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Abstract: For investigating the impact of ferritic morphology on yield strength (YS) of the high-
heat-input welding induced coarse-grained heat-affected zone (CGHAZ) of a low carbon Mo-V-
N-Ti-B steel, a group of particular welding heat inputs were designed to obtain different ferritic
microstructures in CGHAZ. The tensile properties were estimated from typical samples with ferritic
microstructures. The mixed microstructures dominated by the intragranular polygonal ferrite (IGPF),
the intragranular acicular ferrite (IGAF), and the granular bainite (GB) were obtained at the heat
inputs of 35, 65, 85 and 120 kJ/cm, respectively. When the main microstructure changed from IGPF
to IGAF and GB, YS increased first and then decreased. The microstructure consisting mainly of
IGAF possessed the maximum YS. As the main microstructure changed from IGPF to IGAF and GB,
the contribution of grain refinement strengthening to YS was estimated to be elevated remarkably.
This means the strength of CGHAZ in a low-carbon steel subjected to the high-heat-input welding
could be enhanced by promoting the fine-grained AF and GB formation.

Keywords: low carbon Mo-V-N-Ti-B steel; CGHAZ; ferritic morphology; yield strength; high-heat-
input-welding

1. Introduction

Low-carbon microalloying (LCM) steels are widely applied for fabricating vital fa-
cilities such as heavy-duty steel bridges, thick-walled vessels, high-rise buildings, large-
diameter pipelines, etc., via a high heat-input multi-wire arc welding for improving manu-
facturing efficiency [1–3]. The harmful microstructures such as the coarse polygonal ferrite
(PF), granular bainite, and the martensite/austenite (M/A) constituent, however, may
form in the CGHAZ of such a LCM steel subjected to the high heat-input welding (HHIW,
normally with the heat input, Ej, of 50 kJ/cm or higher) due to a prolonged dwelling time
at high temperature (≥130 ◦C, for example) and a decreased cooling rate (≤1 ◦C/s, for
example), accordingly leading to a serious degradation of both cryogenic toughness [4] and
strength [5]. Extensive investigations [6,7] have demonstrated that the intragranular ferrite
(IGF) nucleating at some non-metallic inclusions [8] and/or complex precipitates [9,10] and
arranging in a high misorientation tolerance angle (MTA ≥ 15◦) structure [11] can result in
a remarkably refined and accordingly toughened microstructure in CGHAZ. Thus, explo-
ration and application of this metallurgical method to enhance the mechanical properties
of the welding induced CGHAZ have always been focused as one of the most concerned
issues [12–14].

The low-carbon V-N-Ti steel has a high IGF nucleation capacity and thereby a good
toughness in its CGHAZ induced by the HHIW, which has attracted increasingly wide
attention [5,9,15–19]. Hongyan Wu et al. [20] concluded that the addition of only 0.021 wt.%
Nb into a V microalloyed steel could not promote the formation of ferrite in its reheating
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coarse grain heat affected zone on account of the dispersed V(C, N) precipitates effectively
motivating ferrite nucleation. An early work by Kook-soo Bang et al. [21] reported that
the cryogenic toughness at −20 ◦C of the CGHAZ in a nitrogen-enhanced V-Ti steel was
significantly improved compared with that of the nitrogen-free steel. This was attributed
to the enhanced IGF nucleation by the nitrogen addition. As Zhang et al. [22] subsequently
pointed out, the addition of only 0.0064 wt.% N into a low carbon V-Ti steel could promote
the formation of IGPF in its CGHAZ. Zhongran Shi and Qingfeng Wang et al. [5] further
elucidated that a V-rich cap around the Ti-rich (Ti,V)(C,N) complex precipitate in the
CGHAZ of a low-C V-N-Ti steel with the N content from 0.009 to 0.019 wt.% subjected to
the HHIW (typically with the Ej = 100 kJ/cm) promote the IGPF nucleation via lowering
crystal lattice mismatch, and hence significantly improved the cryogenic toughness of
CGHAZ at −20 and −40 ◦C.

However, the HHIW-induced CGHAZ mainly consisting of the IGPF normally has a
relative low yielding strength (YS). As reported by J. Hu et al. [12], The IGPF with average
size of 8.3 µm, developing in the intercritically reheated CGHAZ of a 0.08C-0.06V-0.009N-
Ti steel, resulted in both a high charpy-V-notch impact energy at −20 ◦C of 260 J and a
relatively low YS of only 345 MPa. Moreover, according to Zhongran Shi and Qingfeng
Wang et al. [5], the simulated CGHAZ of 0.077C-0.06V-0.0091N steel at the welding heat
input of 125 KJ/cm was almost entirely composed of IGPF due to the nitrogen addition,
exhibiting an enhanced cryogenic impact toughness, but at the expense of YS (less than
345 MPa). Meanwhile, with the addition of 0.26 wt.% Mo into a 0.06C-0.06V-0.014N
steel, this IGPF was replaced by an IGAF, while the YS was elevated to a higher grade of
418~498 MPa [18]. Moreover, with the addition of both 0.28 wt.% Mo and 0.0012 wt.% B into
a 0.06C-0.06V-N steel and the increasing nitrogen content from 0.0085 to 0.0144 wt.%, the
cryogenic toughness of simulated CGHAZ was improved remarkably, due to the formation
of a mixed microstructure consisting of IGPF, IGAF and GB with a smaller equivalent grain
size and a higher fraction of IGAF [19]. Therefore, the IGAF also normally nucleates at some
non-metallic inclusions [23] and/or complex precipitates [24], but has a finer interlocking
structure [25], suggesting an elevated YS besides an enhanced toughness, compared with
the IGPF. However, the relevant efforts have rarely been reported [26].

In addition, Walter L. Costin et al. [27] once reported that the mechanical properties
of AF in X70 steel were similar to that of upper bainite (UB), whereas the resistance of
UB to fracture made more contribution to plastic deformations than the former. Sang-In
Leea et al. [28] recently indicated that the GB and PF were the major factors affecting
the yield ratio and the uniform elongation of bainitic steel, respectively. Anyway, the
microstructure in CGHAZ of LCM steel is usually composed of two, three or all, of IGPF,
IGAF, GBF and lath bainitic ferrite (LBF). Namely, one microstructural constituent usually
coexists and interacts with others. Therefore, their individual contributions to the YS
remain still unclear.

In this paper, comparative studies on the impact of the individual microstructure of
IGPF, IGAF and GB in simulated CGHAZ of low-carbon Mo-V-N-Ti-B steel on the tensile
properties were performed specially with differing heat inputs for preparing them. The
mechanisms controlling their contributions to the YS were also analyzed systematically.

2. Experimental

The chemical composition of the low-carbon Mo-V-Ti-B steel, which was typical
traditional bainite steel smelted in a 50 kg vacuum kiln, was 0.06C-0.27Si-1.53Mn-0.28Mo-
0.018Ti-0.064V-0.0144N-0.0012B (wt.%). After the austenitization at 1200 ◦C for 2 h, the
billets were controlled rolling and cooling. The start and end temperatures of rough rolling
were 1100 ◦C and 1020 ◦C, respectively, and the cumulative reduction was 80 mm. The
start and end temperatures of finishing rolling were 960 ◦C and 850 ◦C, respectively, and
the accumulative decrease was 52 mm. After reaching the final thickness of 18 mm, the
steel plates were water-cooled from 800 to 420 ◦C at a cooling rate of 15 ◦C/s, and then
air-cooled to room temperature.
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To research the influence of the main-type microstructure on the tensile properties
of HAZ, the following thermal processes were simulated as shown in Figure 1. The sim-
ulated samples (10.5 mm × 10.5 mm × 80 mm) were picked from the plates along the
longitudinal direction. Thermal simulations were processed by the Gleeble-3800 thermal
simulator (Dynamic Systems Inc., New York, NY, USA) with the heat inputs of 120, 85, 65
and 35 kJ/cm, respectively. The samples were heated to 1320 ◦C at 100 ◦C/s, held for 1 s,
and cooled according to the thermal cycle curve measured via the Rykalin mode. After
finishing these thermal processes, the thermal simulation samples with typical microstruc-
tures were obtained. The temperature–time curves and temperature–C-Gauge curves of
simulated samples at heat inputs of 25, 50, 75, 100, 150 and 200 kJ/cm were collected during
Gleeble program operation to draw the simulated HAZ continuous cooling transformation
(SHCCT) diagram.
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Figure 1. Schematic diagram of the procedures of the thermal processing simulations.

The simulated samples were processed into the micro-tensile samples as shown in
Figure 2. The micro-scale tensile test was performed on the Inspekt Table 5KN model
general testing machine (Hegewald&Peschke, Freiberg, Germany) with an extension rate
of 1 mm/min at room temperature [29]. Two tensile samples with the same typical
microstructures formed at each heat input were prepared and averaged. Since the tensile
curve had no yield platform, 0.2% offset stress was taken as the yield strength.

The metallographic samples sliced from the simulated samples at the location of
the thermocouple along the cross-section were observed by the Olympus BX51M optical
microscope (Olympus, Aizu, Japan) manufactured by standard techniques and etched with
3% nitric acid alcohol solution after buffing. Furthermore, JEM-2010 high-resolution trans-
mission electron microscopy (TEM, Japan Electronics optics Corporation, Tokyo Prefecture,
Japan) was used to investigate the precipitated particles, the dislocation, the microstructure
characteristics, and the M/A constituent by examining the samples of carbon extraction
replicas and thin foils. In addition, componential analysis of the precipitates was deter-
mined by energy-dispersive X-ray spectroscopy (EDS, Hitachi Limited, Tokyo, Japan). The
average particle size and the area fraction were statistically analyzed by the Image Pro-Plus
software (Image-Pro® Plus, Media Cybernetics, Bethesda, MD, USA). The X-ray diffraction
(XRD) data were acquired by the Rigaku D/Max-2500/PC diffractometer (Rigaku Corpora-
tion, Tokyo Prefecture, Japan). The measurements were performed in the scanning angle
(2θ) range of 40~105◦, with the step size of 0.02◦. The simulated samples were electropol-
ished in a solution of perchloric acid and ethyl alcohol and observed the misorientation
distribution by the electron backscatter diffraction (EBSD, Hitachi Limited, Tokyo, Japan)
measurements which were performed in the S-3400 scanning electron microscope (SEM,
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Hitachi Limited, Tokyo, Japan) having a scan step size of 0.2 µm. The mean equivalent
diameter (MED) of the microstructures at different misorientation tolerance angles (MTAs)
was detected by EBSD.
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3. Results
3.1. Tensile Properties

The stress-strain curves of the simulated samples are shown in Figure 3. The tensile
mechanical properties are shown in Table 1. When the heat input gradually decreased from
120 to 65 kJ/cm, YS sharply increased from 394 to 610 MPa, and the tensile strength (TS)
slightly increased from 707 to 818 MPa. When the heat input gradually decreased from 65
to 35 kJ/cm, YS slightly decreased from 610 to 545 MPa, and TS slightly decreased from
818 to 732 MPa.
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Table 1. Tensile mechanical properties.

Heat Input/kJ/cm YS/MPa TS/MPa

120 394 ± 7 707 ± 14
85 486 ± 9 717 ± 14
65 610 ± 12 818 ± 16
35 545 ± 10 732 ± 14

3.2. Microstructure Observations

Typical optical microscopy observations of the simulated samples with different heat
inputs are shown in Figure 4. The microstructural observations and the measurement
results are shown in Table 2. Figure 5 displays the SHCCT diagram of thermal simulated
samples. Combined with the SHCCT diagram and microstructural observations it can
be seen that the CGHAZ microstructure of simulated samples fluctuated greatly under
continuous cooling transformation with different heat inputs. The sample with the heat
input of 120 kJ/cm consisted of IGPF and pearlite (P). With a decrease in the heat input
from 120 to 65 kJ/cm, P decreased until it disappeared, and the type of ferrite changed
from IGPF to IGAF + GB. As the heat input decreased from 65 to 35 kJ/cm, the fraction of
GB increased and the fraction of IGAF gradually decreased.
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Table 2. Summary of the microstructure examinations and quantification.

Heat
Input/kJ/cm

Phase Composition
Fraction/% f M/A/% f 2◦≤θ≤15◦ /% MED/µm Dp/nm f p/% ρ/×1014 m−2

120 92%IGPF + 8%P - 34 24.48 33.4 ± 0.2 10.2 ± 0.5 × 10−4 1.47

85 51%IGPF + 28%IGAF + 6%GB
+ 2%P 13.1 ± 0.2 55 7.86 27.8 ± 0.5 6.9 ± 0.2 × 10−4 2.63

65 80%IGAF + 6%GB + 2%IGPF 12.4 ± 0.4 64 2.83 27.1 ± 0.2 6.5 ± 0.3 × 10−4 3.36
35 79%GB + 11%IGAF 9.8 ± 0.3 75 4.88 17.6 ± 0.3 4.9 ± 0.3 × 10−4 3.78

f M/A—the area fraction of the M/A, f 2◦≤θ≤15◦—the fraction of boundaries at low misorientation tolerance angle in the range of 2–15◦,
Dp—the average size of precipitates, f p—the volume fraction of precipitates, ρ—the dislocation density.
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According to the TEM observation of multiple fields of the view of the samples
with different heat inputs, there were abundant IGPF and lamellar P in the simulated
sample of the heat input of 120 kJ/cm (Figure 6a). At the heat input of 65 kJ/cm, the
microstructure was mainly composed of intersecting IGAF plates and blocky GB plates
(Figure 6b). Figure 6c shows that at the heat input of 35 kJ/cm, the microstructure was
mainly composed of parallel GB plates. According to the observation of the bright field
image and the dark field image as well as the diffraction pattern of the selected area
(Figure 6d–f), the island structure was a constituent phase composed of martensite and
austenite. As the heat input decreased from 85 to 35 kJ/cm, the area fraction and the
average size of the M/A decreased from 13.1 to 9.8% and from 23 to 0.8 µm, respectively.
Moreover, the form of the M/A changed from blocky to slender. The blocky M/A at the
intersection of the IGAF plates and the slender M/A were distributed at the boundary of
the GB plates.

The quantitative statistical results of the mean size and the volume fraction of the
precipitates in each simulated sample are shown in Table 2. As is shown in Figure 7, When
the heat inputs gradually decreased from 120 to 65 kJ/cm, the amount and the average
diameter of the precipitates decreased and the precipitates were determined as (Ti,V)(C,N),
analyzed by EDS.
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Figure 8 displays the XRD patterns of simulated samples at different heat inputs. The
quantitative test results of the dislocation density showed that the average dislocation
density ρ slightly increased with a gradual decrease in the heat inputs as summarized in
Table 2.
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35 kJ/cm, when MTA varied from 2 to 15◦, MED sharply increased from 2.83 to 4.88 µm.
As Figure 9e,f shows, the grain size of IGAF at heat input of 65 kJ/cm was significantly
refined compared with that of GB at heat input of 35 kJ/cm. Figure 10 shows MED for the
misorientation tolerance angle (MTA) in the range of 2–30◦ and varying with heat input;
the MED increased monotonically with the increase of MTA and heat input, respectively.
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4. Discussion
4.1. Microstructure Evolution Process

At the heat input of 120 kJ/cm, the microstructures of the samples were IGPF and P.
When the heat input was 65 kJ/cm, the microstructures were mainly IGAF. As the heat input
decreased from 120 to 65 kJ/cm, ferrite changed from IGPF to IGAF. IGPF is a diffusion
transformation controlled by diffusion and migration of solute atoms near the phase
interface [30]. When the heat input was 120 kJ/cm (relatively higher), the carbon atoms
diffused sufficiently. Meanwhile, the growth rate of ferrite is irrelevant to the boundary
orientation. Therefore, IGPF was formed [31]. Since the diffusion rate of atoms gradually
decreased with a gradual decrease in the heat input, when the heat input was 65 kJ/cm
(relatively lower), the diffusion rate of carbon atoms was lower and the transformation of
IGPF was inhibited. The non-diffusion phase transformation is more likely to occur at lower
temperatures, instead of the diffusion-controlled phase transformation of P or IGPF [30].
Meanwhile, as Figure 11 shows, (Ti, V)(C, N) provided abundant nucleation sites for
IGAF [32]. So, the microstructure obtained at the heat input of 65 kJ/cm consisted of IGAF
and a small amount of GB. At low undercooling, IGPF of the diffusion transformation was
dominant, and IGPF might nucleate at the precipitates or inclusions in grains or the grain
boundaries of austenite. However, when the undercooling is large, the IGAF transformation
is dominated by the nucleation of precipitates or inclusions in grains [6,33,34]. With a
gradual decrease in the heat input, the undercooling increased, and the ferrite morphology
tended to change from IGPF to IGAF.

At the heat inputs of 35 kJ/cm, the microstructures of the samples were mainly GB.
This was mainly due to a decrease in the number of precipitated particles with smaller
sizes and reduced surface energy at lower temperatures [35]. This status could not provide
favorable positions for the nucleation of IGAF and did not promote the occurrence of
the IGAF transformation [30]. In this case, the GB transformation was promoted at the
austenite grain boundary where the nucleation was located. Moreover, due to the large
supercooling degree, the nucleation rate of GB was extremely high. GB rapidly nucleated at
the grain boundary and grew into the grain [36], which further inhibited the transformation
of IGAF. Therefore, GB was the main microstructure obtained at the heat input of 35 kJ/cm.

Pearlite is a diffusion-controlled transformation, so its growth requires the diffusion
of all elements [37]. Therefore, the diffusion process was inhibited, and the fraction of
pearlite decreased until it disappeared as the heat input continued to decrease from 120 to
65 kJ/cm.
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Figure 11. Typical SEM micrograph of IGAF nucleating possibly at a (Ti,V)(C,N) particle (a) and EDS analysis of the
corresponding particle (b).

After the ferrite transformation, some of the carbon-rich austenite was retained. Dur-
ing the subsequent cooling process, a part of carbon-rich austenite transformed to marten-
site resulting in the coexistence of retained austenite and martensite, namely the M/A
constituent [38]. The emergence of the M/A is associated with the dispersion of carbon
from ferrite to untransformed austenite [39]. The diffusivity of carbon markedly dropped
with a gradual decrease in the heat input [18]. The low heat input limits the diffusion of
carbon and inhibits the formation of untransformed austenite. The mean size and the area
fraction of the M/A island sharply decreased with a gradual decrease in the heat inputs.

4.2. Strength Contribution Fraction

The microstructural features such as the grain size, the dislocations, and the pre-
cipitated particles changed with the change in the heat input (Table 2) making different
contributions to the yield strength. According to the literature [40], YS (σy) of the low-
carbon micro-alloyed bainitic steel can be calculated by the linear superposition of a single
strengthening factor, and can be expressed as follows:

σy = σ0 + σd + σρ + σp + σs + σM (1)

where σ0 is the Peierls-Nabarro stress, σd is the fine-grain strengthening, σρ is the disloca-
tion strengthening, σp is the precipitation strengthening, σs is the solid solution strength-
ening and σM is the strengthening caused by other factors. The contribution of different
strengthening methods to the YS will be discussed here.

According to the Hall-Petch relationship [41,42], the relationship between σy and the
grain size d can be given by the following formula:

σy = σ∗
0 + kHPd−1/2 (2)

where σ∗
0 is the other mechanisms contributing to the strengthening and kHPd−1/2 is the

fine-grained strengthening contribution. In this paper, kHP was a structural constant that
was related to the properties of the material. d is the effective MED defined by a certain
MTA (θ). Studies [43,44] suggested that low angle grain boundaries can effectively control
the dislocation motion and the effective grain size defined by 2–15◦ misorientation is the
microstructural unit to control YS [45,46]. As can be seen from Figure 12, YS of the samples
processed at different heat inputs was linearly correlated with the reciprocal square root of
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the effective grain size (MED−1/2) in the MTA range of 2–15◦ with the correlation coefficient
of 0.99. The corresponding linear regression model is written as follows:

σd = 285 + 17.70d−1/2 (3)

The strengthening contribution of effective grains in simulated steels at different heat
inputs is summarized in Table 3. As shown in this table, with a gradual decrease in the
heat input, the contribution of the fine-grained strengthening increased at first and then
decreased. The grain refining efficiency of IGAF was more significant than that of GB, and
the grain refinement of IGPF was the weakest among the three.
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The calculation formula of dislocation density ρ is:

ρ =
6πε2

b2 (4)

where ε is the uneven distribution strain and b represents the Burgers vector of the disloca-
tion in α-Fe. ε and b were resolved by the XRD line profiles.

The contribution of the dislocation strengthening (σρ) to the yield strength can be
expressed by Equation (5) [47]:

σρ = αMGbρ1/2 (5)

where α is a constant (0.15) [47], M is the Taylor factor of the bainite steel (2.73) [48], G is the
shear modulus (81.6 GPa), b is the Burger’s vector (0.248 nm) and ρ is the dislocation density
given by the measured values shown in Table 2. The contribution of the dislocation to YS
of each sample is listed in Table 3. With a gradual decrease in the heat input, the average
dislocation density increased, increasing the contribution of the dislocation strengthening.

When Ti is contained in the steel, (Ti, V)(C, N) particles can be precipitated in ferrite
with a large number and a small size, and the strengthening effect is relatively signif-
icant [48,49]. As shown in Figure 7, the precipitated particles with the average size of
17~33 nm (Table 2) were formed in the steel. The contribution to the yield strength can be
represented by Equation (6).

σppt =
11.3 f 1/2

p

DP
ln (

DP

0.496
) × 103 (6)
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where f P and Dp are the volume fraction and the average particle size of precipitated
particles respectively, which is given by the measured values in Table 2. The contribution
of precipitated particles to the yield strength is listed in Table 3. As this table shows, a
decrease in the heat input led to a decrease in Dp and f p but the precipitation strengthening
contribution is close.

Except for the above strengthening factors, σ0 represents the Peierls-Nabarro stress
in α-Fe (43) [50], σS + σM is another strengthening factor of the simulated sample, and
the supplementary contribution to the YS is also listed in Table 3. As can be seen from
Figure 13, the sum of these two strengthening contributions of YS decreased from 11 to
8% with a gradual decrease in the heat input. At the heat input of 120 kJ/cm, the main
strengthening methods were fine-grain strengthening, dislocation strengthening and other
strengthening methods, moreover, the contribution fraction of these three strengthening
methods were about 25% with little difference. As shown in Figure 13, the contribution
of the fine-grain strengthening to YS increased from 28% at heat input of 120 kJ/cm to
53% at heat input of 65 kJ/cm, and then decreased to 48% at heat input 35 kJ/cm. As the
heat inputs gradually decreased from 120 to 35 kJ/cm, the contribution fractions of the
dislocation strengthening and the precipitation strengthening to YS were basically similar.
These contribution fractions are the lowest at the heat input of 65 kJ/cm. Comparing each
strengthening contribution with all the microstructure factors, it can be concluded that
the effective grain was the most primary structural factor contributing to the YS of the
simulated samples followed by dislocation and the precipitates.

On the other hand, as the heat input of the simulated samples decreased, the disloca-
tion density increased, resulting in an increase in the strengthening contribution. However,
when the IGAF content was high, the effective grain size decreased and the fine-grain
strengthening effect was enhanced remarkably. Consequently, the yield strength reached
its highest value at the heat input of 65 kJ/cm.

Table 3. Summary of individual strengthening contribution of various microstructural features of all
the samples.

Heat
Input/kJ/cm

σ0
/MPa YS/MPa σs + σM

/MPa
σd

(MED)/MPa σρ/MPa σppt/MPa

120 394 43 97 109 100 45
85 486 43 65 201 134 43
65 610 43 47 325 152 43
35 545 43 31 260 161 51
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5. Conclusions

By studying the ferrite morphology and the tensile properties of the low-C Mo-V-Ti
steel after transformation at different heat inputs, we could draw the following conclusions.

(1) A gradual decrease in the heat input from 120 to 65 kJ/cm/35 kJ/cm lead to the
change in the dominated microstructure from IGPF to IGAF/GB.

(2) A gradual decrease in the heat input from 120 to 35 kJ/cm lead to a decrease at
first and then an increase in the effective grain size of ferrite, a slight increase in the
dislocation density and restrained the precipitation of valid particles. Meanwhile, YS
increased first and then decreased.

(3) As the main microstructure types changed from IGPF to IGAF and GB, the effect of
fine-grain strengthening is increasingly remarkable. At the heat input of 65 kJ/cm,
the fraction of IGAF and the contribution of the fine-grain strengthening reached the
maximum resulting in the highest YS.
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