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Abstract: This paper proposes selective leaching of molybdenum from Mo/Cu complex bulk concen-
trates in a 5 M NaCl solution using the electro-oxidation method. Here, the effects of several factors
such as pH, pulp density, current density, and temperatures were investigated. A higher leaching
yield of Mo increased with increasing pH from 5 to 9 and decreased with increasing pulp density
from 1 to 10%. A rise in current density did not help enhance Mo, and the elevating temperature did
not always result in a higher leaching yield. Application of ultrasonic led to higher leaching yield of
Mo. Ninety-two percent of leaching yield was obtained upon leaching of Mo in 5 M NaCl at 25 ◦C,
pulp density of 5%, and the current density of 0.292 A/g under ultrasonic irradiation with a power
of 27 kW. The resultant residue mainly consisted of chalcopyrite.

Keywords: electro-oxidation; molybdenum; selective leaching; molybdenite; chalcopyrite

1. Introduction

Molybdenum is mainly used as an alloying agent in the steel industry because its
addition improves several properties such as strength, durability, weldability, and the
corrosion resistance of steel [1–3]. With the expansion of the construction, automotive,
and oil/gas industries, the consumption of Mo alloyed steel, and subsequently Mo, has
increased [4]. Therefore, it has been considered a strategic metal in various industries [5].
Furthermore, usage of Mo-alloyed steel expectedly grows in the renewable power industry,
wind, and solar energy industries [6].

Molybdenum is mainly generated from molybdenite (MoS2), the most primary mineral
resource of Mo, usually associated with copper minerals [7]. More than 50% of Mo marketed
is produced as a by-product in the copper industry [8]. High reliance of its production on
the copper industry makes Mo subject to supply fluctuations because a drop in copper
production reduces molybdenum productions. The supply risk of Mo is considered high,
and its stabilization is a critical issue to some countries with poor resources, but the
increased consumption of molybdenum, such as Korea. Korea, the first importer of Mo
ores, has several molybdenum mines, for example, the Jangsu mine with a pegmatite-style
deposit, the Geumseong Mine with a skarn/porphyry-style deposit, and the Geumeum
mine with a veinlet-style deposit [9–11]. The Geumeum mine was known to have a
reserve of ~2,600,000 tons. In addition, ores revealed a very high grade of 0.32% MoS2.
However, the low grade of copper acts as an obstacle to the commercial development of
the Geumeum mine. Therefore, a highly efficient process for the separation of Mo and Cu
should be developed.

Upon recovery of Mo from Mo/Cu complex ores, their separation is traditionally
conducted based on the floatation process [12–14]. However, the whole process is complex
and complicated to obtain a high grade of molybdenum concentrates. Furthermore, the
recovery of molybdenite is low compared to copper minerals [15]. Therefore, its application
to primary Mo ores containing a little Cu is not economically efficient. Here, the leaching
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method was applied to separate Mo and Cu in bulk concentrates from the Geumeum
mine as an alternative method. Since the 1970s, MoS2 could be reportedly oxidized in
both acidic and alkaline solution by hypochlorite and chlorate, so their application to
selective leaching of Mo from Mo/Cu complex ores has been much studied [16–21]. An
electro-oxidation method has also been developed and reported to be effective in selective
leaching Mo from Mo concentrates [22–25]. Some researchers performed Mo leaching using
hydrogen peroxide and oxygen as oxidants [26,27]. The method based on salt roasting was
suggested [28].

The electro-oxidation method is to leach Mo from MoS2 using electrochemically
generated hypochlorite ion (OCl−) as an oxidant as follows;

2Cl− + 2H2O→ Cl2 + 2OH− + H2
(anode: 2Cl− → Cl2 + 2e−/cathode: 2H2O + 2e− → 2OH− + H2)

(1)

Cl2 + OH− → OCl− + Cl− + H+ (2)

MoS2 + 9OCl− + 6OH− →MoO4
− + 9Cl− + 2SO4

− + 3H2O (3)

It theoretically consumes electricity and OH- without additional oxidants. In addition,
the process can be easily controlled by control of current or voltage. Several studies reported
the selective leaching of Mo from MoS2 concentrates or CuFeS2 concentrates [22,23,25,29,30].
However, its application to bulk concentrates comprising MoS2 and CuFeS2 has been little
studied. Selective leaching of Mo without oxidation of CuFeS2 from bulk concentrates leads
to effective recovery of Mo as ions and Cu as concentrates in addition to the separation
of Mo and Cu. Expectedly, it can simplify the flotation process for Cu/Mo complex
ores and suppress the loss of Mo and Cu. Therefore, this study presents the selective
leaching of Mo from bulk concentrates consisting of MoS2 andCuFeS2 obtained at the
first stage of the flotation process, giving rise to CuFeS2 concentrates using the electro-
oxidation method. The leaching behaviors of Mo, Cu, and impurity metals at various
pHs, currents, and temperatures were investigated. In addition, the effect of ultrasonic
irradiation was studied.

2. Experimental Section

The bulk concentrates of Molybdenum, taken from the Geumeum mine, were supplied
by Hae In Resources Corporation. Their compositions are presented in Table 1. The main
phases are chalcopyrite and molybdenite, and minor sphalerite exists. All chemicals used
in this study were of G. R. grades.

Table 1. The composition of ores and bulk concentrate.

Element MoS2 CuFeS2 ZnS Pb Mg Al Ca SiO2 Mean Dia. (um)

Concentrate (wt%) 10.14 62.08 1.88 1.96 0.33 1.05 1.73 5.44 52.2

The leaching of concentrates was conducted in a 1 L double-jacket glass reactor
equipped with a mechanical stirrer, a thermostat, pH controller with pH electrode, NaOH in-
put pump with NaOH inlet, and an ultrasonic generator with a probe. The cell configuration
is shown in Figure 1. IrO2 coated mesh electrode (inner diameter 130 mm × height 20 mm)
and Pt mesh electrode (inner diameter 130 mm × height 20 mm) were used as an anode
and cathode, respectively. First, 500 mL of 5 M NaCl was charged in a reactor, and the
temperature and pH were set at desired values. Then, a certain amount of concentrates was
input into the solution, and leaching was started by applying current using a potentiostat
(VMP3B-20, BioLogic Science Inst., Lyon, France). During leaching, pH was controlled
using a 2 M NaOH solution. For sonochemical leaching, the ultrasound irradiation was
performed using an ultrasonic generator (VCX 750, Sonics & Materials, Inc., Newtown,
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USA) with a probe of 25 mm in radius. Ultrasonic power was controlled by the change
in amplitude.
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Figure 1. The configuration of cell for leaching. (a)side view (b) top view.

During all experiments, the reaction mixture was sampled at the desired time, filtered,
and analyzed for the concentration of metal ions using the inductively coupled plasma-
atomic emission spectrometer (ICP-AES, iCAP6000, Thermo Fisher, Cambridge, UK).

3. Results and Discussions

Figure 2 reveals the leaching yields of molybdenum in 5 M NaCl solution at a current
density of 0.292 A/g, pulp density of 1% (w/v) and 50 ◦C as a function of pH. The current
density used in this study means the ratio of applied current to concentrates mass input,
and pulp density does the balance of concentrates mass to solution volume. Mo, Zn, and
Mo were observed to be leached at some pH or all pHs studied in this study, while no leach
was found for Fe, Pb, and Mg at all pHs. At pH 5, Zn and Cu, as well as Mo, were shown
to be leached. Several studies reported that the electro-oxidation method was effective in
leaching sulfide ores [31–33]. The leaching of Zn and Cu were also due to the oxidation of
ZnS2 and CuFe2S as follows;

ZnS + 4OCl− → Zn2+ + SO4
2− + 4Cl− (4)

2CuFeS2 + 17HOCl + 2H2O→ 2Cu2+ + Fe2O3 + 4SO4
2− + 21H+ + 17Cl− (5)

Strictly expressed, Equations (4) and (5) should be presented as Equations (6) and (7)
because HOCl is much more dominant than OCl− [34].

ZnS + 4HOCl→ Zn2+ + SO4
2− + 4H+ + 4Cl− (6)

2CuFeS2 + 17OCl + 2H2O→ 2Cu2+ + Fe2O3 + 4SO4
2− + 4H+ + 17Cl− (7)

Notably, the leaching yield of Zn reduced with time. Interestingly, Mo also showed
decreasing leaching yield with time passing over the maximum value at 120 min. In other
words, Mo and Zn ions dissolved initially simultaneously disappeared with a prolongation
in time. The reason may be the precipitation of zinc molybdate (ZnMoO4) as follows:

Zn2+ + MoO4
2− → ZnMoO4↓ (8)
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At pH higher than 5 and oxidative condition, Mo is stable as MoO4
2−, and upon

meeting with divalent transition metal ions, metal molybdates are well precipitates [35,36].
Cu leaching revealed similar behavior to Mo leaching, indicating that Cu2+ reacted with
MoO4

2−, too.
Cu2+ + MoO4

2− → ZnMoO4↓ (9)

It can be understood that the leaching of divalent cations should be hindered for the
high leaching yield of Mo.

It was reported that ZnS oxidation was faster than CuFeS2, and their oxidation rate
reduced with increasing pH [25,31,37]. Here, similar behavior was observed. Zn revealed
a much higher leaching yield and Cu. In addition, their leaching was more retarded at
higher pH. Significantly, Zn and Cu were not leached at pH 9. However, the oxidation
behavior of ZnS and CuFeS2 was much different. XRD analysis of the residues obtained at
pH 9 showed that ZnS was disappeared, as shown in Figure 3. Zn(OH)2 is stable at a high
potential region (Figure 4a). Hence, conversion of ZnS to Zn(OH) might take place upon
leaching at pH 9 as presented in Equation (10)

ZnS + OCl− + 5H2O→ Zn(OH)2 + SO4
2− + Cl− + 8H+ (10)
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E-pH diagram revealed in Figure 4b shows that CuFeS2 was oxidatively transformed
to CuO at high potential region. The oxidation of CuFeS2 to CuO can be presented in
Equation (11)

3CuFeS2 + 25OCl− + 6H2O→ 3CuO + Fe3O4 + 6SO4
2− + 25Cl− + 12H+ (11)
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In addition, M.-S. Kim reported that CuFeS2 is converted to CuO by OCl− in 0.2 M
NaOH at 60 ◦C when the generation rate of OCl− is high [34]. In the present study, CuFeS2
was not oxidized and still existed as a primary phase even after leaching at pH 9, as
shown in Figure 4. The main difference between the two studies is the sample; MoS2 and
CuFeS2 mixed bulk and CuFeS2, but CuFeS2 concentrates for the reported studies. A high
leaching yield of Mo means that a high amount of OCl− was consumed preferably for the
oxidation of MoS2. The rest amount might be insufficient for the fast oxidation of CuFeS2.
In addition, the larger size of bulk concentrates than CuFeS2 concentrates by 1.5 times
may be another reason for no or minor oxidation of CuFeS2, considering that its oxidation
rate was determined by the diffusion of two layers with a layer of solid sulfur produced
during leaching and an ash layer remaining after leaching [38]. To summarize, CuFeS2 was
unreacted, unlike MoS2 and ZnS, which indicated that CuFeS2 concentrates are possibly
obtained by the electro-oxidation leaching of Mo from Mo/Cu mixed sulfides.

Mo is stable as soluble species as Mo7O24
2− and MoO4

2− under oxidative conditions
in pH regions of this study (Figure 4c). Mo leaching was improved with rising pH. One of
the reasons for this is that less divalent metal ions leached out with increasing pH, which
resulted in a lower reduction of dissolved Mo ions by precipitation of metal molybdates
such as ZnMoO4 and CuMoO4. The higher stability of OCl− at pH 9 was a possible reason.
OCl− was reported to decompose with time, giving rise to chlorite ion (OCl2−) and chlorate
ion (OCl3−). Those two ions show much lower redox potentials of 0.681VSHE and 0.295VSHE
compared with 0.890VSHE of OCl− in alkaline solution with OH− of 1 mole/Kg [39]. Lower
redox potential means lower oxidation power in the electrochemical view. According to
L.C. Adam, the decomposition rate of OCl− to OCl2− in 0.5 M borate buffer much reduced
with increasing pH up to nine and again increased with increasing pH over 10 going
through minimum near pH 9 [40]. The less decomposition of OCl− may enhance the
leaching of molybdenum at higher pH. At pH 9, a leaching yield of 83.9% was observed
for Mo with a bit of aluminum leached, while other impurities, including copper, were
observed. It indicates that the separation of molybdenum with copper is possible by
selective leaching of molybdenum, yielding CuFeS2 concentrates. Therefore, pH was set at
nine for all sequential leaching tests.

Figure 5 shows the leaching behavior of molybdenum in 5 M NaCl solution of 500 mL
at a current density of 0.292 A/g, at pH 9 and 50 ◦C as a function of pulp density. At higher
pulp density, a lower leaching yield of Mo is found at any leaching time. Generally, a rise
in pulp density leads to a drop in leaching yield because the ratio of leaching agent to feed
input reduces with increasing pulp density. However, the amount ratio of oxidant, OCl−,
and MoS2 maintained constant in this study irrespective of pulp density on the assumption
that current efficiency to produce OCl− is not affected by the pulp density because the
same current density was applied at any pulp density. In addition, applied current density
was theoretically large enough for the entire leaching of MoS2 input, as shown in Table 2.
According to Equations (1) and (2), one mole of molybdenite requires nine moles of chloride
gas, of which production needs eighteen moles of electrons. The amount of MoS2 was 0.507,
2.535, and 5.07 g in mass and 0.003167, 0.01584, and 0.03167 mole for the pulp density of 1,
5, and 10%, respectively. Thus, the required amounts of electrons to produce hypochlorite
ions for leaching of all MoS2 were 0.05701, 0.2851, 0.5701 in mole, and 5501, 27,508, 55,010
in coulomb. The applied coulombs were 21,024, 105,120 and 210,240 C for the pulp density
of 1, 5, and 10%. Therefore, applied coulomb was much higher by 3.8 times than coulomb
required for all leaching of MoS2 upon the assumption that all applied electrons were used
to oxidize Cl− and all oxidation products were OCl−. It can be understood that the number
of applied electrons is substantial enough. In addition, the solubility of sodium molybdate
in water is also much higher, for example, 443 g/L at 20 ◦C. Nevertheless, increasing pulp
density from 1 to 10% induced great reduction in leaching yield of Mo at 240 min from 83.9
to 58.9%.
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Table 2. The amounts of MoS2 input, and electron required and applied.

Pulp Density
Input Amount of Feed Electrons

Required (C)
Electrons
Input (C)

The Ratio of Electron
Required to that InputWeight (g) Mole (M)

1 5 0.003167 5501 21,024 3.822
5 25 0.01584 27,504 105,120 3.822

10 50 0.03167 55,008 210,240 3.822

Naturally, higher pulp density is preferred upon leaching operation. Thus, the effects
of several factors on the leaching of Mo were investigated to find a way to increase the
leaching yield of Mo even at high pulp density. Figure 6 exhibits the leaching of Mo in
5 M NaCl of 500 mL at 50 ◦C and at a high pulp density of 5% at various current densities.
Unexpectedly, the leaching yield of molybdenum was much affected only at the initial time.
In other words, that of Mo at 30 min much increased by ca. time with rising current density
from 0.146 to 0.584 A/g. However, current density little affected the leaching of Mo for
all current densities at the prolonged time of 240 min. Even at a reduced current density
of 0.146 A/g, a similar value as leaching at a higher current density was observed. As
shown in Equation (3), hypochlorite ions play a sufficient role in oxidation for the leaching
of MoS2, but the result showed that their number is not significant in leaching MoS2 when
they are more plentiful. In other words, a rise in current density did not help improve the
leaching of molybdenum at extended leaching time. Therefore, it was concluded that a
lower current density is favorable considering current efficiency.
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It is well known that electrochemical and chemical reactions can be improved by
increasing temperature. The effect of temperature was also investigated under the condition
of the current density of 0.292 A/g and pulp density of 5%. The obtained result is presented
in Figure 7. The rise in temperature up to 50 ◦C facilitated the leaching of Mo, but further
elevation over 50 ◦C again hindered its leaching. In other words, an increase in temperature
did affect the leaching efficiency of molybdenum positively at a temperature below 50 ◦C,
and rather negatively at a temperature above 50 ◦C. The production reaction of OCl−

is expressed in Equation (2), while to be more specific, one more equation should be
added [41].

Cl2(g) → Cl2(aq) (12)
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density: 5%).

In other words, the dissolution reaction of Cl2 into an aqueous solution should occur
before reaction with NaOH to produce OCl−. It is well known that the solubility of a
gas in the solution generally reduces with growing temperatures. The solubility of Cl2
in water decreased sharply by more than half with an increase in temperature from 25 to
75 ◦C [39]. The reduction in dissolved Cl2 should give rise to a lower number of OCl−

in the leaching solution. Consequently, the leaching of Mo became slower. It could be
understood that the facilitation of leaching reaction by increasing temperature became
dominant at a temperature below 50 ◦C. On the other hand, a slow-down in leaching
reaction by a lower quantity of dissolved Cl2 and subsequently OCl− ions by increasing
temperature was predominant at a temperature above 50 ◦C. An elevation in temperature
was also ineffective in promoting Mo leaching at a high pulp density of 5%.

An increase in current density and temperature was not effective in obtaining a higher
leaching yield of Mo. It was pointed out that applied electrons were theoretically enough
to produce OCl− to oxidize MoS2 input. It indicates that a large portion of OCl− made
was not utilized for leaching of Mo. A possible reason for this is that the meeting of OCl−

with MoS2 did not effectively occur due to its slow mass transfer of OCl−. Therefore, the
application of ultrasound was made to enhance the leaching of molybdenum. It has been
found that sonication is a promising tool to enhance the chemical reaction in solution [42].
Upon ultrasonic irradiation in an aqueous solution, a process of cavitation in the shock
waveform near a surface disrupts the interfacial boundary layers. It shortens the diffusion
layer thickness by microjet into a solid surface. It facilitates the mass transfer of ions greatly.
Figure 8 reveals the leaching of molybdenum in 5 M NaCl of 500 mL at 25 ◦C, a high
pulp density of 5%, and the current density of 0.292 A/g under ultrasonic irradiation of
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various powers. The ultrasonic irradiation can elevate the temperature of the solution.
As mentioned above, local increase in temperature above 50 ◦C may rather retard the
leaching of Mo. Therefore, the temperature was adjusted to 25 ◦C. Ultrasonic irradiation
was observed to markedly improve the leaching of Mo. Specifically, the leaching yield
at 240 m increased from 59.7 to 92.0%. It indicates that slow mass transfer of OCl− to
MoS2 in the feed may be one of the primary reasons for low leaching yield and ultrasonic
irradiation is much effective in its promotion.
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Nevertheless, it should be pointed out that the dependence of leaching yield on
sonication power showed a different behavior as expected. Higher leaching yield was
observed at lower sonication power. In other words, an increase in Sonication power
induced a negative effect on the leaching of Mo, which may be due to the increased
reduction in the number of hypochlorite ions at a high sonication power. Reportedly,
extremely high pressure (~500 atm) and temperature (~5000 K) are generated during the
violent collapse of the bubble by ultrasonic irradiation, where excited species such as OH•
and H2O2 are formed, released into solution and react with substrates in solution, yielding
products [42]. Hydrogen peroxide has both oxidation and reduction power, and its redox
potential is lower than that of OCl− in basic solution [43]. Thus, Hydrogen peroxide acts
as a reducing agent in basic solution as follows:

OCl− + H2O2 → Cl− + H2O + O2 (13)

Ultrasonic irradiation is understood to enhance the leaching of molybdenum by the
acceleration of mass transfer and simultaneously hinder it by consuming the hypochlorite
ions more. Under the condition used in this study, the former effect prevailed in the
leaching reaction at low ultrasonic power, but the latter effect predominated that reaction
at high ultrasonic power. It indicates that ultrasonic irradiation can affect the leaching of
Mo both positively and negatively. Therefore, sonication power should be optimized to
obtain a high leaching yield of Mo.

As shown in Figure 3, XRD analysis of the residue obtained by ultrasonic leaching
revealed that chalcopyrite was unreacted and chalcopyrite concentrates may be obtained
by selective leaching of Mo with an aid of ultrasound using the electro-oxidation method.
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4. Conclusions

The selective leaching of Mo from Mo/Cu complex bulk concentrates in a 5 M NaCl
solution using the electro-oxidation method was studied at various pHs, pulp densities,
current densities, and temperatures. It was found that impurities of zinc and/or copper and
Mo simultaneously dissolve and dissolved ions again decreased with time at pH 5 and 7.
At pH 9, the highest leaching yield of Mo without the leaching of Zn and Cu was obtained,
while CuFeS2 remained unreacted. A rise in pulp density suppressed Mo leaching even
though the ratio of applied current to the mass of feed input was maintained constantly.
An increase in current density little affected the leaching of Mo at the prolonged times.
Elevation of temperature enhanced the leaching of Mo at a temperature below 50 ◦C, but
further increase above 50 ◦C again reduced its leaching. It was understood that the rises
in current density and temperature were not effective in promoting Mo leaching. Instead,
ultrasonic application of optimum power facilitated its leaching. However, increasing
ultrasonic power above 27 kW retarded the leaching of Mo. Ninety-two percent of leaching
yield was obtained upon leaching of Mo in 5 M NaCl at 25 ◦C, pulp density of 5%, and
the current density of 0.292 A/g under ultrasonic irradiation with a power of 27 kW. XRD
patterns showed that MoS2 disappeared, and CuFeS2 concentrates were obtainable.
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