy Alloys

The first ever definition of HEA was given by Yeh et al. [3] as a class of alloys composed
of five or more principal elements having concentration between 5% to 35% for each
element. The second definition was also proposed by the same group [13]. In the second
definition, the three categories of alloys were introduced on the basis of the configurational
entropy: low entropy alloys (configurational entropy alloys (∆Sconf) ≤ 0.69R), medium
entropy alloys (0.69R ≤ ∆Sconf ≤ 1.61R) and high entropy alloys (∆Sconf ≥ 1.61R) [30],
where R is the universal gas constant. Here, the low entropy alloys are mostly conventional
alloys with one or two major elements and the medium entropy alloys have two to four
major elements. The high entropy alloys contain five or more major elements. The second
definition does not require equi-atomic composition. For example, Ti2ZrHfV0.5Mo0.2 [80],
FeCoNiCrTi0.2 [81] and Al0.1CoCrFeNi [82,83] are categorized as HEAs according to the
second definition.
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Moreover, these definitions are not strict, and it is not clarified which one should
be used to categorize an alloy. For example, an alloy having composition of 5% A, 5% B,
20% C, 35% D and 35% E has the configuration entropy of 1.36R according to Equation (1)
derived from Boltzmann’s entropy formula [30].

∆Sconf = −R[c1lnc1 . . . . . . . . . cnlncn] (1)

where cn is the atomic fraction of the nth element. In case of equi-atomic composition,
Equation (1) reduces to [30]:

∆Sconf = R ln(n) (2)

For example, an alloy having 25 components with equi-atomic concentration has
∆Sconf = Rln(n = 25) = 3.22R. This material has the concentration of each element out of the
range suggested by the first definition (between 5% to 35%), but it has sufficiently high
entropy according to the second definition [15].

Considering both definitions together may often be confusing. In the past, researchers
have also limited HEAs to have equi-atomic compositions or single-phase microstruc-
tures [26]. HEAs lack a standard definition that embraces all possible conditions. Both
definitions are used frequently but neither clarifies the conditions of its usage. Gener-
ally, a metallic alloy with multiple principal elements and high configurational entropy is
considered as a HEA.

2. Manufacturing of HEAs
2.1. Background and Conventional Methods

Brian Cantor estimated the total number of possible metallic alloys with different
compositions to be up to around 1078 [12]. This means many new alloys are yet to be
discovered. For the manufacturing of HEAs, the initial synthesis strategy was to choose
equi-atomic concentration of principle elements to maximize the entropy of the system.
However, later, HEAs in non-equi-molar ratios were also developed for various appli-
cations. Arc melting was mostly preferred to produce HEAs thanks to its convenience,
availability and simplicity. Furthermore, developing a HEA became more complex as
more non-equi-atomic compositions were considered and several other manufacturing
techniques were used. Alshataif et al. [84] covered almost all kinds of processing tech-
niques used so far for HEAs synthesis. They detailed solid state processing (i.e., powder
atomization methods, ball milling, cold/hot pressing, sintering, spark plasma sintering),
liquid state processing (i.e., arc melting, vacuum induction melting, directional solidifica-
tion, infiltration, electromagnetic stirring), thin film deposition (i.e., magnetron sputtering,
pulsed laser deposition, plasma spray deposition) and additive manufacturing. Most of
these manufacturing techniques are commercially available. That means most HEAs would
not require a special manufacturing process and mass-producing HEAs would be possible
with the existing alloying technologies and facilities.

The influence of process parameters, such as temperature and pressure, on the proper-
ties of HEAs were also studied. The effects of temperature on the properties of HEAs were
studied through processes such as: annealing and heat treatments [85–104] and thermome-
chanical processing [105–108]. A number of research groups reported how temperature
affected the microstructures and mechanical properties of HEAs in various manufacturing
processes [96,109–112]. Moreover, the physical or chemical responses of various HEAs
under a variety of thermal histories during manufacturing were studied: thermal aging
behavior [86,113–115], TaNbHfZrTi synthesis by hydrogenation–dehydrogenation reac-
tion and thermal plasma treatment [116], martensite formation [117–120], AlxCoCrFeNi
formation with high gravity combustion from oxides [121], laser surface melting [122],
precipitation behavior [123–126] and WTaMoNbV synthesis using inductively coupled
thermal plasma [127].

Researchers have also attempted to alter the microstructures and properties of HEAs
by high pressure treatments. Regulating pressure during fabrication of HEAs can consider-
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ably alter the interaction between the atoms by changing the interatomic distance, bonding
nature and packing densities. These changes often convert the microstructures and affect
the mechanical and structural properties. Dong et al. [56] reviewed the applications of
high pressure technology for HEAs. They reviewed the use of dynamic high pressure,
diamond anvil cells, high pressure torsion and hexahedron anvil press. Zhang et al. [128]
reviewed high pressure induced phase transitions in HEAs. Application of high pressure
torsion [37,129–142] is more frequent than other pressure techniques [136,143–150].

Furthermore, various researchers successfully welded/brazed HEAs [52–55,151]. Guo
et al. [52] reviewed arc welding, laser welding, electron beam welding, friction stir welding
to join HEAs and conducted the microstructural analysis on the welded structures. Filho
et al. [54] gave a general review on the properties of welded HEAs parts and Tillmann
et al. [151] reviewed HEAs brazing. Lopez et al. [53] reviewed fusion based welding (i.e., for
CoCrFeNiMn and other related HEA systems) and solid state welding. Scutelnicu et al. [55]
reviewed friction stir, electron and laser beam, tungsten inert gas welding techniques for
CoCrFeMnNi, AlCoCrCuFeNi, AlCrFeCoNi and CoCrFeNi alloys.

2.2. Additive Manufacturing of HEAs

3-D printing in manufacturing industries, when properly applied, not only makes
a design phase more efficient and economic but also brings thoughtful impacts on prod-
uct design. Recent advances in additive manufacturing (AM) made it more influential
throughout the supply chain which generates revenue as well [152]. The additive man-
ufactured HEAs showed improvement in their mechanical properties in comparison to
as-cast HEAs [153–160]. Higher cooling rates in AM processes help suppress diffusional
phase transformation and increase the chemical homogeneity of HEAs [161]. Under certain
circumstances, AM gives a better control over the material processing and helps tailor
application-specific microstructures which become more important for the parts for ap-
plications under extreme environments. For example, it was demonstrated that fine and
tailorable microstructures in HEAs were obtained using AM techniques [162–169], which
implies AM can improve the mechanical performance of at least some HEAs. However,
this may not be a trivial task as a good understanding of the AM technique and material
behavior during the AM process is required [170].

AM of HEAs has been discussed briefly in a few review papers [51,161,171,172] and
books [2,173]. Xiaopeng Li [161] discussed the requirements and challenges of AM of
HEAs and bulk metallic glasses. Chen et al. [51] examined the microstructural evolution
and mechanical properties of AM-processed CoCrFeNi, AlxCoCrFeNi, CoCrFeMnNi and
Ti25Zr50Nb50Ta25. Fabricating HEAs by spark plasma sintering (SPS) and their property
analyses were discussed in the book chapter “Spark Plasma Sintering of High Entropy
Alloys” of [174]. SPS followed by mechanical alloying has largely been used to develop
HEAs, which was reviewed in detail by Vaidya et al. [175]. Therefore, SPS studies are not
included here.

In this review, studies on the AM of HEAs are tabulated and the mechanical properties
of these HEAs are discussed. Tables 1–3 detail the HEAs synthesized by selective laser
melting (SLM), electron beam melting (EBM) and direct energy deposition (DED), respec-
tively. The performances of these HEAs are discussed in terms of their composition, their
microstructure and their mechanical properties, such as ultimate tensile strength (UTS),
% elongation at fracture (ε), yield strength (YS), hardness (H), compressive strength (CS),
compressive yield strength (CYS), bending strength (BS), bending elongation (δb) and %
compression at fracture (C).
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Table 1. The compositions, microstructures and mechanical properties of SLM manufactured HEAs.

Source Alloy Composition Microstructure (Grain Size)
Result

UTS (MPa), YS (MPa), BS (MPa), δb
(mm), ε (%), H, CS (MPa), C (%)

Chen et al. [176] CoCrFeMnNi FCC (53.1 µm) UTS = 281 ± 18, YS = 12.5 ± 0.5,
H = 261 ± 7 HV

Niu et al. [169] CoCrFeMnNi FCC (<5 µm) CS = 2447.7

Li et al. [177] CoCrFeMnNi + TiNp nanoparticles FCC UTS = 601–1036, ε = 12–30

Li et al. [178] CoCrFeMnNi + Fe based metallic
glass FCC UTS = 916–1517

Li et al. [179] CoCrFeMnNi + TiN nanoparticles FCC -

Kim et al. [180] (CoCrFeMnNi)C FCC (180–330 nm) YS = 800–900, ε = 25–30

Li et al. [181] CoCrFeMnNi + 12 wt% nano-TiNp FCC (<2 µm) UTS = 1100

Piglione et al. [182] CoCrFeMnNi FCC (0.52–0.64 µm) H = 212 HV

Zhu et al. [153] CoCrFeMnNi FCC -

Xu et al. [183] CoCrFeMnNi FCC (1–2 µm) H = 2.84 ± 0.13 GPa

Park et al. [154] CoCrFeMnNi +1 at%C FCC (20–35 µm) UTS = 829–989, YS = 741, ε = 24.3

Ren et al. [184] CoCrFeMnNi - -

Dovgyy et al. [185] CoCrFeMnNi FCC & cubic (0.2–0.8 µm) -

Zhou et al. [155] CoCrFeNi + 0.5 at%C FCC (40–50 µm) UTS = 776–797, YS = 630–656, ε = 7.7–13.5

Wu et al. [186] CoCrFeNi + 0.5 at%C FCC (40–50 µm) UTS = 795, YS = 638

Lin et al. [98] CoCrFeNi FCC

Sun et al. [187] CoCrFeNi -, ~3 mm in length and ~200 µm
in width

UTS = 676.7–691, YS = 556.7–572,
ε = 12.4–17.9

Song et al. [188] CoCrFeNi + N (1.8%) FCC UTS = 600–853, YS = 520–650, ε = 27

Zhou et al. [189] (CoCrFeNi)1−x (WC)x FCC H = 603–768 HV

Brif et al. [156] CoCrFeNi FCC UTS = 480–745, YS = 402–600, ε = 8–32,
H = 205–238

Niu et al. [190] AlCoCrFeNi Disordered (A2) + Ordered (B2)
BCC H = 632.8 HV

Karlsson et al. [170] AlCoCrFeNi FCC & BCC (<20 µm) -

Peyrouzet et al. [157] Al0.3CoCrFeNi FCC (width~13 and
length~70–120 µm) UTS = 896, YS = 730, ε = 29

Sun et al. [158] Al0.5CoCrFeNi FCC & BCC (1 µm) UTS = 878, YS = 609, H = 270HV

Zhou et al. [160] Al0.5CoCrFeNi FCC UTS = 721, YS = 579, ε = 22

Luo et al. [191] AlCrCuFeNi BCC (avg. width~4 µm) CS = 1655.2–2052.8, C = 6.5–6.8

Luo et al. [192] AlCrCuFeNix (2 ≤ x ≤ 3)
FCC (thickness~490 nm) & BCC

(~140 nm)
Avg. thickness of both ~ 650 nm

UTS = 957, ε = 14.3

Li et al. [112] AlCoCuFeNi BCC YS = 744, ε = 13.1, CS = 1600

Yao et al. [193] AlCrFeNiV FCC (width~15 µm,
length~75–200 µm) UTS = 1057.47, ε = 30.3

Wang et al. [194] AlCoCrCuFeNi FCC & BCC H = 710.4 HV

Wang et al. [195] AlMgScZrMn Al3 (Sc, Zr) (1–10 nm + 7 µm) UTS = 394, ε = 10.5

Sarawat et al. [196]

AlCoFeNiV0.9Sm0.1
AlCoFeNiSm0.1TiV0.9

AlCoFeNiSm0.05TiV0.95Zr,
AlCoFeNiTiVZr

FCC H~42.8–86.7 HV

Agrawal et al. [197] Fe40Mn20Co20Cr15Si5 HCP UTS = 1100, YS = 530, ε = 30

Zhang et al. [198,199] NbMoTaW BCC (13.4 µm) H = 826 HV
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Table 1. Cont.

Source Alloy Composition Microstructure (Grain Size)
Result

UTS (MPa), YS (MPa), BS (MPa), δb
(mm), ε (%), H, CS (MPa), C (%)

Yang et al. [200,201] Ni6Cr4WFe9Ti FCC (300–1000 nm) + unknown
phase UTS = 972, YS = 742, ε = 12.2

Chen et al. [202] CoCrFeNiMn FCC + Mn2O3 particles YS = 620, UTS = 730, ε~12

Litwa et al. [203] CoCrFeNiMn FCC H~320 HV

Zhang et al. [204] CoCrFeNiMn FCC YS~729.6

Kim et al. [205] CoCrFeNiMn FCC YS = 752.6

Choi et al. [206] CoCrFeNiMn FCC

Su et al. [207]

CrCuFeNi2
Al0.5CrCuFeNi2
Al0.75CrCuFeNi2

AlCrCuFeNi2

FCC
FCC

FCC + BCC/B2
FCC + BCC/B2

Peng et al. [208] CoCrFeNi + Ti coated diamond
CoCrFeNi + diamond

FCC + diamond particles
FCC + Cr7C3 + diamond particles

H = 622 HV, BS = 530, δb = 0.64
H = 615 HV, BS = 925, δb = 0.48

Wang et al. [209] CoCrFeNiMn FCC H = 164–370 HV

Sun et al. [210]
Al0.1CrCuFeNi
Al0.5CrCuFeNi

AlCrCuFeNi

FCC
FCC

FCC + BCC/B2 (NiAl)

Ishimoto et al. [211] Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BCC YS = 1690,

Park et al. [212] (CoCrFeMnNi)99C1 FCC YS~741, UTS~874

Lin et al. [213] CoCrFeNi FCC YS = 701 ± 14, UTS = 907 ± 25

Kim et al. [214] CoCrFeNiMn FCC -

Jin et al. [215] CoCrFeNiMn FCC YS = 520 ± 10, UTS = 770 ± 10, ε~25

Lin et al. [216] Al0.2Co1.5CrFeNi1.5Ti0.3 FCC + σ + L12 YS = 1235, UTS = 1550

Peng et al. [217] CoCrFeNiMn FCC -

Vogiatzief et al. [218] AlCrFe2Ni2
Heat treatment (750–950 ◦C, 3 h & 6 h) FCC + BCC H = 276–483 HV

Liao et al. [219] Al0.5FeCrNi2.5V0.2 FCC H = 220–240 HV

Guo et al. [220] CoCrFeNiMn FCC YS = 622, UTS = 763, ε~16

Kim et al. [221] (CoCrFeNiMn)100−xCx FCC (15–22 µm) YS = 653–753, UTS = 766–911

Zhao et al. [222] CoCrFeNi FCC H = 238–525 HV

Gu et al. [223] CoCr2.5FeNi2TiW0.5 FCC YS = 449–581, CS = 823–893, ε = 4.4–9.9,
H = 436.7–499.2 HV

Table 2. The compositions, microstructures and mechanical properties of EBM manufactured HEAs.

Source Alloy Composition Microstructure
(Grain Size)

Result
UTS (MPa), YS (MPa), ε (%), H, CS (MPa), C (%)

Peng et al. [224] CoCrFeNiMn FCC YS = 196

Wang et al. [225] CoCrFeMnNi FCC (65) UTS = 497, 205, H = 157.1HV

Kuwabara et al. [226] AlCoCrFeNi BCC & FCC UTS = 1073, YS = 769, ε = 0–1.2
YS = 944–1015, CS = 1447–1668, C = 14.5–26.4

Wang et al. [227] AlCoCrFeNi BCC -

Fujieda et al. [228] CoCrFeNiTi FCC + Cubic UTS = 1178, YS = 773, ε = 25.8

Popov et al. [229] Al0.5CrMoNbTa0.5 BCC
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Table 3. The compositions, microstructures and mechanical properties of DED manufactured HEAs.

Scheme Alloy Composition Microstructure (Grain Size) Result
UTS (MPa), YS (MPa), ε (%), H, CS (MPa), C (%)

Guan et al. [230] CoCrFeMnNi FCC (13 µm) YS = 517, ε = 26

Melia et al. [231] CoCrFeMnNi FCC (~4 µm) UTS = 647–651, YS = 232–424

Li et al. [232] CoCrFeMnNi FCC

Gao et al. [233] CoCrFeMnNi FCC (30–150 µm) + BCC UTS = 620, YS = 448

Xiang et al. [234,235] CoCrFeNiMn FCC UTS = 400–600

Chew et al. [236] CoCrFeNiMn FCC (3.68 ± 0.85 µm) UTS = 660, YS = 518

Qiu et al. [237] CoCrFeMnNi FCC UTS = 891, YS = 564

Li et al. [238] CoCrFeMnNi + WC (0–10 wt%) FCC UTS = 550–845, YS = 300–675, ε = 9

Amar et al. [239] CoCrFeMnNi + TiC (0–5 wt%) FCC UTS = 550–723, YS = 300–385, ε = 32

Guan et al. [240] CoCrFeMnNi
AlCoCrFeNiTi0.5

FCC (24 µm)
BCC (7 µm) + FCC YS = 888–1100, H = 197–657 HV

Wang et al. [241] CoCrFeNiMo0.2 FCC UTS = 532–928, ε = 37

Zhou et al. [242] CoCrFeNiNbx (x = 0–0.2) FCC UTS = 400–820, YS = 220–750

Gwalani et al. [243] AlxCoCrFeNi (x = 0.3–0.7) FCC

Nartu et al. [244] Al0.3CoCrFeNi FCC YS = 410–630, ε = 18–28

Mohanty et al. [245] AlxCoCrFeNi (x = 0.3–0.7) FCC + BCC H = 170–380 HV

Vikram et al. [246] AlCoCrFeNi2.1 FCC & BCC YS = 309–711, H = 278 ± 11–316 ± 14 HV

Gwalani et al. [247] AlCrFeMoVx (x = 0–1) BCC (68–165 µm) H = 485–581 HV

Guan et al. [248] AlCoCrFeNiTi0.5 BCC (12 µm) -

Malatji et al. [249] AlCrCuFeNi BCC & FCC H = 350 HV,

Dada et al. [250,251] AlCoCrFeNiCu
AlTiCrFeCoNi H = 600 HV, H = 850 HV

Moorehead et al. [252] NbMoTaW BCC -

Kunce et al. [253] TiZrNbMoV BCC -

Dobbelstein et al. [254] TiZrNbHfTa BCC H = 509 HV0.2

Pegues et al. [255] CoCrFeNiMn FCC -

Li et al. [256] CoCrFeNiMn FCC -

Tong et al. [257]

CoCrFeNiMn
Vacuum arc melting

1 impact Laser shock peening
3 impact Laser shock peening
5 impact Laser shock peening

FCC
YS = 320.7, UTS = 531.7
YS = 427.4, UTS = 570.7

YS~435, UTS~600
YS = 489.9, UTS = 639.9

Shen et al. [258] CoCrFeNi (SiC)x FCC + Cr7C3 (1 µm) UTS = 2155–2499, YS = 142–713, H = 139–310

Cai et al. [259] CoCrFeNi
AlCoCrFeNi

BCC (102.27 µm)
BCC (18.75 µm)

YS = 318, UTS = 440, ε = 8.56
YS = 383, UTS = 533, ε = 10.6

Zhang et al. [260]

NbMoTa
NbMoTaTi
NbMoTaNi

NbMoTaTi0.5Ni0.5

BCC
BCC + α-Ti

BCC
BCC + Ni3Ta + β-Ti

YS = 1252, CS = 1282, ε = 15
YS = 1200, CS = 1350, ε = 23
YS = 1350, CS = 1380, ε = 11

YS = 1750, CS = 2277.79, ε = 15
CS of NbMoTaTi0.5Ni0.5 at 600, 800 and 1000 ◦C is

1699.75 MPa, 1033.63 MPa and 651.36 MPa

Peng et al. [261] Al0.3CoCrFeNi FCC + B2 YS = 373–476, CS = 473–508, ε = 0.6–2.96, H = 208–221 HV

Kuzminova et al. [262] CoCrFeNi FCC YS = 456–551, UTS = 637–658, H = 209–259 HV

Malatji et al. [263] AlCuCrFeNi
Heat treated (800–1100 ◦C) FCC + BCC H = 310–381 HV

Dong et al. [264] AlCoCrFeNi2.1 FCC + BCC YS = 388, UTS = 719, ε~27, H = 221–228

Zhou et al. [265]
CoCrFeNb0.2Ni2.1

Solution treatment (2 h,1250 ◦C)
96 h aged (650 ◦C)

FCC + HCP (Laves C14) + Nb rich
carbide

YS~340, UTS~735
YS~239, UTS~607

YS~896, UTS~1127, ε~17

Zheng et al. [266] CoCrFeNiMn FCC YS = 330, UTS = 630

Cantor alloy (i.e., CoCrFeMnNi) and its variants have been largely investigated.
Apart from SPS, SLM is the most widely studied AM technique for HEAs [196–231].
HEAs that were successfully fabricated by SLM include CoCrFeNiMn [153,154,169,176–
185,188,202–206,209,212,214,215,217,220,221], AlCrFeNiV [193], AlCoCrFeNi [170,190], Al-
CoCrCuFeNi [194], CoCrFeNi [98,155,186,187,189,208,213,222], CoCr2.5FeNi2TiW0.5 [223],
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Fe40Mn20Co20Cr15Si5 [197], AlxCoCrFeNi [157,158,160] AlCoCuFeNi [112,192],
AlxCrCuFeNi [207,210], AlCrCuFeNix [267], AlCrFe2Ni2 [218], Al0.2Co1.5CrFeNi1.5Ti0.3 [216],
Ni6Cr4WFe9Ti [200], Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 [211], Al0.5FeCrNi2.5V0.2 [219] and
NbMoTaW [198,199].

Meanwhile, EBM was used to manufacture CoCrFeNiMn [225], AlCoCrFeNi [226,227],
CoCrFeNiTi [228] and Al0.5CrMoNbTa0.5 [229]. DED techniques were used to fabri-
cate CoCrFeNiMn [230–240,255–258,266], CoCrFeNi [258,259,262], Al0.3CoCrFeNi [261],
CoCrFeNiMo0.2 [241], CoCrFeNiNbx [242], AlxCoCrFeNi [243–245,259,264],
AlCoCrFeNi2.1 [246,264], AlCrFeMoVx [247], AlCoCrFeNiTi0.5 [248], AlCrCuFeNi [249,263],
AlCoCrFeNiCu/AlTiCrFeCoNi [250,251], NbMoTaW [252], TiZrNbMoV [253],
NbMoTaTixNix [260], CoCrFeNb0.2Ni2.1 [265] and TiZrNbHfTa [254].

The microstructures and mechanical behaviors of the HEAs produced by different
AM processes are still under investigation by several research groups. The HEAs listed in
Tables 1–3 mainly have either FCC or BCC microstructures except Co20Cr15Fe40Mn20Si5
which has HCP. Improvement in mechanical properties was reported when HEAs were
fabricated with AM [158,169,177,180,188,193,268]. These improvements are mostly at-
tributed to grain refinement. Grain refinement in HEAs is claimed to be due to the high
cooling rates as it happens in various other materials [158,200,230]. Moreover, the wear
behavior [189,249], thermo-mechanical analysis [199,246], effect of annealing [98], creep
behavior [183], residual stresses [232], corrosion behavior [176,198,226,228,231,241,249],
strengthening mechanisms [153] and deformation mechanism [237] of additive manufac-
tured HEAs have also been reported.

Particle reinforcement in a HEA matrix with AM has been an area of interest for
many researchers lately who expect microstructure refinement and mechanical properties
enhancement [123,177,208,212,220,221,269–280]. Li et al. [177] introduced nano TiN ceramic
particles in a CoCrFeMnNi matrix, which led to equiaxed grains of 5 µm. The same
group [179] also fabricated the same composition with SLM followed by laser remelting
and obtained ultrafine grains (80% grains less than 2 µm and 90% grains less than 3.5 µm).
Song et al. [188] showed that the YS and ductility of CoCrFeNi increased by 25% and
34%, respectively, when doped with 1.8 at% nitrogen. Fu et al. [279] noticed that adding
Ti-C-O particles into NbTaTiV increased the UTS, YS and fracture strain up to 2270 MPa,
1760 MPa and 11%, respectively. Amar et al. [239] added TiC into CoCrFeNiMn and
found the YS and UTS increased from 300 MPa to 385 MPa and from 550 MPa to 723 MPa,
respectively. Similarly, Li et al. [238] embedded WC particles into CoCrFeNiMn alloy
and observed improvement in YS from 300 to 675 MPa and UTS from 550 to 845 MPa
due to the formation of Cr23C6 precipitates. Li et al. [181] noticed that TiC reinforcement
CoCrFeNiMn gave the UTS of around 1100 MPa. Rogal et al. [271] increased the UTS of
CoCrFeNiMn up to 1600 MPa by introducing nano-Al2O3 particles. Carbon doping was
attempted [154,155,180,186] to enhance the mechanical properties of HEAs. Peng et al. [208]
added diamond particles into CoCrFeNi and found out the bending strength was 925MPa.
Park et al. [212] added carbon into CoCrFeNiMn ((CoCrFeNiMn)99C1) and noticed that
the YS and UTS were ~741 MPa and ~874 MPa, respectively. Similarly, Kim et al. [221]
also added carbon into CoCrFeNiMn in a ratio (CoCrFeNiMn)100−xCx (x = 0.5–1.5). The
YS for x = 0.5, 1, 1.5 was measured to be 653, 752 and 753 MPa respectively. The UTS for
x = 0.5, 1, 1.5 was found to be 766 ± 318.5, 895 ± 22.3 and 911 ± 125.1 MPa, respectively.
Shen et al. [258] discussed the effect of SiC particles added to CoCrFeNi. They noticed that
adding SiC particles changed the microstructure from the FCC phase to the FCC/Cr2C7
dual phase. The hardness and YS improved significantly from ~139 HV to ~310 HV and
~142 MPa to ~713 MPa, respectively.

Various HEAs have exhibited significant improvement in their mechanical properties
after AM synthesis as compared to the as-cast structures of the same compositions [153,154].
Zhou et al. [155] reported that arc-melted CoCrFeNi had the YS of 225 MPa whereas
SLM-manufactured CoCrFeNi had the YS of 656 MPa. Brif et al. [156] observed that SLM-
manufactured CoCrFeNi showed noticeable improvement in YS from 188 MPa (as-cast)
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to 600 MPa and in UTS from 457 MPa (as-cast) to 745 MPa. Peyrouzet et al. [157] showed
that the YS of Al0.3CoCrFeNi increased from 275 MPa (as-cast) to 730 MPa and the UTS
from 502 MPa (as-cast) to 896 MPa when manufactured with SLM. The UTS of as-cast
Al0.3CoCrFeNi was 522 MPa and it was increased to 878 MPa with SLM processing [158].
Arc-melted Al0.5CoCrFeNi had the YS of 334 MPa and the UTS of 709 MPa [159]. SLM
increased the YS up to 579 MPa and the UTS up to 721 MPa [160].

Moreover, the CS of AlCrCuFeNi was 2052 MPa when fabricated with SLM and
1750 ± 15 MPa [281] with arc-melting. The hardness of AlCoCrCuFeNi improved from 500
to 710 Hv [194] by using SLM. The YS of AlMgScZrMn manufactured with arc melting, SPS,
and SLM is 188 ± 2.3 MPa, 231 ± 3 Mpa and 394 Mpa respectively [195]. Agrawal et al. [197]
reported that the YS of as-cast and SLM-printed Fe40Mn20Co20Cr15Si5 was 420 ± 20 Mpa
and 530 ± 40 Mpa, respectively. The YS of CoCrFeNiMn was 2.5 times higher (around
518 Mpa) [236] with DED in comparison to that of cast parts (209 Mpa) [282] at room
temperature (RT). Furthermore, the as-cast AlCoCrFeNi had the UTS of 956 MPa, and the
EBM specimen had the UTS of 1073 MPa [226]. Similarly, Fujieda et al. [228] reported that
EBM-synthesized CoCrFeNiTi showed the improved tensile strength of around 1178 MPa,
which is much stronger than various commercial high corrosion resistant materials such as
duplex stainless steel: 655 MPa, super duplex stainless steel: 750–800 MPa and Ni-based
super alloys (i.e., Alloy C276: 690 MPa, Alloy 718: 1275 MPa).

Refractory HEA NbMoTaW has shown a drastic reduction in grain size when made
with AM. The average grain size of BCC phase was 200 µm in as-cast sample [283] and
13.4 µm in SLM-processed sample. Additionally, this alloy did not follow the rule of
mixtures. Instead, it showed the cocktail effect for the hardness of the final structure. The
hardness of Nb, Mo, Ta and W was in the range of 85–410 HV but the final hardness of SLM
processed NbMoTaW was measured to be 826 HV [198]. Senkov et al. [284] commented
that NbMoTaW did not have any abrupt hardness changes at high temperatures, consis-
tently exhibiting better hardness properties than superalloys. Moreover, SLM-processed
Ni6Cr4WFe9Ti (UTS = 972 MPa, YS = 742 MPa, ε = 12.2%) had ~93% increase in YS, ~50%
increase in UTS, and ~77% increase in tensile ductility as compared to the vacuum arc
melted samples (UTS = 649 MPa, YS = 385 MPa, ε = 6.9%) [200,201].

In summary, various studies have successfully manufactured SLM, EBM and DED
techniques. They have also shown that the properties of HEAs could be altered by changing
the input parameters for AM process. For example, CoCrFeNiMn was manufactured with
SLM by multiple researchers [153,154,169,176–185,188,202–206,209,212,214,215,217,220,221]
and many of them acquired different mechanical properties for CoCrFeNiMn by changing
input parameters in AM processes (refer Tables 1–3).

3. Applications under Extreme Environments
3.1. Nuclear Applications

Nuclear energy is contributing to around 13% of electricity demand worldwide [285]
with negligible carbon emission. The safety, reliability and economy of these nuclear power
plants depends heavily on the performances of advanced structural materials under high-
energy irradiation and elevated temperatures [286,287]. Radioactive waste handling units
also require radiation-tolerant materials. Not to mention nuclear applications, radiation-
resistant materials are in great demand in medical and aerospace fields as well.

The typical range of operating temperatures of nuclear reactors spans from 350 to
900 ◦C as listed in Table 4 [288]. At high temperatures, several effects come into play
such as thermal expansion, vacancy concentration, diffusion rate, phase transforma-
tion, precipitation, recovery, recrystallization, dislocation climb, creep, grain weaken-
ing/migration/growth, oxidation and intergranular oxygen dispersion. With conventional
alloys, design strategies for nuclear reactor materials were mostly concerned with tuning
the microstructures by various heat treatments, precipitation, cold working and solute
atoms to get desired properties. HEAs, though, introduce the concept of modifying composi-
tional complexity of the structural materials to make them suitable for nuclear applications.
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Table 4. Core outlet temperature of different gen-IV nuclear reactor coolant [288].

Reactor System Core Outlet Temperature (◦C) Coolant

Super critical water-cooled reactor 350–620 Water

Sodium-cooled fast reactor ~550 Na liquid metal

Lead-cooled reactor 550–800 Pb, Pb-Bi liquid Metals

Molten salt reactor 700–800 Fluoride salts

Gas-cooled fast reactor ~850 Helium gas

Very high temperature reactor >900 Helium gas

Currently, reduced activation ferritic/martensitic steels (RAFM) (e.g., F82H, EURO-
FER 97), are the most popular option for irradiation-resistant structural materials. Oxide
dispersion strengthened (ODS) RAFM steels (i.e., EUROFER 97 reinforced with 0.3 wt.%
Y2O3 particles), C/C, SiC/C, SiC/SiC, refractory metals/alloys (W, Cr), V and Ti-based
alloys are also being used [289,290]. HEAs are considered to be potential candidates
for nuclear applications [2,291–293]. Yeh et al. [294] mentioned that HEAs are potential
candidates for structural materials of the 4th generation nuclear reactor. Previously, the
irradiation responses and defect behaviors [65,66], intrinsic transport properties [66], ir-
radiation induced structural changes [295] of HEAs were reviewed. Building upon these
reviews, this section mainly focuses on ion irradiation resistance of HEAs.

The majority of the previous ion irradiation studies on HEAs are listed in Table 5
where phases, irradiation conditions and important findings are summarized. These HEAs
were studied under Ni, Au, Ag, Ar, He, Kr, or Xe ions irradiation. The most popular
strategy to design single-phase HEAs of high irradiation resistance used elements having
low activation or thermal neutron absorption cross section [296–300].

Table 5. Summary of irradiation studies on HEAs.

Source Material (Fabrication) Phase Irradiation Conditions (Energy, Ion, Fluence, Temperature)

Jawaharram et al. [301] CoCrFeNiMn FCC 2.6 MeV, Ag3+, 1.5 × 10−3 & 1.9 × 10−3 dpa−1 s−1, 23–500 ◦C

Lu et al. [302] NiCoFeCr, CoCrFeNiMn FCC 3 MeV, Ni2+, 5 × 1016 ions·cm−2, 500 ◦C

Barr et al. [303] CoCrFeNiMn FCC 3 MeV, Ni2+, 3 × 1015 ions·cm−2, 500 ◦C

Lu et al. [304] CoCrFeNi, CoCrFeNiMn FCC 1.5 MeV, Ni+, 4 × 1014 & 3 × 1015 ions·cm−2 (peak dose~4 dpa), 500 ◦C
3 MeV, Ni+, 5 × 1016 ions·cm−2 (peak dose~60 dpa), 500 ◦C

Tong et al. [305]
CoCrFeNiMn

CoCrFeNi
CoCrFeNiPd

FCC 16 MeV, Ni5+, 8 MeV Ni3+, 4 MeV Ni1+&
2 MeV Ni1+, 0.1–1 dpa, 420 ◦C

Jin et al. [306] CoCrFeNi, CoCrFeNiMn FCC 3 MeV, Ni2+, 5 × 1016 ions·cm−2 (peak dose~53 dpa), 500 ◦C

Chen et al. [307] CoCrFeMnNi
Al0.3CoCrFeNi

FCC
FCC 1 MeV, Kr ions, 6.3 × 1015 ions·cm−2, 300 ◦C

Wang et al. [308] CoCrFeNiCu FCC 100 keV, He+, 2.5 × 1017, 5 × 1017 & 1 × 1018 ions·cm−2, RT

He et al. [309]
CoCrFeNi,

CoCrFeNiMn,
CoCrFeNiPd

FCC electrons, 5 × 1018 e·cm−2·s−1, 400 ◦C

Yang et al. [310] CoCrFeNiMn,
CoCrFeNiPd FCC 3MeV, Ni2+, 5 × 1016 ions·cm−2, 420, 500 & 580 ◦C

Yang et al. [311] CoCrFeNiMn FCC -, He ion, -, RT & 450 ◦C

Hashimoto et al. [312] CoCrFeNiMn,
CoCrFeNiAl0.3

FCC 1250 keV, 1.5 dpa, 300–400 ◦C

Zhang et al. [313] CoCrFeNiCu FCC 3 MeV Ni2+, 1014 ions·cm−2, RT

Yang et al. [314] CoNi, FeNi, CoCrFeNi -
FCC

3 MeV, Ni2+, 1.5 × 1016 (peak dose~17 dpa) &
5.0 × 1016 (peak dose~53 dpa) ions·cm−2, 500 ◦C
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Table 5. Cont.

Source Material (Fabrication) Phase Irradiation Conditions (Energy, Ion, Fluence, Temperature)

Abhaya et al. [315] CrCoFeNi FCC 1.5 MeV, Ni2+, 1 × 1015 (peak dose~2 dpa) &
5 × 1016 (peak dose~96 dpa) ions·cm−2, RT

Sellami et al. [316] CoCrFeNi 1.5 MeV, Ni2+, 1 × 1013–1 × 1014 ions·cm−2

21 MeV, Ni2+, 2 × 1013 & 1 × 1014 ions·cm−2, RT

Chen et al. [317] CoCrFeNi FCC 275 keV, He+, 5.14 × 1020 ions·m−2, 250, 300, 400 ◦C

Kombaiah et al. [318] CoCrFeNi,
Al0.12CoCrFeNi FCC 3 MeV, Ni2+, 1 × 1017 ions·cm−2 (peak dose~100 dpa), 500 ◦C

Lu et al. [319] CoCrFeNiPd FCC 3 MeV, Ni2+, 5 × 1016 ions·cm−2, 580 ◦C

Tunes et al. [320] CrFeNiMn FCC 30 keV, Xe+, 2.6 × 1016 ions·cm−2, 500 ◦C

Edmondson et al. [321] CrFeNiMn BCC 30 keV, Xe+, 9.3×1016 ions·cm−2

6 keV He+, 6.4 × 1016 ions·cm−2, RT

Fan et al. [322] CoCrFeNi FCC 3 MeV, Ni ions, 5 × 1016–8 × 1016 ions/cm−2, 580 ◦C

Chen et al. [81] CoCrFeNiTi0.2 FCC 275 keV, He2+, 5.14 × 1020 ions·m−2, 400 ◦C

Lyu et al. [323] CoCrFeNiMo0.2 FCC 27 keV, electrons, -, RT

Xu et al. [324] (CoCrFeNi)95Ti1Nb1Al3 FCC 2.5 MeV, Fe ions, 1.5 × 1019 ions·m−2, RT-500 ◦C

Cao et al. [325] (CoCrFeNi)94Ti2Al4 FCC 4 MeV, Au ions, 10–49 dpa, RT

Tolstolutskaya et al. [326]
Cr0.18Fe0.4Mn0.28Ni0.14
Cr0.18Fe0.28Mn0.27Ni0.28

Cr0.2Fe0.4Mn0.2Ni0.2

FCC 1.4 MeV, Ar ions, 0, 0.3, 1 & 5 dpa, RT

Kumar et al. [327] Fe0.27Ni0.28Mn0.27Cr0.18 FCC 3 MeV, Ni2+, 4.2 × 1013, 4.2 × 1014 & 4.2 × 1015 ions·cm−2, RT & 500 ◦C
3 MeV, Ni2+, 2.43 × 1015 & 2.43 × 1016 ions·cm−2, 400–700 ◦C

Li et al. [328] Cr0.18Fe0.27Ni0.28Mn0.27 FCC Neutron, 8.9 × 1014 n·cm−2.s, 60 ◦C

Voyevodin et al. [329] Cr0.2Fe0.4Mn0.2Ni0.2+
Y2O3 + ZrO2

FCC 1.4 MeV, Ar ions, 2.2 × 1015 ions·cm−2, RT

Dias et al. [330] CuxCrFeTiV
(x = 0.21–1.7) BCC + FCC 300 keV, Ar+, 3 × 1020 at·m−2, RT

Yang et al. [298] Al0.3CoCrFeNi FCC 3 MeV, Au ions, 6 × 1015 ion·cm−2 (peak dose ~31 dpa), 250–650 ◦C

Gromov et al. [331] AlCoCrFeNi - 18 keV, electrons, -, RT

Zhang et al. [299] AlCrMoNbZr,
(AlCrMoNbZr)N FCC 400 keV, He+, 8 × 1015 & 8 × 1016 ion·cm−2, RT

Yang et al. [82]
Al0.1CoCrFeNi,
Al0.75CoCrFeNi,
Al1.5CoCrFeNi,

FCC
FCC + B2
A2 + B2

3 MeV, Au ions, 1 × 1014–1 × 1016 ions·cm−2, RT

Xia et al. [83]
Al0.1CoCrFeNi,
Al0.75CoCrFeNi,
Al1.5CoCrFeNi

FCC
FCC + B2
B2 + A2

3 MeV, Au ions, 1 × 1014–1 × 1016 ions·cm−2, RT

Yang et al. [332] Al0.1CoCrFeNi FCC 3 MeV, Au ions, 6 × 1015 ions·cm−2, 250–650 ◦C

Zhou et al. [333] AlxCoCrFeNi (x = 0–2) FCC + BCC 1 MeV, Kr2+, -, RT

Zhou et al. [334] AlxCoCrFeNi,
HfNbTaTiZrV

FCC
Amorphous MeV Kr & 200 KeV, electrons, 2 dpa, RT & 150 ◦C

Zhou et al. [335] HfNbTaTiZrV BCC 1 MeV Kr2+, -, RT-150 ◦C

Moschetti et al. [336] HfNbTaTiZr BCC 5 MeV, He2+, 1.6 × 1012–4.4 × 1017 ions·cm−2s, 50 ◦C

Sadeghilaridjani et al.
[337] HfTaTiZrV BCC 4.4 MeV, Ni2+, 1.08 × 1017 ion·cm−2, RT

Li et al. [338] HfNbTiZr BCC 1.5 MeV, He ions, 5 × 1015–1 × 1017 ions·m−2, 700 ◦C

Kareer et al. [339]
TaTiVZr,
TaTiVCr,
TaTiVNb

BCC
BCC
BCC

2 MeV, V+, 2.26 × 1015 ions·cm−2, 500 ◦C

Wang et al. [340]
ZrTiHfCuBe,

ZrTiHfCuBeNi,
ZrTiHfCuNi

Amorphous 100 keV, He ions, 5.0 × 1017, 1.0 × 1018 & 2.0 × 1018 ions·cm−2, RT
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Table 5. Cont.

Source Material (Fabrication) Phase Irradiation Conditions (Energy, Ion, Fluence, Temperature)

Lu et al. [80] Ti2ZrHfV0.5Mo0.2 BCC 3 MeV, He+, 5 × 1015, 1 × 1016 & 3 × 1016 ions·cm−2, 600 ◦C

Atwani et al. [341] W0.38Ta0.36Cr0.15V0.11 BCC 1 MeV, Kr+2, 0.0006–8 dpa·s−1, 800 ◦C

Komarov et al. [342] (TiHfZrVNb)N - 500 KeV He2+, 5 × 1016–3 × 1017 ions·cm−2, 500 ◦C

Gandy et al. [343] SiFeVCrMo
SiFeVCr

sigma
BCC+ sigma 5 MeV, Au2+, 5 × 1015 ions·cm−2, RT

Patel et al. [344] V2.5Cr1.2WMoCo0.04 BCC 5 MeV, Au+, 5 × 1015 ion·cm−2 (peak dose~42 dpa), RT

Zhang et al. [345] Mo0.5NbTiVCr0.25,
Mo0.5NbTiV0.5Zr0.25

BCC 400 He2+, 1 × 1017–5 × 1017 ions·m−2, 350 ◦C

Zhang et al. [346] Mo0.5NbTiVCr0.25,
Mo0.5NbTiV0.5Zr0.25

BCC 400 keV, He2+, peak dose~10.5 dpa, 350 ◦C

Atwani et al. [347] WtaCrV BCC 2 keV, He+, 1.65 × 1017 ions·cm−2, 950 ◦C

3.1.1. Dislocation

Neutrons generated from fission/fusion reactors induce atomic displacements in
structural materials and may introduce point defects. Development of interstitial and
vacancy defects will change local lattice parameters of the original phase. This will lead
to deterioration of structural materials, namely, hardening, phase instability, irradiation-
induced segregation, irradiation-induced creep, volumetric swelling and H/He embrittle-
ment [290,348,349]. For instance, Yang et al. [332] noticed various defects (i.e., dislocation
loops, long dislocations and stacking-fault tetrahedra) were induced by irradiation of
3 MeV Au ion on Al0.1CoCrFeNi but they did not observe void formation. They noticed
that defect density decreased and defect size increased with the increasing temperature.
Chen et al. [81] investigated the effect of irradiation of He+ 275 KeV on FeCoNiCrTi0.2 at
400 ◦C. They reported that high pressure He bubbles generated at the peak damage region
and faulted dislocation loops (1/3<111>) formed. Perfect loops were rarely noticed and
the size of the faulted loops was observed to be abnormally large. They also determined
stalking fault energy (SFE) and reported the upper limit for SFE at 400 ◦C for FeCoNiCr
and FeCoNiCrTi0.2 was estimated approximately to be ~80 mJ·m−2 for the largest radius of
a faulted loop of ~15 nm and ~30 mJ·m−2 for the largest radius of a faulted loop of ~55 nm,
respectively. This showed that adding Ti significantly reduced the SFE.

Yang et al. [314] studied the irradiation behavior of CoCrNiFe with 3 MeV Ni2+ ions at
500 ◦C. They investigated the defects (dislocation loops and void distribution) as a function
of depth. The defects were found at the depth of 200–600 nm and 1100–2000 from the
surface. Overall, the average defect diameter was measured to be <10 nm. Lu et al. [302] ob-
served the irradiation behavior of FeNi, CoFeNi, CoCrFeNi and CoCrFeNiMn under 3 MeV
Ni2+ ions at 500 ◦C. In SEM images, they noticed faulted (1/3<111>) dislocation loops in all
of these alloys as a result of irradiation. These loops increased with the increasing number of
principal elements. Yang et al. [298] studied Al0.3CoCrFeNi under 3 MeV Au ion irradiation.
Average dislocation loop size was found to be ~12 nm at 250 ◦C and ~32 nm at 500 ◦C. Dis-
location loop density was ~18 × 1021 m−3 at 250 ◦C and ~2 × 1021 m−3 at 500 ◦C. Hence,
the average defect size increased and defect density decreased with irradiation temperature.

3.1.2. Hardness

Various researchers claimed that ion irradiation increased the hardness of the
HEAs [306,307,326,327,329,337,343] although there are a few cases that reported some
deviant behaviors [80,336,341]. HEAs showed better resistance to hardening by irradiation
than stainless steels [326,329]. For instance, Sadeghilaridjani et al. [337] reported that the
hardness of HfTaTiVZr increased by 20% under Ni2+ ion irradiation, but under the same
condition, the hardness of SS304 increased by around 50%. Such superior resistance to
irradiation hardening was attributed to the reduced mobility of the point defects due
to sluggish diffusion and self-healing ability. Similarly, Tolstolutskayaet et al. [326] irra-
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diated CrFeNiMn, Cr0.18Fe0.4Ni0.28Mn0.14 and Cr0.18Fe0.28Ni0.27Mn0.28 with 1.4 MeV and
found out that the hardness increased by 22–45%. They also reported that the hardness
of austenitic steels, such as X18H10T and SS316, almost doubled under similar irradia-
tion conditions.

3.1.3. Phase Stability

The microstructure of a material under irradiation could be affected by formation of
defect clusters, dislocation loops, stacking faults, precipitates, voids, or He bubbles. These
phenomena may even alter local chemical compositions. Such microstructural changes
could lead to deterioration in properties such as conductivity, ductility, fracture toughness
or creep strength. Irradiation damage also can cause material swelling, irradiation-induced
creep (IIC), irradiation-assisted stress corrosion cracking or irradiation growth. The attrac-
tive properties of the HEAs typically come from specific phases acquired with suitable
compositions. Moreover, there are various potential intermetallics compositions present
in HEAs. Therefore, the phase stability analysis becomes of utmost importance. Taking
advantage of recent advancement in microstructure characterization technologies, most of
the studies mentioned in Table 5 focused on the phase stability and microstructural changes
after ion irradiation. Phase stability after irradiation was observed for several HEAs such
as CoCrFeNiMn, CoCrFeNiPd and high entropy metallic glasses such as ZrTiHfCuBe and
ZrTiHfCuBeNi [340] and AlxCoCrFeNi (x = 0.1–1.5) [82,83]. Such high phase stability
was mainly attributed to sluggish diffusion and high configurational entropy that kineti-
cally restrains precipitation by reducing thermodynamic driving force. Moreover, Kumar
et al. [327] reported that Fe0.27Ni0.28Mn0.27Cr0.18 alloy exhibited higher phase stability and
higher resistance to radiation swelling and void formation in comparison to austenitic
stainless steels. No micro-void formed in CoCrFeNi irradiated by 1.5 MeV Ni2+ ion. Thanks
to its superior interface stability during irradiation, AlCrMoNbZr/ (AlCrMoNbZr)N was
considered a promising candidate for an accident-tolerant fuel cladding material [299].

On the other hand, Wang et al. [308] noticed a reduction in crystallinity resulted from
He ion irradiation on CoCrFeCuNi alloy. Yang et al. [298] observed that precipitation of
the L12 phase was suppressed due to irradiation-induced ballistic mixing at temperatures
less than or equal to 500 ◦C. Additionally, precipitation of the B2 phase was favored at
650 ◦C due to improved diffusion by irradiation. They found that the swelling resistance
of CoCrFeNiMn was less than 0.5% for temperatures up to 680 ◦C. They attributed the im-
proved resistance to the void-induced swelling of these alloys to the complex arrangements
of different atoms in the lattice structure. Gandy et al. [343] reported irradiation-induced
phase transformation in SiFeVCrMo from the tetragonal sigma phase to BCC. This BCC
phase formed at high temperatures as well as after ion irradiation. Under irradiation
of 3 MeV Ni2+ ion, NiCoFeCr maintained its phase stability; however, Al0.12NiCoFeCr
showed phase change. Al0.12NiCoFeCr microstructure changed from single FCC to FCC
matrix, nanoprecipitates (i.e., Ni3Al) and ordered structure (i.e., L12) [318]. Irradiation of
3 MeV Ni2+ ion on the CoCrFeNiMn alloy induced Mn depletion and Co/Ni enrichment at
grain boundaries [303]. He et al. [309] studied the phase stability of CoCrFeNi, CoCrFeN-
iMn and CoCrFeNiPd under electron radiation. They concluded that Cr, Fe, Mn and Pd
elements were most likely to deplete and Co/Ni preferred to accumulate at defect clusters
(i.e., dislocation loops). Atwani et al. [341] irradiated CrTaVW HEA with 1 MeV Kr2+ ions
at 800 ◦C. This HEA showed the segregation of Cr and V at the triple junction and grain
boundaries after irradiation. Yang et al. [332] and Lu et al. [302] also noticed that Ni and Co
tended to enrich, but Cr, Fe and Mn preferred to deplete at defect clusters in Al0.1CoCrFeNi
under 3 MeV Au ion irradiation.

3.1.4. Irradiation-Induced Creep (IIC)

Irradiation-induced creep is another important aspect since nuclear reactors operate at
high temperatures as shown in Table 5. Jawaharram et al. [301] studied both thermal creep
and irradiation-induced creep (IIC) of Cantor alloy (CoCrFeMnNi). For IIC measurement,
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CoCrFeNiMn was irradiated with 2.6 Mev Ag3+ ion in the temperature range of 23–650 ◦C.
They reported that over the temperature range investigated, ICC was more dominant that
thermal creep.

3.1.5. Swelling Resistance

Density reduction by volume increase due to formation of voids and defects is the
mechanism behind material swelling. In order to maintain the structural integrity and
mechanical strength, reasonably high swelling resistance is required for structural materials
for nuclear applications. Several HEAs showed adequate swelling resistance under irradia-
tion. Yang et al. [332] reported negligible void formation in Al0.1CoCrFeNi under 3 MeV
Au ion irradiation. Moreover, Yang et al. [314] noticed that dislocation loops and void
distribution varied as a function of depth in CoCrFeNi under 3 MeV Ni2+ ion irradiation.
Jin et al. [306] suggested that compositional complexity, including the number and type of
components, be taken into consideration to improve swelling resistance. They concluded
that adding Fe and Mn would be more effective to reduce swelling than adding Co and
Cr. Their results showed that NiCoFeCrMn exhibited 40 times higher swelling resistance
than Ni.

3.1.6. Self-Healing

HEAs showed the ability to absorb and heal radiation-induced damages. Self-healing
of HEAs was explained by Egami et al. [350] in detail. Xia et al. [83] reported that defect
clustering in disordered FCC or BCC happened in smaller size than in the ordered B2
phase. They attributed this effect to the reduced defect mobility and large atomic stress in
the disordered phases which might have led to self-healing. Patel et al. [344] investigated
the phase stability of V2.5Cr1.2WMoCo0.04 under 5 MeV Au+ ion irradiation. They noticed
that 96% of the BCC phase of the as-cast alloy remained intact up to the irradiation dose of
42 displacement per atom (dpa). The remaining 4% converted to another BCC phase with
a little larger lattice parameter. Their energy dispersive X-ray (EDX) analysis detected no
element segregation. Such phase stability was attributed to the self-healing capability [350].
Tong et al. [305] concluded that the local lattice distortion could be relaxed by lattice
expansion with low dose of irradiation. Sellami et al. [316] irradiated CoCrFeNi with
1.5 MeV and 21 MeV Ni Ions. They reported elastic strain values of ~0.035% and 0%
for 1.5 MeV Ni ion and 21 MeV Ni ion irradiations, respectively. They suggested that
the complex composition of HEAs induced higher chemical disorder that reduced the
mobility of defects generated by low energy (i.e., 1.5 MeV Ni) ion irradiation; therefore, a
small elastic strain of ~0.035% was obtained. Furthermore, when low energy irradiation
CoCrFeNi alloy was further subjected to high-energy (i.e., 21 MeV Ni) irradiation, elastic
strain relaxation (resulted into ~0% elastic strain) was observed which could be attributed
to the mechanisms such as defect annealing, recombination and rearrangement.

3.1.7. Miscellaneous

Lu et al. [80] reported an unexpected decrease in lattice parameter by 0.676% after He
ion irradiation on Ti2ZrHfV0.5Mo0.2. Similarly, TiZrNbHfTa showed insignificant changes
in hardness but a considerable increase in UTS and YS without loss of ductility [336].
Li et al. [328] noticed an increase in electrical resistivity of Fe0.27Mn0.27Ni0.28Cr0.18 after
neutron irradiation.

3.2. Wear Behavior

The wear properties of HEAs were studied mostly with pin/ball on a disc set up with
antagonist materials such as Al2O3, steels (i.e., SKH51, GCr15, 100Cr6), Si3N4, SiC, ZrO2,
1Cr18Ni9Ti, BN, inconel-718 and WC. For lubrication, mostly dry conditions were used
but some studies also used H2O2, deionized water and acid rain (pH = 2). Previously, Tsai
and Yeh et al. [351], Kasar et al. [352], Senkov et al. [67], Sharma et al. [16], Zhang et al. [37],
Li et al. [42], Menghani et al. [353] and Ayyagari et al. [354] discussed the wear behaviors
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of HEAs. In this review, we will analyze the tribological studies of HEAs in terms of HEAs
content variation, particle reinforcement, media and nitriding/carburizing/sulfurizing,
temperature effects and oxide formation. Table 6 provides the details of the compositions,
microstructures, methods and results (i.e., wear rate or wear resistance, hardness, friction
coefficient) of the wear studies performed so far on HEAs.

Table 6. Wear studies of HEAs.

Source Composition Microstructure Method, Medium, Antagonist Material,
Temperature, Wear Rate

Joseph et al. [355] CoCrFeNiMn FCC Pin-on-disc, dry, Al2O3, 600–800 ◦C, RT,
0.5 × 10−4–3.8 × 10−4 mm3·N−1·m−1

Wang et al. [356] CoCrFeNiMn FCC Ball-on-disc, MoS2-oil lubrication, GCr15,
RT-140 ◦C

Xiao et al. [357] CoCrFeNiMn FCC Ball-on-flat, dry, WC-Co, RT,
0.5 × 10−4–5.4 × 10−4 mm3·N−1·m−1

Jones et al. [358] CoCrFeNiMn FCC Rotary tribometer, -, -, ~0.5 × 10−6

mm3·N−1·m−1

Zhu et al. [359]

CoCrFeNiMn
CoCrFeNiMnV

CoCrFeNiMnNb
CoCrFeNiMnNbV

FCC + HCP (Laves) + σ Ball-on-disc, dry, Si3N4, RT,
1.85 × 10−5–6.39 × 10−5 mm3·N−1·m−1

Deng et al. [360] CoCrFeNiMox (x = 0–0.3) FCC Ball-on-disc, dry, GCr15, RT,
0.33 × 10−3–0.53 × 10−3 mm3·N−1·m−1

Lindner et al. [361] CoCrFeNiMn
CoCrFeNi

FCC
FCC Ball-on-disc, dry, Al2O3, RT

Sha et al. [362] (CoCrFeNiMn)N FCC + BCC Ball-on-disc, dry, ruby, RT,
1 × 10−7–1.4 × 10−6 mm3·N−1·m−1

Xiao et al. [363] CoCrFeNiMnCx (x = 0–1.2) FCC Ball-on-disk, dry, Si3N4, RT,
0.47 × 10−5–6.5 × 10−5 mm3·N−1·m−1

Zhu et al. [277] CoCrFeNiMn + TiN-Al2O3 FCC + TiN Ball-on-disc, dry, 440C steel, RT

Cheng et al. [364]
CoCrFeNiMn

Al0.5CoCrFeNiMn
AlCoCrFeNiMn

FCC
FCC + BCC
FCC + BCC

Ball-on-disc, dry, Si3N4, RT-800 ◦C,
0.5 × 10−4–3.8 × 10−4 mm3·N−1·m−1

Joseph et al. [365]

CoCrFeNiMn
Al0.3CoCrFeNi
Al0.6CoCrFeNi

AlCoCrFeNi

FCC
FCC

FCC + BCC
BCC

Pin-on-disc, dry, Al2O3, 25 & 900 ◦C

Liu et al. [366] CoCrFeNiMn + Y2O3 FCC + Y2O3 (particles) Ball-on-disc, dry, GCr15, RT

Wang et al. [367] (CoCrFeMnNi)85Ti15 FCC + BCC Ball-on-disc, dry, Si3N4, RT-800 ◦C,
4 × 10−6–2.23 × 10−5 mm3·N−1·m−1

Zhang et al. [368] CoCrFeNi + (Ag or BaF2/CaF2) FCC Ball-on-disk, dry, Inconel-718, RT,
~4 × 10−5–40 × 10−5 mm3·N−1·m−1

Geng et al. [369] CoCrFeNi FCC Pin-on-disc, vacuum (4 Pa) & air, Inconel
718, RT, 0.6 × 10−4–8 × 10−4 mm3·N−1·m−1

Zhang et al. [370] CoCrFeNi + (graphite or MoS2) FCC Ball-on-disk, dry, Si3N4, RT-800 ◦C,
~1 × 10−5–23 × 10−5 mm3·N−1·m−1

Zhou et al. [371] CoCrFeNiMo0.85
Al0.5CoCrFeNi

FCC
FCC Slurry jet test-rig, HCl+NaCl, -, 40 ◦C, -

Zhang et al. [372] CoCrFeNiMo FCC Ball-on-disc, dry, -, RT

Huang et al. [373] FeCoCrNiSix FCC + BCC Ball-on-disk, dry, GCr15, RT

Cui et al. [374] CoCrFeNiMo
Sulfurized at 260 ◦C for 2 h FCC + FeS/MoS2 film Pin-on-disk, dry, GCr15, RT

Li et al. [375] CoCrFeNiMo0.2 FCC Ball on disc, dry, GCr15, RT,
3.9 × 10−4–5.4 × 10−4 mm3·N−1·m−1



Metals 2021, 11, 1980 18 of 47

Table 6. Cont.

Source Composition Microstructure Method, Medium, Antagonist Material,
Temperature, Wear Rate

Ji et al. [376]

CoCrFeNiCu + 2% MoS2
CoCrFeNiCu + 5% MoS2
CoCrFeNiCu + 20% WC
CoCrFeNiCu + 50% WC
CoCrFeNiCu + 80% WC

FCC + MoS2 (particles)
FCC + MoS2 (particles)
FCC + WC (particles)
FCC + WC (particles)
FCC + WC (particles)

Ball-on-disk, dry, Si3N4, RT

Verma et al. [377] CoCrFeNiCux (x = 0–1) FCC Pin-on-disk, dry, -, RT & 600 ◦C,
~1.3 × 10−5–2.5 × 10−5 mm3·N−1·m−1

Liu et al. [378] CoCrFeNiBx (x = 0.5–1.5) FCC + Borides Roller friction wear tester, dry, W18Cr5V, RT

Jiang et al. [379] CoCrFeNiNbx (x = 0–1.2) FCC + HCP (Laves) HCP (Co2Nb) Ball-on-disc, dry, BN, RT

Yu et al. [380] CoCrFeNiNbx (x = 0.5–0.8) FCC + HCP (Laves) Pin-on-disk, dry, Si3N4, RT-800 ◦C,
~1.8 × 10−4–9 × 10−4 mm3·N−1·m−1

Liu et al. [381] Co10Cr10Fe50Mn30 + graphene
nanoplatelets (0.2–0.8 wt%) FCC Ball-on-plate, dry, GCr15, RT

Wang et al. [382] Co10Cr10Fe40Mn40 + WC (10 wt%) FCC+ WC + M23C6 Ball-on-disc, dry, Si3N4, RT

Derimow et al. [383] (CoCrCuTi)100−xMnx (x = 5–10)
(CoCrCuTi)100−xMnx (x = 10–20)

FCC + BCC
FCC + HCP (Laves) Ball-on-disc, dry, GCr15, RT

Guo et al. [384] CoCrFeNiCuSi0.2 (Ti or C)x
(x = 0–1.5) FCC + TiC Brooks sliding friction & wear tester, dry, RT

Zhang et al. [385] (CoCrFeNiTi0.5)Cx (x = 3–12 wt%) BCC + Cr23C6 + TiC ML-100 friction and wear tester, -, -, RT

Erdoğan et al. [386]
CoCrFeNiTi0.5

CoCrFeNiTi0.5Al0.5
CoCrFeNiTi0.5Al

FCC
BCC
BCC

Ball-on-disc, dry, WC, RT

Liu et al. [387]
CoCrFeNiMo

CoCrFeNiMox (x ≥ 0.3)
CoCrFeNiMox (x ≥ 1)

FCC
FCC + σ

FCC + σ + µ

Pin-on-disk, dry, YG6, RT,
1 × 10−5–8.5 × 10−5 mm3·N−1·m−1

Moazzen et al. [388] CoCrFexNi (x = 1–1.6) FCC + BCC Pin-on-disk, dry, AISI52100 steel, 20–30 ◦C, -

Yang et al. [389] CoCrFeNiMoSix (x = 0.5–1.5) FCC Pin-on-disk, dry, Si3N4, RT,
0.292 × 10−4–0.892 × 10−4 mm3·N−1·m−1

Li et al. [390] CoCrFeNi2V0.5Tix (x = 0.5–1.25) BCC + (Co,Ni)Ti2
Ball-on-disc, dry, Si3N4, RT, 4.4 × 10−5-

37.5 × 10−5 mm3·N−1·m−1

Islak et al. [391] CrFeNiMoTi FCC Ball-on-flat, dry, 100Cr6, RT,
2.7 × 10−3–9.4 × 10−3 mm3·N−1·m−1

Wen et al. [392] CrCoNiTiV FCC + BCC + TiO HT-1000 tribometer, -, WC, RT & 600 ◦C

Wang et al. [393] CuNiSiTiZr BCC CJS111A wear tester, dry, -, RT

Cheng et al. [394] (Fe25Co25Ni25 (B0.7Si0.3)25)100−xNbx
(x = 0–4 wt%)

BCC + HCP (Laves) +
FCC

Ball-on-disc, dry, GCr15, RT,
~1.5 × 10−6–3.6 × 10−6 mm3·N−1·m−1

Yadav et al. [395] (CuCrFeTiZn)1−xPbx
(x = 0.05–0.2) FCC + BCC + Pb (particles) Ball-on-disk, dry, -, SAE 52100, RT,

1.17 × 10−5–50 × 10−5 mm3·N−1·m−1

Gou et al. [396] CoCrFeNi + WC + Mo2C + NbC FCC Ball-on-disc, dry, GCr15, 700 ◦C

Yadav et al. [397] (CuCrFeTiZn)100−xPbx (x = 0–10)
(CuCrFeTiZn)100−xBix (x = 0–10)

FCC + BCC
BCC Ball-on-disk, dry, steel, RT

Cui et al. [398] AlxCoCrFeNiMn (x = 0–0.75) FCC + BCC MDW- 02 abrasive wear tester, RT

Gwalani et al. [399] Al0.5CoCrFeNi FCC + B2 Pin-on-disc, dry, Si3N4, RT,
1.8 × 10−5–11 × 10−5 mm3·N−1·m−1

Chen et al. [400] Al0.6CoCrFeNi FCC + BCC Ball-on-plate, dry, Si3N4, RT-600 ◦C,
~0.5 × 10−4–5 × 10−4 mm3·N−1·m−1

Du et al. [401] Al0.25CoCrFeNi FCC
Universal wear testing machine, dry, Si3N4

20–600 ◦C, ~1.5 × 10−4–3.5 × 10−4

mm3·N−1·m−1

Chen et al. [402] Al0.6CoCrFeNi FCC + BCC
Ball-on-block, deionized water & acid rain

(pH = 2), seawater, GCr15, RT,
1.58 × 10−4–6.52 × 10−4 mm3·N−1·m−1
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Ji et al. [403] Al3CoCrFeNi Jet erosion testing machine, water and
15 wt% SiO2 particles (350–600 mm), RT

Haghdadi et al. [404] Al0.3CoCrFeNi
AlCoCrFeNi

FCC
BCC Scratch testing, dry, -, RT

Fang et al. [405] Al0.3CoCrFeNi FCC Pin-on-disc, dry, -, 900 ◦C

Wu et al. [406] Al0.1CoCrFeNi FCC
Ball-on-block, dry and deionized water,

Si3N4, RT, ~0.2 × 10−4–1.86 × 10−4

mm3·N−1·m−1

Nair et al. [407]
Al0.1CoCrFeNi
AlCoCrFeNi
Al3CoCrFeNi

FCC
FCC + BCC (B2)

BCC (B2) + A2 + σ
Ball-on-disc, dry, WC, RT

Kumar et al. [408] Al0.4CoxCrFeNi (x = 0–1) -

Pin-on-disc, demineralized water &
(demineralized water + 3.5 wt% NaCl),

EN-31, RT, 0.81 × 10−4–1.86 × 10−4

mm3·N−1·m−1

Mu et al. [409] AlCoCrFeNi BCC + FCC Ball-on disc, dry, Si3N4, RT

Wu et al. [410] AlCoCrFeNi
AlCoCrFeNiTi0.5

BCC Pin-on-disc, dry, Si3N4, RT

Zhao et al. [411] Al0.8CoCrFeNi FCC + BCC
Ball-on-disk, dry, deionized water + 0.5 wt%

NaCl, RT, ~2 × 10−5–7.5 × 10−5

mm3·N−1·m−1

Kumar et al. [412] Al0.4CoxCrFeNi (x = 0–0.5)
Al0.4CoxCrFeNi (x = 1)

FCC + BCC
FCC

Pin-on-disk, engine oil (SAE Grade:20W-40),
EN-31 steel, RT, 2.1 × 10−5–11 × 10−5

mm3·N−1·m−1

Li et al. [413] Al0.8CoCrFeNiCu0.5Six
(x = 0–0.5) FCC + BCC1 + BCC2 -, -, CGr15, RT, 0.9 × 10−6–1.19 × 10−6

mm3·N−1·m−1

Li et al. [272] (AlCoCrFeNi)100-x (NbC)x
(x = 0–30 wt%) FCC + BCC Reciprocating tester, dry, N4Si3, RT

Kafexhiu et al. [414] AlCoCrFeNi2.1 BCC + FCC Ball-on-plate, dry, 100Cr6 steel, RT,
7 × 10−5–11 × 10−5 mm3·N−1·m−1

Miao et al. [415] AlCoCrFeNi2.1 FCC (L12) + BCC (B2)
Ball-on-disk, dry, Al2O3/Si3N4/SiC/GCr15,

RT-900 ◦C, ~1 × 10−4–4.2 × 10−4

mm3·N−1·m−1

Ye et al. [416] AlCoCrFeNi2.1 + TiC (0–15 wt%) FCC + B2 + TiC MM-200 wear testing machine, dry, -, RT

Wang et al. [417] (AlCoCrFeNi)N BCC + nitrides (AlN,CrN,Fe4N)
Ball-on block, dry, deionized water & acid

rain (pH = 2), Si3N4, RT,
2.8 × 10−5–7 × 10−5 mm3·N−1·m−1

Liu et al. [418] AlCrCuFeNi2
Ball-on-block, dry, simulated rainwater &

deionized water, Si3N4, RT,
2.163 × 10−3–0.23 × 10−3 mm3·N−1·m−1

Kong et al. [419] Al1.8CrCuFeNi2 BCC MMS-2A roller friction wear tester, dry, -, RT

Malatji et al. [263] AlCrCuFeNi FCC + BCC Ball-on-disk, dry, SiC, RT

Wang et al. [420] Al1.3CoCuFeNi2 FCC + BCC
Ball-on block, dry, deionized water & acid

rain (pH = 2), Si3N4, RT, 1 × 10−4–12 × 10−4

mm3·N−1·m−1

Xiao et al. [421] AlxCoCrFeNiSi (x = 0.5–1.5) FCC + BCC Ball-on-flat, distilled water, WC-12Co, RT,
6.7 × 10−6–5.5 × 10−5 mm3·N−1·m−1

Liu et al. [422] AlCoCrFeNiSix (0–0.5) BCC Pin-on-disk, dry, ZrO2, RT,
1.3 × 10−4–5.1 × 10−4 mm3·N−1·m−1

Hsu et al. [423] Al0.5CoCrFeNiCuBx (x = 0–1) FCC + boride precipitates Pin-on-disk, dry, Al2O3, RT

Chen et al. [424]
Al0.5CoCrFeNiCuTix (x = 0–0.2)
Al0.5CoCrFeNiCuTix (x = 0.4–1)
Al0.5CoCrFeNiCuTix (x = 1.2–2)

FCC
FCC + BCC

FCC + BCC + Ti2N
Pin-on-disk, dry, Al2O3, RT

Lobel et al. [425] AlCoCrFeNiTi BCC Ball-on-disc, dry, Al2O3, RT
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Lobel et al. [426] AlCoCrFeNiTi BCC Ball-on-plate, dry, 100Cr6 Steel, RT

Wu et al. [427]
AlCoCrFeNiTix (x = 0.5–1)
AlCoCrFeNiTix (x = 1.5)
AlCoCrFeNiTix (x = 2)

FCC + BCC
FCC + BCC + Ti2Ni

FCC + BCC + Ti2Ni + ordered
BCC

Cavitation erosion tests, Distilled water+
3.5 wt% NaCl, RT

Erdogan et al. [428] AlxCoCrFeNiTiy
(x = 0–0.5, y = 0–0.5) FCC + BCC

Ball-on-disc, dry, WC, RT,
0.25 × 10−4–1.78 × 10−4 mm3·N−1·m−1,
0.25 × 10−4–1.78 × 10−4 mm3·N−1·m−1

Xin et al. [429] Al0.2Co1.5CrFeNi1.5Ti0.5 + TiC FCC Ball-on-disc, dry, Si3N4, RT,
0.3 × 10−5–12.6 × 10−5 mm3·N−1·m−1

Gouvea et al. [430] Al0.2Co1.5CrFeNi1.5Ti FCC Ball-on-plate, dry, AISI 52,100 steel, RT,
1.6 × 10−8–7.5 × 10−5 mm2·N−1

Chuang et al. [431] AlxCo1.5CrFeNi1.5Tiy
(x = 0–0.2, y = 0.5–1) FCC Pin-on-disk, dry, SKH51 steel, RT,

~4 × 10−4–1.8 × 10−4 mm3·N−1·m−1

Liu et al. [432] AlCoCrFeNiTi0.8 BCC + B2
Ball-on-disc, dry, Si3N4, RT,

1.36 × 10−6–6.96 × 10−6 mm3·N−1·m−1,
0.7 × 10−4–6 × 10−4 mm3·N−1·m−1

Yu et al. [433] AlCoCrFeNiTi0.5 BCC1 + BCC2 Pin-on-disk, H2O2, SiC & ZrO2, RT

Lobel et al. [434] AlCoCrFeNiTi0.5 BCC (A2 + B2) SRV-Tribometer, dry, Al2O3, 22–900 ◦C

Chen et al. [435] Al0.6CoCrFeNiTi BCC Pin-on-disc, Dry, Al2O3
RT-500 ◦C

Yu et al. [436] AlCoCrFeNiTi0.5
AlCoCrFeNiCu Pin-on-disc, dry, Si3N4

Yu et al. [437] AlCoCrFeNiCu
AlCoCrFeNiTi0.5

FCC + BCC1
BCC1 + BCC2

Pin-on-disk, H2O2, 1Cr18Ni9Ti steel &
ZrO2/SiC ceramic, RT

Jin et al. [438] AlCoFeNiCu FCC + BCC Ball-on-disk, dry, WC, 200–800 ◦C

Zhu et al. [439] AlCoFeNiCu + TiC (10–30 wt%) FCC + BCC Ball-on-disk, dry, Si3N420–600 ◦C,
~0.1 × 10−5–6.5 × 10−5 mm3·N−1·m−1

Wu et al. [440]
Al0.5CoCrFeNiCu
Al1.0CoCrFeNiCu
Al2.0CoCrFeNiCu

FCC
FCC + BCC

BCC
Pin-on-disk, dry, SKH-51 steel, RT

Yan et al. [441] AlCoCrFeNiSi + Ti (C, N) BCC + FCC Ball-on-disc, dry, GCr15, RT, -

Li et al. [442] AlCoCrFeNi + Ti (C,N) + TiB2 FCC Ball-on-disc, dry, WC-6Co, 200–800 ◦C,
2.69 × 10−5–8.66 × 0−5 mm3·N−1·m−1

Kumar et al. [443] AlCoCrCuFeNiSi0.3
AlCoCrCuFeNiSi0.6

FCC + BCC
FCC + BCC + σ Pin-on-disk, dry, -, RT, -

Xin et al. [444] Al0.2Co1.5CrFeNi1.5Ti0.5 FCC Pin-on-disk, dry, Si3N4, 25–800 ◦C,
1.21 × 10−5–6.7 × 10−5 mm3·N−1·m−1

Karakaş et al. [445] Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.1 FCC Ball-on-disc, 3.5%NaCl & 5%H2SO4, -, RT,
16.26 × 10−9–77.84 × 10−8 mm3·N−1·m−1

Xin et al. [446] Al0.2Co1.5CrFeNi1.5Ti (0.5+x) + Cx
(x = 0) FCC Pin-on-disk, dry, Si3N4, 25–800 ◦C,

3.12 × 10−6–12.59 × 10−5 mm3·N−1·m−1

Zhao et al. [447] AlCrCoFeNiCTax (x = 0–1) BCC Pin-on-disk, 3.5%NaCl & air, Si3N4, RT,
1.67 × 10−6–2.22 × 10−5 mm3·N−1·m−1

Ghanbariha et al.
[448] AlCoCrFeNi + ZrO2 FCC + BCC Pin-on-disk, dry, WC, RT,

1.11 × 10−3–2.52 × 10−3 mm3·N−1·m−1

Li et al. [449] AlxCrFeCoNiCu (x = 0–0.5)
AlxCrFeCoNiCu (x = 0.5–2)

FCC
FCC + BCC

-, dry, GCr15, RT, 6.64 × 10−7–2.26 × 10−4

mm3·N−1·m−1

Cai et al. [450] AlCrTiV, AlCrTiVSi BCC Nanoindenter G200, dry, CGr15 &Al2O3, RT,
-

Chandrakar et al.
[451] AlCoCrCuFeNiSix (x = 0–0.9) BCC Pin-on-disk, dry, -, RT, -
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Erdogan et al. [452] AlCrFeNiSi
AlCrFeNix (x = Cu,Co)

BCC
BCC + FCC Ball-on-disc, dry, WC, RT, -

Duan et al. [453] AlCoCrFeNiCu - Pin-on-disc, H2O2, Si3N4, RT

Chen et al. [454]
Al0.5CoCrFeNiCuVx (x = 0–0.2)

Al0.5CoCrFeNiCuVx (x = 0.4–0.8)
Al0.5CoCrFeNiCuVx (x = 1–2)

FCC
FCC + BCC

BCC

Pin-on-disk, dry, Al2O3, RT,
1 × 10−4–2.7 × 10−4 mm3·N−1·m−1

Gu et al. [455] AlxMo0.5NbFeTiMn2 (x = 1–2) BCC Pin-on-disk, dry, Al2O3, RT

Hsu et al. [456] AlCoCrFexNiMo0.5 (x = 0.6–2) BCC + σ Pin-on-disk, dry, SKH51 steel, RT

Liang et al. [457] AlCrFe2Ni2W0.2Mo0.75 BCC Ball-on-disc, deionized water, Al2O3, RT,
~5 × 10−6–22 × 10−6 mm3·N−1·m−1

Qui et al. [458] Al2CoCrFeCuTiNix (x = 0–2) FCC + BCC Tribometer, -, -, RT

Kanyane et al. [459] AlTiSiMoW BCC + TiSi2 (ordered FCC) Ball-on-disc, dry, stainless steel, RT

Huang et al. [460] AlTiSiVCr BCC+ (Ti,V)5Si3 precipitates Ball-on-disc, dry, GCr15 steel, RT,
2 × 10−5–2.5 × 10−5 mm3·N−1·m−1

Zhang et al. [461] AlTiSiVNi B2 (NiAl) + (Ti,V)5Si3 + TiN Ball-on-disc, dry, Si3N4, RT & 800 ◦C

Lin et al. [462] AlCoCrNiW
AlCoCrNiSi

W + AlNi + Cr15.58Fe7.42C6
BCC Pin-on-disc, dry, AISI 52100, RT

Yadav et al. [463]

AlCrFeMnV
(AlCrFeMnV)90Bi10

(AlCrFeMnV)90Bi10 + 10 wt% TiB2
(AlCrFeMnV)90Bi10 + 15 wt% TiB2

BCC
BCC + AlV3 + Bi

BCC + AlV3 + Bi + TiB2
BCC + AlV3 + Bi + TiB2

Ball-on-disk, dry, SAE 52,100 steel, RT,
1.02 × 10−5–7.02 × 10−5 mm3·N−1·m−1

Bhardwaj et al. [464] AlTiZrNbHf BCC Pin-on-disk, dry, CGr15, RT, -

Zhao et al. [465] AlNbTaZrx (x = 0.2–1) BCC + HCP Ball-on-disc, dry, Si3N4, RT,
1.85 × 10−4–2.41 × 10−4 mm3·N−1·m−1

Tuten et al. [466] TiZrHfNbTa Amorphous Ball-on-disc, dry, Al2O3, RT

Pole et al. [467] TiZrHfTaV,
TiZrTaVW BCC Ball-on-disk, dry, Si3N4, RT-500 ◦C,

~1 × 10−4–8 × 10−4 mm3·N−1·m−1

Ye et al. [468] TiZrHfNb BCC Nano-scratch, dry, diamond indenter, RT

Pogrebnjak et al. [469] (TiZrHfNbV)N FCC Ball-on-disc, dry, Al2O3, 20 ◦C

Gong et al. [470]

TiZrHfBeCu
TiZrHfBeNi

Ti20Zr20Hf20Be20Cu10Ni10
Ti13.8Zr41.2Ni10Be22.5Cu12.5

Amorphous Nano-scratch, dry, diamond indenter, RT

Zhao et al. [471] TiZrNiBeCu Amorphous Nano-scratch, dry, diamond indenter, RT

Jhong et al. [472] (TiZrNbCrSi)Cx (x = 36.7–87.8 at.%) FCC Ball-on-disc, dry, 100Cr6 steel, RT,
0.2 × 10–3.3 × 10−6 mm3·N−1·m−1

Mathiou et al. [473] TiZrNbMoTa BCC + HCP Ball-on disc, dry, 100Cr6 steel, Al2O3, RT,
0.154 × 10−1–0.199 × 10−1 mm3·N−1·m−1

Petroglou et al. [474] MoTaxNbVTi (x = 0.25–1) BCC Ball-on-disk, dry, 100Cr6 steel, RT,
0.19 × 10−6–0.38 × 10−6 g·N−1·m−1

Poulia et al. [475] MoTaNbVW BCC Ball-on-disc, dry, 100Cr6 steel & Al2O3, RT

Poulia et al. [476] MoTaNbVW BCC Ball-on-disc, dry, 100Cr6 steel & Al2O3, RT,
1.05 × 10−4–4.89 × 10−4 mm3·N−1·m−1

Poulia et al. [477] MoTaNbVTi BCC + hexagonal C14 Laves +
cubic C15 laves Ball-on disc, dry, 100Cr6 steel, Al2O3, RT

Alvi et al. [478] MoTaWVCu BCC
Ball-on-disc, dry, E52100 steel & Si3N4,

RT-600 ◦C, 2.3 × 10−2–5 × 10−2

mm3·N−1·m−1

Hua et al. [479] TixZrNbTaMo (x = 0.5–2) BCC HSR-2M tester, dry, Si3N4, RT,
2.22 × 10−7–2.42 × 10−7 mm3·N−1·m−1

Gu et al. [480] Ni1.5CrFeTi2.0.5Mox (x = 0–0.25)
Ni1.5CrFeTi2.0.5Mox (x = 0.5–0.25)

BCC
BCC + FCC

Ball-on-disc, dry, Al2O3, RT,
7.99 × 107–2.7 × 107 µm3
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3.2.1. Content Variation

Tribological studies on HEAs are mostly conducted with variations in content of
one element and finding the optimum concentration of the element for minimum wear
rate [360,363–365,371,377–380,383,384,386,390,394,395,397,398,407,408,412,421,422,424,427,
428,431,440,454,455,463,470,472,474]. Furthermore, the effect of Al content on wear prop-
erties and hardness has been studied more than any other metal. For instance, the wear
resistance of CoCrFeNiCu [440], CoCrFeNiTi0.5 [386], CoCrFeNiSi [421] and CoCrFeN-
iMn [364] was improved with Al addition. This was primarily ascribed to the oxide
formation and hardness increase due to phase transformation, grain refinement and precip-
itation. Similarly, Cui et al. [398] studied the effect of AlxCoCrFeNiMn (x = 0–0.75) coatings
on 4Cr5MoSiV alloys. This alloy experienced FCC to FCC + BCC transition and grain
refinement when Al content increased, which in turn raised the hardness from 224 HV to
344 HV. The wear weight loss of 4Cr5MoSiV coated with AlxCoCrFeNiMn with x = 0, 0.25,
0.5 and 0.75 was measured to be 6.0 mg, 4.1 mg, 3.2 mg and 1.1 mg, respectively. Under the
similar wear condition, the amount of wear weight loss of the uncoated 4Cr5MoSiV was
around 10 mg. Meanwhile, Gu et al. [455] analyzed AlxMo0.5NbFeTiMn2 (x = 1–2) coating
on Q235 steel and found that the microhardness and wear were positively correlated to
the Al content. As the Al content increased, the grain size reduced and the hardness and
wear resistance increased. Kumar et al. [412] studied the wear behavior of Al0.4FeCrNiCox
(x = 0–1) under oil lubricated conditions. The hardness of this alloy reduced with the
increasing Co content from 377 HV (x = 0) to 199 HV (x = 1). The wear resistance of
Al0.4FeCrNiCo was found to show a minimum among all other conditions. This alloy did
not show any phase transformation until 1000 ◦C.

Erdogan et al. [428] investigated the influence of the Al and Ti content on the hardness
and wear resistance of AlxCoCrFeNiTiy (x = 0–0.5, y = 0–0.5). Increasing Al and Ti improved
the hardness from 210 HV (for CoCrFeNi) to 859 HV (for Al0.5CoCrFeNiTi0.5). The wear rate
also reduced from 2.1 × 10−13 mm3·N−1·m−1 (for CoCrFeNi) to 0.25 × 10−13 mm3·N−1·m−1

(for Al0.5CoCrFeNiTi0.5). CoCrFeNi initially had the FCC phase. The added Al induced
and stabilized the BCC phase in the FCC matrix. Additionally, Al and Ti formed some
beneficial intermetallic phases such as AlNi and AlNiTi, which improved the hardness
and wear resistance. Similarly, Chuang et al. [431] examined the influence of the Al and
Ti content on the wear performance of the AlxCo1.5CrFeNi1.5Tiy (x = 0–0.2, y = 0.5–1.0)
alloy. They reported that the wear resistance of Co1.5CrFeNi1.5Ti and Al0.2Co1.5CrFeNi1.5Ti
was at least twice that of SUJ2 and SKH51 with the similar hardness values. Li et al. [390]
studied the wear resistance of CoCrFeNi2V0.5Tix (x = 0.5–1.25). They observed that the
wear resistance and the hardness improved with the Ti content until x = 0.75 and started to
decrease thereafter. CoCrFeNi2V0.5Ti0.75 had the maximum hardness of ~960 HV and the
minimum wear rate of 4.43 × 10−5 mm3·N−1·m−1. Chen et al. [424] reported that the wear
resistance of Al0.5CoCrFeNiCuTix (x = 0–2) increased with the Ti content until x = 1, and
thereafter, it started to decrease. Here, a small content of Ti did not have much impact on
wear rate, when Ti content reached x = 0.4, the BCC phase began to form which improved
the hardness and wear resistance. With a Ni content of x = 0.8–1.2, the CoCr-like phases
formed, which improved the wear resistance. However, after x = 1, the Ti2Ni-like and
ordered BCC phases started to appear and the alloy became harder with the increasing Ti
content, which reduced the wear resistance.

Increasing the Cu content from x = 0 to x = 1 reduced the wear rate of CoCrFeNiCux
(x = 0–1) alloy from 2.3 × 10−5 to 1.7 × 10−5 mm3·N−1·m−1 at RT and from 2.5 × 10−5 to
1.3 × 10−5 mm3·N−1·m−1 at 600 ◦C [377]. The wear rate of CoCrFeNi (x = 0) increased
with the increasing temperature. This resulted from the enhanced plastic deformation
and abrasive wear due to thermal softening at higher temperatures. In contrast, the wear
rate of CoCrFeNiCu (x = 1) decreased at higher temperatures. This was attributed to
the self-lubricating effect of Cu. Cu also tended to form protective oxide layer which
prevented direct metal to metal contact [481]. Hsu et al. [423] showed the improved
wear resistance of Al0.5CoCrFeNiCuBx (x = 0–1) with boron addition. Al0.5CoCrFeNiCuB
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showed the hardness of 736 HV and the maximum wear resistance of 1.76 mm3·N−1·m−1

which was higher than that of SKD61 cold-work mold (1.39 m·mm3) and SUJ2 bearing
(1.52 m·mm3). The improved wear resistance was attributed to the boride formation.
Similarly, Liu et al. [378] analyzed the wear resistance of CoCrFeNiBx (x = 0.5–1.5). They
noticed that the increased boron reduced the wear volume from 19 down to 4.5 mm3.
The hardness increased from 550 to 1025 HV0.2 as well with increasing boron, which was
attributed to the increase in the fraction of the hard boride phase with B content. The
maximum hardness was measured to be 1025 HV0.2 for FeCoCrNiB1.5 which was higher
than that of Q245R steels. Kumar et al. [408] reported that the wear rate of Al0.4FeCrNiCox
(x = 0–1 mol) increased with the increasing Co content from 0.81 × 10−4 mm3·N−1·m−1

(x = 0) to 1.86 × 10−4 mm3·N−1·m−1 (x = 1). This was attributed to the hardness decrease
form 377 HV (x = 0) to 199 HV (x = 1). As hardness decreases the wear resistance also
decreases according to the Archard’s law [482]. Chen et al. [454] reported how the variation
of V in Al0.5CoCrFeNiCuVx (x = 0–1) affected the wear performance. Here, increasing V
from x = 0.6 to x = 1.2 improved the wear resistance by 20%. However, increasing V beyond
x = 1.2 did not show a considerable effect. This was in line with the hardness results of
this HEA. The hardness increased while x increased from x = 0.4 to x = 1 exhibiting its
maximum value at x = 1. The optimal V addition was suggested to be in the range of
x = 1–1.2 to improve the wear resistance.

Furthermore, improvements in the wear resistance of CoCrFeNiNbx (x = 0–1.2) [379],
(CuCrFeTiZn)1-xPbx (x = 0.05–0.2) [395], CoCrFeNiCux (x = 0–1) [377], MoTaxNbVTi
(x = 0.25–1) [474] were reported. Wu et al. [410] analyzed the wear resistance of the
AlCoCrFeNiTix (x = 0, 0.5) alloy. They noticed that AlCoCrFeNi had the plate-like disordered
Fe-Cr rich BCC phase embedded in the ordered Al-Ni rich BCC phase. AlCoCrFeNiTi0.5 had
the similar microstructure, but the Ti introduced honeycomb-like interdendrites which
could play an important role in hindering dislocation motion. As a result, the hardness of
this alloy increased from 887 HV0.5 to 1147 HV0.5. Additionally, the atomic radius of Ti was
1.76 Å which was larger than those of Ni (1.49 Å) and Al (1.18 Å). Hence, adding Ti to the
Al-Ni-Ti rich phase might have resulted in lattice expansion or distortion.

Liu et al. [422] varied the concentration of Si in AlCoCrFeNiSix (x = 0–0.5) coatings and
found out that the microhardness of the coatings was linearly proportional to the Si concen-
tration. The wear rate reduced significantly from ~5.2 × 10−4 to ~1.3 × 10−4 mm3·N−1·m−1

with the increasing Si content. This was attributed to the formation of wear-resistant SiO
and SiO2 layers on the wear surface. Huang et al. [373] studied FeCoCrNiSix (x = 0–1)
and found out that increasing Si content improved the hardness and wear resistance by
promoting the transformation of FCC to BCC. Its microhardness increased significantly
from 89.52 HV (x = 0) to 653.71 HV (x = 1) and the wear track depth decreased from
22.14 µm (x = 0) to 5.29 µm (x = 1).

Hsu et al. [456] reported that in AlCoCrFexNiMo0.5 (x = 0.6–2), the wear resistance (at
500 ◦C) of x = 2 was much lower than that of x = 1.5 although both had similar hardness
values. This was attributed to the fact that the x = 2 alloy formed a thicker oxide layer
than x = 1.5 and more loose oxides abraded away from the surface. By this reasoning, the
Fe content of x = 0.6–1 was recommended as over x = 1.5–2 for optimum wear resistance.
Qiu et al. [458] described that the wear resistance of Al2CoCrFeCuTiNix (x = 0–2) first
increased with the Ni content (i.e., x = 0–1) and then decreased for x = 1–2. However, the
hardness monotonically increased with the increasing Ni content from ~900 HV (x = 0) to
~1100 HV (x = 2). They said that toughness and brittleness also affect the wear resistance of
this alloy apart from the hardness. In this alloy, when Ni is added from x = 0–1 at% then the
wear resistance increases because hardness increases. For Ni content x = 1–2 at%, the wear
resistance starts to reduce because the material becomes brittle and wear happens through
small brittle fracture on the surface. Beng et al. [360] analyzed the CoCrFeNiMox (x = 0–0.3)
alloy and noticed that CoCrFeNi had the FCC phase. The FCC phase was maintained even
after Mo addition, but the lattice parameter (denoted by a) altered (aCoCrFeNi = 3.5733 Å,
aCoCrFeNiMo0.1 = 3.6016 Å, aCoCrFeNiMo0.3 = 3.5854 Å) due to atomic size misfit between Mo
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and other constituents. The atomic size of Mo (1.363 Å) is distinctively larger than those
of Co (1.251 Å), Cr (1.249 Å), Fe (1.241 Å) and Ni (1.246 Å) [93]. This Mo-induced lattice
distortion increased the hardness from 415.2 to 465.9 HV and reduced the specific wear
rate from 0.59 × 10−3 to 0.33 × 10−3 mm3·N−1·m−1.

Yadav et al. [397] reported the influence of Pb and Bi content in (CuCrFeTiZn)100-xPbx,
(CuCrFeTiZn)100-xBix on their wear properties. Here, reductions in wear rate achieved
by adding Pb and Bi were 21% and 25%, respectively. This was attributed to the fact that
the soft dispersoids acted as lubricants [483]. Li et al. [413] studied Al0.8CoCrFeNiCu0.5Six
(x = 0–0.5) coatings. They found the specific wear rate in the range of 1.19 × 10−6–8.99
× 10−6 mm3·N−1·m−1, the hardness in the range of 479–592 HV which was almost 5 to
7 times higher than the hardness of substrate 5083 Al alloy (79 HV0.2).

Cheng et al. [394] noticed that the wear resistance and hardness of (Fe0.25Co0.25Ni0.25
(B0.7Si0.3)0.25)100−xNbx (x = 0–2) coating (on Q235 steel) increased with the Nb content
from x = 0 to x = 2. The measured hardness values were 587.1 HV0.1 and 821.5 HV0.1
for Nb content of x = 0 and x = 1, respectively. This HEA had the FCC microstructure
and the grain size was refined from 3.5 µm (x = 0) to 1 µm (x = 2). This grain refinement
helped to increase the hardness and wear resistance. The wear rates were measured
to be 3.64 × 10−6 and 1.42 × 10−6 mm3·N−1·m−1 for Nb content of x = 0 and x = 2,
respectively. Jones et al. [358] reported that CoCrFeNiMn showed a remarkably low
wear rate of 10−6 mm3·N−1·m−1 with the hardness of 1.6 GPa. Zhu et al. [359] added V
and Nb in equiatomic ratio into the CoCrFeNiMn (FCC phase) coating and studied the
wear resistance. The measured wear rate ranged 1.85 × 10−5–6.39 × 10−5 mm3·N−1·m−1

and the hardness varied in the range of 145–948.5 HV. The measured hardness values
of CoCrFeNiMn, CoCrFeNiMnNb, CoCrFeNiMnV and CoCrFeNiMnNbV was 145 HV,
609 HV, 621 HV and 948 HV, respectively. Additionally, the wear rate of CoCrFeNiMn
reduced from 6.39 × 10−5 to 1.85 × 10−5 mm3·N−1·m−1 (for CoCrFeNiMnNbV) when
both Nb and V were added. These results could be attributed to the fact that Nb and V
promoted the precipitation of the Laves phase (FeNb intermetallic) and the sigma phase
(CoFeV intermetallics) into the FCC matrix, which increased the hardness. Moreover, Nb
and V promoted the formation of protective oxide layer on the worn surface and reduced
the amount of adhesive and abrasive wear.

3.2.2. Particle Reinforcement

Hard particle reinforcement into HEAs matrix is another approach employed to im-
prove the tribological properties. For example, adding WC into Co10Cr10Fe40Mn40 [382],
adding TiN-Al2O3 into CoCrFeNiMn [277], adding NbC into AlCoCrFeNi [272], adding
TiC into CoCrCuFeNiSi0.2 [384] and AlCoCrFeNi2.1 [416] improved the tribological perfor-
mances. Such improved wear resistance was largely attributed to the increased hardness,
the restrained effect of adherence abrasion, solution strengthening or microstructure refine-
ment. Adding 10 wt% TiC particles into AlCoFeNiCu reduced the wear rate by the factor of
8 [439]. Adding TiB2 into (AlCrFeMnV)90Bi10 resulted in ~95% decrease in wear rate due to
the cumulative effect of matrix, reinforcement, refined grains and improved hardness [463].
Gou et al. [396] used CoCrFeNi (reinforced with NbC) as a metal binder for Ti (C,N)-based
cermet. The hardness and fracture toughness were measured to be 1853 HV and 9.93
MPa·m1/2, respectively. The minimum wear rate was as low as 4.14 × 10−6 mm3·N−1·m−1

which was attributed to the reduced grain size and improved hardness due to the solid
solution strengthening effect of the HEA binder.

Ji et al. [376] improved the tribological behavior of CoCrFeNiCu by embedding MoS2
(2–5 wt%) and WC (20–80 wt%) particles. Here, adding 2% MoS2 improved the wear
resistance and decreased the friction coefficient but adding 5% MoS2 increased the wear
rate. Adding WC continuously improved the wear resistance and 80% WC yielded the
lowest wear rate. Likewise, the wear resistance of CrMnFeCoNi was improved considerably
by adding 25 wt% Y2O3 thanks to grain boundary strengthening, Orowan looping and load
transfer effect [366]. Zhou et al. [189] reported that (FeCoCrNi)1−x (WC)x (x = 3–11 wt%)
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alloy consisted of a FCC matrix and W/Cr rich carbides. The hardness increased with
the WC content from 603 HV (for (FeCoCrNi)0.97 (WC)0.03) to 768 HV (for (FeCoCrNi)0.89
(WC)0.11). This was attributed to the hard WC particles and carbides precipitation into
the FCC matrix. This material showed adhesive and abrasive wear. Most of the wear was
caused by the debonding of WC particles.

Liu et al. [381] introduced graphene nanoplatelets into Fe50Mn30Co10Cr10. Adding
0.2% Graphene nanoparticles promoted self-lubricating properties because the coefficient
of friction (COF) decreased by 62%, which in turn increased the wear resistance. Further
addition of graphene did not have much impact on COF or self-lubricating properties.
Similarly, Zhang et al. [370] added self-lubricating particles (i.e., nickel coated graphite and
MoS2 powder) into the CoCrFeNi matrix using SPS. This composite had four phases (i.e.,
FCC, graphite, MoS2 and Nickel) and showed very low wear rates (~10−5 mm3·N−1·m−1)
for the temperature range of RT-800 ◦C. After wear testing the worn surfaces were analyzed
by Raman and EDS. They observed that graphite and MoS2 particles were accumulated on
the worn surface for temperatures RT-800 ◦C. They indicated that these particles helped
reduce abrasive/adhesive wear. Moreover, at 600 and 800 ◦C, the significantly increased
oxygen concentration on the worn surface facilitated the formation of a smooth glaze layer
of oxide (i.e., Cr2O3, Fe3O4 etc.) and reduced the wear rate. Likewise, Zhang et al. [368]
added solid lubricants (i.e., Ag, BaF2/CaF2 eutectic) into CoCrFeNi. This composite
showed the better wear resistance (wear rates~10−5 mm3·N−1·m−1) than PM304 (wear
rate~10−4 mm3·N−1·m−1) [484] for the temperature range of RT-800 ◦C. The improved
wear resistance was attributed to the solid lubricants (help to minimize friction and wear
on the surface) and oxide layer (Cr2O3, Fe3O4, etc.) formation on the worn surface.

3.2.3. Use of Media and Heat Treatment

Media used during wear experiments have been proved to have considerable impact
on the mechanism and rate of material removal. For example, Duan et al. [453] reported
that AlCoCrFeNiCu showed more wear weight loss of ~1.2 mg when in H2O2 lubricant
and ~0.8 mg when oil was used as media. This was because friction coefficient was
lower when oil was used as a media. FeCoCrAlNiTi2 showed the best wear resistance
in distilled water and the worst in NaCl solutions [427]. Xiao et al. [421] noticed that the
wear rates of AlxCoCrFeNiSi (x = 0.5–1.5 mol) reduced significantly from 5.5 × 10−5 to
1.6 × 10−6 mm3·N−1·m−1 with the increasing Al content under dry conditions. However,
when water was used as a lubricant, the addition of Al content did not have a considerable
impact on the wear rate. Geng et al. [369] studied the wear behavior of CoCrFeNiMn in
vacuum and air in the temperature range of RT-800 ◦C. They found the wear rate varied in
the range of 1.3 × 10−4–8 × 10−4 mm3·N−1·m−1. The elements of this HEA oxidized as
temperature increased. At elevated temperatures, oxides (i.e., CoO3, CoO, CoCrO4, Co2O3,
Fe2O3, Cr2O3 and MoO3) formed on the worn surface. From RT to 400 ◦C, the wear rate
was higher in air than in vacuum due to peeling of the formed loose oxides. However, at
600 ◦C and 800 ◦C, robust oxides were formed, and these oxides served as a protective
layer and improved the wear resistance resulting in the lower wear rate both in air than
in vacuum.

The effect of heat treatment on the wear behavior of Al0.5CoCrFeNi was studied by
Gwalani et al. [399]. They hot rolled (at 700 ◦C), annealed (at 1150 ◦C) and isothermally
aged their alloy at 700 ◦C for 1, 4, 20, 40, 80 h. As the aging time increased, the B2 phase
precipitated in the FCC matrix. These precipitates increased the hardness from ~250HV to
~302 HV, the flow stress from 668 MPa to 1352 MPa, the UTS from 1157 MPa to 1503 MPa.
The wear rate of this alloy was found to be sensitive to aging. The wear rate for the sample
without aging was 11 × 10−5 mm3·N−1·m−1. After 80 h of aging, the wear rate reduced to
1.8 × 10−5 mm3·N−1·m−1. Meanwhile, Kong et al. [419] studied the Al1.8CrCuFeNi2 alloy
with different arc melting parameters. They varied welding current during arc melting as
410A, 455 A, 480 A, 505 A and 550 A to get different superheating. As a result, the hardness
of the alloy increased from ~555 to ~625 HV when current increased from 410A to 480A.
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Consequently, the wear rate reduced from ~0.95 to ~0.65 mg·mm2. However, when the
current was further increased up to 550 A, the hardness reduced to ~580 HV and the wear
rate increased to ~0.72 mg·mm2. Here, the wear resistance of the HEA was found to be
directly proportional to the hardness. Malatji et al. [263] improved the wear resistance of
AlCrCuFeNi by heat treating at temperatures 800, 950 and 1100 ◦C. The microhardness
increased from 310 to 381 HV when heat treated at 800 ◦C but decreased to 365 HV
when heat treated at 1100 ◦C. Heat treatment at 1100 ◦C homogenized the microstructure
and promoted grain coarsening. This alloy initially had the FCC phase alone. Upon
heat treatment at 800 and 950 ◦C, the B2 phase precipitated and the hardness increased.
When the alloy was heat treated at 1100 ◦C, some of the B2 precipitates decomposed and
grain coarsened, which decreased the hardness. This explains why the wear resistant
first increased and later reduced with the heat-treating temperatures. The observed wear
weight was 0.002 g without heat treatment, and 0.001 g, 0.0007 g and 0.0016 g with heat
treatment at 800 ◦C, 950 ◦C and 1100 ◦C respectively.

3.2.4. Nitriding/Carburizing/Boronizing/Sulfurization

Nitriding, carburizing, boronizing and sulfurizing have been used to improve the
tribological behavior of HEAs. Pogrebnjak et al. [469] measured the wear rate of nitrided
TiZrHfVNb (i.e., (TiZrHfVNb)N) and compared with the wear resistance of (AlCoCr-
FeNiCu)N and steel 45. The measured wear rates for (TiZrHfVNb)N and steel 45 were
0.039 × 10−5 and 35.36 × 10−5 mm3·N−1·m−1, respectively.

The AlCoCrFeNi alloy became more wear resistant after being nitrided [417]. The
wear rates of as-cast alloy in air, water and rain media were 1.8 × 10−4, 1.6 × 10−4 and
0.7 × 10−4 mm3·N−1·m−1, respectively. However, the wear rate of the nitrided AlCoCrFeNi
in air, water and rain media were 0.39 × 10−4, 0.32 × 10−4 and 0.28 × 10−4 mm3·N−1·m−1,
respectively. The wear resistance of (CrNbSiTiZr)Cx (x = 36.7–87.8 at%) was investigated by
Jhong et al. [472]. Carbide coatings were deposited on CrNbSiTiZr by magnetron sputtering
at various CH4 flow ratios (3–20%). Coating with x = 36.8 at% and x = 87.8 at% showed the
wear rate of 3.0 × 10−6 and 0.2 × 10−6 mm3·N−1·m−1, respectively. They concluded that
the increase in carbon content improved the wear resistance; therefore, carbide coatings
could be used as a protective layer for CrNbSiTiZr for wear application.

Cui et al. [374] sulfurized CoCrFeMoNi at 260 ◦C for 2 h and improved the wear resis-
tance. After sulfurization, the weight loss by wear reduced from 15.1 mg to 4.25 mg. This
was attributed to the FeS/MoS2 lubricant phases and sulfides boundary lubricant films.

Wu et al. [406] used the pack-boronizing method to improve the wear resistance of
Al0.1CoCrFeNi alloy. A 17.3–57.9 µm boronized layer, composed of (Co, Fe, Ni)2B, CrB,
Cr2B, formed on the surface. The boronizing time varied from 2 h to 8 h. The hardness
of the alloy increased gradually with the increasing boronizing time from 201 HV (0 h) to
1398 HV (8 h) and the wear rate reduced from 1.89 × 10−4 to 0.22 × 10−4 mm3·N−1·m−1.

Xiao et al. [363] investigated the effects of carbon content in CoCrFeNiMnCx (x = 0–1.2).
The hardness was increased monotonically from 327.8 HV (x = 0) to 566.4 HV (x = 1.2) with
carbon addition. They found out that the wear rates of CoCrFeNiMn and CoCrFeNiMnC0.6
were 6.5 × 10−3 mm3·N−1·m−1 and 0.47 × 10−3 mm3·N−1·m−1, respectively. This alloy
was comprised of the FCC (Co, Ni rich) phase and the Cr- and C- rich M7C3 carbide phases.
The porosity increased with the increasing carbon content. Initially, the hardness increased
until the volume fraction reached x = 0.6 due to introduction of M7C3 carbide and solid
solutions of C atoms in the FCC phase. As the amount of carbon further increased, the hard-
ness started to fall due to a significant increase in porosity. Meanwhile, Zhang et al. [385]
found out that the wear rate and hardness of (CoCrFeNiTi0.5)Cx (x = 3–12 wt%) coating
were in the range of 12–24 mg·N−1·m−1 and 300–950 HV, respectively. This coating mi-
crostructure was made of BCC solid solution, Cr23C6 and TiC phases. Increase in carbon
content raised the hardness due to carbides precipitates, but the wear resistance with
x = 12 wt% was inferior to that with x = 6 wt% due to reduced ductility.
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3.2.5. Comparison with Conventional Materials

Various HEAs have shown superior wear resistance than the commercial wear re-
sistant materials in the following parentheses: CuCoNiCrAl0.5FeB (SUJ2 wear-resistant
steel) [423], MoTaWNbV (Inconel-718) [475,476], TiZrHfNb (Nb and C103 (Nb5.4Hf2Ti)) [468],
CoCrFeNiMo (HFXP-58) [372], Al0.8CrCoFeNi (AZ31) [411] and Al0.2Co1.5CrFeNi1.5Ti
(AISI 52,100 steel and Inconel 713) [430]. Al3CoCrFeNi exhibited better wear resistance
than 17–7 PH stainless steel [403], which was attributed to the precipitation of Cr3Ni2.
CuNiSiTiZr coating improved the wear resistance of TC11 by a factor of 2.5 [393]. This
improvement in hardness (and wear resistance) was resulted from the solid solutioning,
precipitation and nanocomposite strengthening effects. Similarly, AlxCoCrFeNi (x = 0.1–3)
showed 3 to 23 times higher wear resistance than SS316L steel [407]. This higher wear
resistance was attributed to high hardness of AlxCoCrFeNi (~436–624 HV) than SS316L
steel (~227 HV).

Many researchers formed coatings of HEAs on several commercial materials to im-
prove their wear resistance. Zhang et al. [461] coated Ti-6Al-4V with AlTiSiVNi. They
discovered that the wear resistance of AlTiSiVNi was 4 to 5 times higher than that of
Ti-6Al-4V at RT and 800 ◦C. The hardness of AlTiSiVNi was also found to be in the range
of 1151–1357 HV which was 4–6 times that of Ti-6Al-4V. The increase in hardness and wear
resistance of AlTiSiVNi was attributed to the dispersion strengthening with (Ti,V)5Si3 and
solution strengthening with NiAl. Huang et al. [460] coated Ti-6Al-4V with AlTiSiVCr.
The microstructure of AlTiSiVCr had hard silicides (Ti,V)5Si3 dispersed into the BCC
matrix. The dispersed silicides improved the wear resistance of this HEA by lowering abra-
sive/adhesive wear. The hard BCC phase of the silicides also resisted crack propagation.
While the specific wear rate for Ti-6Al-4V was ~6.5 × 10−5 to 9 × 10−5 mm3·N−1·m−1, that
for TiVCrAlSi ranged 2 × 10−5 to 2.6 × 10−5 mm3·N−1·m−1. This showed that TiVCrAlSi
could become a promising anti-wear coating material for Ti-6Al-4V.

Islak et al. [391] improved the wear resistance of AISI 1040 steel with CrFeNiMoTi coat-
ing. They found that the hardness and wear rate of CrFeNiMoTi coating were ~450 HV0.3
and ~2.732 × 10−3–3.952 × 10−3 mm3·N−1·m−1, respectively. Meanwhile, the hardness and
wear rate for AISI 1040 were ~200 HV0.3 and ~8.125 × 10−3–9.455 × 10−3 mm3·N−1·m−1,
respectively. Gu et al. [455] analyzed AlxMo0.5NbFeTiMn2 (x = 1–2) coating and found
that the microhardness and wear resistance were positively related to the Al content. The
increasing Al content reduced the grain size and increased both the hardness and wear
resistance. The hardness of Al2Mo0.5NbFeTiMn2 was measured to be 1098.5 HV0.2 which
was 5 times higher than that of Q235 steel (~200 HV0.2). The high hardness was attributed
to the microstructure composed of the BCC solid solution and (Nb,Ti)C carbides. The
wear rates of Al2Mo0.5NbFeTiMn2 and Q235 steel were measured to be ~0.3 mg·m−1 and
~0.9 mg·m−1, respectively. Liang et al. [457] deposited AlCrFe2Ni2W0.2Mo0.75 coating on
Q235 steel used for ocean engineering equipment. This coating had the hardness of 630 HV
and the specific wear rate in the range of 10.13 × 10−6–23.89 × 10−6 mm3·N−1·m−1. The
coating showed superior wear resistance to Q235 and SUS304 in deionized water, 3.5 wt%
NaCl solution and artificial seawater media. They also reported that the electrochemical
corrosion of AlCrFe2Ni2W0.2Mo0.75 (corrosion rate of 0.173 mm/yr) was less than both
SUS304 (corrosion rate of 0.333 mm/yr) and Q235 (corrosion rate of 0.44 mm/yr).

3.2.6. Higher Temperatures Wear Resistance

HEAs have also exhibited promising tribological behaviors and thermal stability at
elevated temperatures. Jin et al. [438] studied the characteristics of AlCoCuFeNi coating at
temperatures up to 800 ◦C. This coating was mainly composed of Fe rich FCC and Cu rich
BCC phases and showed good thermal stability without any phase transformation until
780 ◦C. Mainly Al2O3, Cr2C3, Fe2O3 and CuO were present in the oxide layer. Meanwhile,
the weight losses of NiCrCoTiV at RT and 600 ◦C were measured to be 3.7 ± 0.1 mg
and 3.5 ± 0.1 mg respectively [392]. The wear weight loss of 304L stainless steel was
7.7 ± 0.2 mg at RT. Fang et al. [405] used Al0.3CoCrFeNi as a metal binder for Ti (C,N)-
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based cermet. The hardness, fracture toughness and flexural strength of this cermet
were 1137 HV, 6.46 MPa·m1/2 and 761 MPa at 1000 ◦C respectively. This superior high-
temperature performance was attributed to the hindrance of the slip system and higher
oxidation resistance of the HEA binder. The wear resistance of this Al0.3CoCrFeNi (wear
groove width = 49 µm) was also better than that of the conventional Ni-Co (wear groove
width = 172 µm) metal binder.

Yadav et al. [395] concluded that the wear resistance of (CuCrFeTiZn)100−xPbx im-
proved due to oxide formation at the surface at elevated temperatures (800–1000 ◦C).
Because these oxides made a layer on the surfaces of the HEA which helped to avoid metal
to metal contact, hence reduced the material removal rate. Moreover, Chen et al. [400] said
that annealed Al0.6CoCrFeNi showed the wear resistance higher than GCr15 by a factor
of three at 600 ◦C. They also attributed this improved wear resistance to the formation of
oxides on the surface. In this case, Fe2O3, Cr2O3, Al2O3 and Al(OH)3, formed on the worn
surfaces of AlxFeCrNiCox and reduced the wear rate. Alvi et al. [478] studied wear behav-
ior of AlCoCrFeNi in the temperature range of RT-600 ◦C. They noticed that the oxidation
of Cu (into CuO) causes wear rate decrease at 400 ◦C. Joseph et al. [365] analyzed wear
behavior of AlxCoCrFeNi in the temperature range of RT-900 ◦C. The wear resistance of this
HEA surpassed that of Inconel 718 at 900 ◦C. Here again, the wear resistance was enhanced
at the higher temperatures thanks to the oxide layer formed at the contact interface.

Researchers also showed that the wear rate of HEAs increased initially and then
decreased with temperature [380,401,434,467]. It was claimed that initially loose oxides
formed on the surface and lower the wear rate up to moderately high temperatures. As
temperature increased higher, such loose oxides were damaged by thermal softening
and therefore, the wear rate increased. In contrast, other studies reported the opposite
behaviors. The wear resistance initially decreased up to moderately high temperatures and
then increased at higher temperatures. This behavior was attributed to the formation of a
thicker and more robust oxide layer on the worn surface which reduced the area of direct
metal to metal contact. For instance, Pole et al. [467] studied the wear resistance of refractory
HEAs, TiZrHfTaV and TiZrTaVW in the temperature range of RT-500 ◦C. The hardness of
these HEAs (6–8.1 GPa) was found to be larger than two times that of SS304. The measured
wear rate of these alloy was in the range of 0.5 × 10−5–8 × 10−4 mm3·N−1·m−1. Various
oxides, such as ZrO2, TiO2, Ta2O5, V2O5, HfO2 and WO3, formed on the worn surface.
The wear rate increased until 150 ◦C due to the formation of a delicate oxide layer at
the worn surface. However, as the temperature increased further from 150 to 500 ◦C, a
strong protective oxide layer formed on the worn surface and the wear rate reduced for
both refractory HEAs. Similar findings were reported by Lobel et al. [434] for the wear
resistance of AlCoCrFeNiTi0.5 coating in the temperature range of RT-900 ◦C. The depth
of wear increased from ~62 µm at RT to ~82 µm at 500 ◦C, and afterwards it decreased
down to ~50 µm at 900 ◦C. As the temperature increased, a loose oxides layer formed
on the worn surface at lower temperatures. As temperature increased, a stronger oxides
protective layer formed and it reduced material loss. Similarly, CoCrFeNiNbx showed
good resistance to thermal softening by showing less reduction in hardness (i.e., 35% from
RT to 1000 ◦C) [380]. Here, the wear resistance decreased from RT to 400 ◦C and then
increased. This improvement above 400 ◦C was attributed to the oxide layer formation
at higher temperatures which lead to reduction in wear rates of the CoCrFeNiNb0.65 and
CoCrFeNiNb0.8. By a similar mechanism, the wear rate of Al0.25CoCrFeNi increased from
RT to 300 ◦C due to thermal softening but it decreased thereafter due to oxides formation
at the contact surface [401].

Some HEAs showed fluctuation in wear resistance due to microstructural transfor-
mations at elevated temperatures. The wear rate of Al0.6TiCrFeCoNi increased from
RT to 300 ◦C and reduced from 300 ◦C to 500 ◦C, mainly due to phase transformation
(i.e., the formation of sigma-CrFe) at higher temperatures [435]. Such phase transfor-
mation at higher temperatures could also significantly reduce fracture toughness. The
wear resistance of (CoCrFeMnNi)85Ti15 increased from RT to 400 ◦C and then decreased
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thereafter [367]. Miao et al. [415] studied the wear behavior of AlCoCrFeNi2.1 with dif-
ferent antagonist materials (i.e., Al2O3, Si3N4 and GCr15). They also analyzed wear
rate of the same composition for a temperature range of RT-900 ◦C against SiC. The
wear rate of AlCoCrFeNi2.1 against Al2O3, Si3N4 and GCr15 is ~42 × 10−5, ~37 × 10−5,
~32.5 × 10−5 mm3·N−1·m−1. The hardness of Al2O3, Si3N4 and GCr15 is 2300, 1500
and 680 HV, and the wear rate of AlCoCrFeNi2.1 increased with the hardness of the
antagonist material. Moreover, the wear rate of AlCoCrFeNi2.1 (against SiC) increased
from ~75 × 10−6 to ~140 × 10−6 mm3·N−1·m−1 when temperature increased from RT to
900 ◦C. This increased wear rate with temperature was attributed to the thermal softening.
Joseph et al. [355] noticed that when the wear resistance of CoCrFeNiMn was examined
at high temperatures, ultrafine grains and the sigma phase formed at the contact surface,
which resulted in the improved wear resistance.

4. Summery and Future Direction

This review covers recent advances in the development and manufacturing of HEAs
and their performances under extreme environments such as nuclear and wear applications.
The HEAs were tabulated based on manufacturing methods, irradiation responses and
wear performances.

The most widely used method for HEAs manufacturing was arc melting due to its sim-
plicity, when the idea of HEAs was conceptualized. However, recently AM processes (SLM,
EBM and DED) have gained interest since they may potentially provide more freedom in
shape and in properties by changing process parameters. However, there are some issues
that need to be resolved. For instance, low productivity, formation of micro-level defects
such as pores or unfused particle boundaries, residual stresses, composition shift due
to selective evaporation of constituents with lower vapor pressure, lack of standards for
quality evaluation, high initial investment cost and more. With these issues being gradually
resolved, AM could make a powerful and versatile manufacturing method to fabricate
application-specific HEAs with desired properties for some compositions. Most of the AM
HEAs are studied in the as-cast state (after AM). In terms of HEAs characterization, most
studies focused on the microstructure using SEM, tensile behavior and hardness. Struc-
tural characterization at a smaller length scale, using transmission electron microscope,
would be helpful to better understand the structural evolution under various loadings. In
order to identify the effect of manufacturing methods and explore more applications for
HEAs, more research is needed on creep properties, dislocation behaviors, deformation
microstructures, compressive strength, fatigue and more.

Structural materials for next generation nuclear reactors must survive high energy
irradiation at high temperatures with reasonable service life. Similar to other structural
metals, high energy irradiation on HEAs often induces microstructural changes which
in turn deteriorated their mechanical properties including hardness, swelling or embrit-
tlement. For a number of cases of HEAs, their compositional complexity hinders such
microstructural degradation and results in superior irradiation resistance compared to
other conventional alloys. This makes them promising candidate materials for nuclear
applications. However, more studies must be conducted on the irradiation behaviors
of HEAs to better understand their applicability to the next generation nuclear reactors.
To date, very little is known about HEAs phase diagrams and equilibrium phases. In
addition, the defect generation and movement mechanism as a result of irradiation are not
clearly understood.

HEAs have also demonstrated superior tribological performances over a wide range
of temperatures from RT to high temperatures in comparison to the commercial materials
(i.e., Steel, Inconel, Ti-6Al-4V, Q235, SUS304 etc.). Moreover, the wear behavior of HEAs is
affected by composition, particle reinforcement, media, nitriding/carburizaing/sulfurizing
treatments, temperature and oxides formation. Most of the wear studies are on cantor
alloy or its derivatives; therefore, more elements and combinations are needed to be
explored to further understand potential candidates for wear applications. For the wear
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resistant applications where the weight is not a critical factor, refractory high entropy
alloys would make a good option thanks to their high hardness [466–480]. Most of these
alloys are equimolar. The equimolar ratios are probably a good point to start but they
might not be the best to get the highest potential out of the particular element composition.
Non-equimolar refractory HEAs are worth more exploration.

HEAs are being researched for more than a decade and are not yet commercially
available. One reason could be because HEAs could not be manufactured with most
widely used processes suitable for mass production (i.e., casting, molding etc.). Arc melting
(most popular manufacturing method for HEAs) is limited to manufacture laboratory-scale
samples for testing. Recently, a number of attempts have been made to fabricate HEAs
using AM techniques. Some AM HEAs showed the improved mechanical properties.
However, there are still many issues that need to be addressed for AM to be used for mass
production of HEAs.

Overall, there are still a great number of possible HEAs compositions that are to be
studied. Apart from cantor alloy, the characteristics of the majority of other HEAs have not
been investigated well enough for safe practical applications. These studies cannot be used
to generalize characteristics for HEAs but we can take them as screening efforts. Moreover,
it is not practical to perform all the characterization studies on all these compositions.
Therefore, it would be more reasonable to use simulations and material informatics to
screen compositions before experimental studies instead of using trial and error.
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