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Abstract: Zinc electrowinning is an energy-intensive step of hydrometallurgical zinc production in
which ohmic drop contributes the second highest overpotential in the process. As the ohmic drop is
a result of electrolyte conductivity, three conductivity models (Aalto-I, Aalto-II and Aalto-III) were
formulated in this study based on the synthetic industrial electrolyte conditions of Zn (50–70 g/dm3),
H2SO4 (150–200 g/dm3), Mn (0–8 g/dm3), Mg (0–4 g/dm3), and temperature, T (30–40 ◦C). These
studies indicate that electrolyte conductivity increases with temperature and H2SO4 concentration,
whereas metal ions have negative effects on conductivity. In addition, the interaction effects of
temperature and the concentrations of metal ions on solution conductivity were tested by comparing
the performance of the linear model (Aalto-I) and interrelated models (Aalto-II and Aalto-III) to
determine their significance in the electrowinning process. Statistical analysis shows that Aalto-I has
the highest accuracy of all the models developed and investigated in this study. From the industrial
validation, Aalto-I also demonstrates a high level of correlation in comparison to the other models
presented in this study. Further comparison of model Aalto-I with the existing published models
from previous studies shows that model Aalto-I substantially improves the accuracy of the zinc
conductivity empirical model.

Keywords: zinc electrowinning; conductivity model; energy consumption; industrial validation

1. Introduction

Zinc is widely used in the production of a number of key materials and applications,
including brass, galvanized steel, sacrificial anodes, and batteries. Currently, more than 80%
of the world’s primary zinc is produced through hydrometallurgical processes that typically
incorporate electrowinning as the final step. Zinc electrowinning is normally conducted
at a temperature between 30 and 40 ◦C in a zinc sulfate electrolyte that is composed of
H2SO4 (150–200 g/dm3), Zn (50–70 g/dm3), Mn (4–8 g/dm3), and other impurities such
as Mg and Ca. The main reactions during the electrowinning process are zinc deposition
on the cathode (Equation (1)) and oxygen evolution on the anode (Equation (2)), although
hydrogen evolution as an additional side reaction may also decrease the current efficiency
at the cathode (Equation (3)).

Cathode : Zn2+ + 2e− → Zn E0 = −0.76 V vs. SHE (1)

Anode : 2H2O→ 4H+ + O2 + 4e− E0 = +1.23 V vs. SHE (2)

Cathode : 2H+ + 2e− → H2 E0 = 0 V vs. SHE (3)

where E0 is the standard potential of the reaction and SHE is the standard hydrogen electrode.
Under normal process conditions, hydrogen evolution is reduced to a minimum

rate in order to avoid excessive current usage; therefore, the overall reaction that occurs
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in the electrowinning cell and thermodynamical cell voltage (ET) can be outlined as in
Equation (4):

Zn2+ + H2O→ Zn + 2H+ +
1
2

O2 ET = 1.99 V (4)

In practice, total cell voltage (Ecell) is the sum of thermodynamical cell voltage (ET)
and several overpotentials related to the cathodic and anodic reactions (Eη), the ohmic
drop of the electrolytes (Eohmic), and the resistance of the electric circuit (ER), Equation (5):

Ecell = ET + Eη + Eohmic + ER (5)

Industrial zinc electrowinning processes are generally operated at a total cell voltage
of 3.3–3.5 V, with a current density in the range of 400–600 A/m2 and typical current
efficiencies of 89–92% [1]. Since the anodic reaction contributes more than 1.9 V of the
total cell voltage [1], previous research has primarily focused on the development of new
anode materials for reducing the oxygen evolution reaction (OER) overpotential [2–10].
Nevertheless, Pb-Ag alloys remain the most widely utilized anodes due to their low cost
and favorable corrosion resistance properties in sulfuric acid media [11,12].

Electrolyte ohmic drop is the second most significant contributor to the total energy
consumption in electrowinning and it is affected by both electrolyte conductivity and
inter-electrode distances [13]. When the electrolyte is the medium for electrical current (I)
flow, Ohm’s law can be written as Equation (6), where Eohmic and Relec are the ohmic drop
and resistance, respectively. In addition, the electrolyte resistance, as a function of specific
conductivity (κ) (as the inverse of specific resistivity (ρ)), can be written as Equation (7):

Eohmic = I·Relec (6)

Relec =
ρ·l
A

=
l

(κ·A)
(7)

By combining Equations (6) and (7), the ohmic drop voltage can be formulated as in
Equation (8):

Eohmic = I· l
(κ·A)

= j· l
κ

(8)

where j is current density, l is inter-electrode distance. A is the area of electrode and l is the
inter-electrode distance.

Meanwhile, the fundamental correlation of conductivity to electrolyte concentration
is shown in Equation (9) [14]:

κ =
l
A

(
F2

RT

)
∑

i
z2

i DiCi (9)

where zi is the valence, Di is the diffusion coefficient and Ci is the concentration (mol/dm3),
F is the Faraday constant (96485 C/mol), R is the universal gas constant (8.314 J·K−1·mol−1),
and T is the absolute temperature (K).

Several previously published conductivity models are shown in Equations (10)–(14) [15–19]:

κNiki f orov = 123 + 189.3[H2SO4]− 77.8[Zn] + 1.14T (10)

κScott et al = 320 + 2.7[H2SO4](T − 35) + 196([H2SO4]− 1.12)

−111
(
[Zn] + [Mn] + [Mg] + 0.5

[
NH+

4
]
− 1.25

) (11)
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κMahon et al = −107.9[Zn]− 539.0[H2SO4]− 18.14[Zn]2 − 63.80[H2SO4]
2

−10.27[Zn][H2SO4] + 167.3[Zn]2[H2SO4] + 0.585[Zn](T

+273) + 124.6[Zn][H2SO4]
2 − 67.62[Zn]2[H2SO4]

2

+3.345[H2SO4](T + 273)− 1.341[Zn][H2SO4](T + 273)

(12)

κTozawa et al = 4 + 1.15T + 2.82[H2SO4]T + 344.2[H2SO4]− 45.1[H2SO4]
2

+28.6([Zn] + [Mg])2 + ([Zn] + [Mg])

(−1.14T − 105.8[H2SO4]− 22.4)

(13)

κAlio f khazraei = −0.741[Zn]− 0.004857[H2SO4]
2 + 2.453[H2SO4]

+84.602 log T + 0.726T + 24.023
(14)

where κ is in mS/cm, all concentrations are in g/dm3, and temperature T, is in ◦C.
From the modelling studies above, it can be recognized that from a fundamental

perspective, that conductivity is a sum of the individual effects related to temperature T,
acid concentration [H2SO4], and metal ion concentrations. Nevertheless, the previously
published models have two major weaknesses: Firstly, the exclusion of minor impuri-
ties [15–17], and secondly, the utilization of a single coefficient value to represent zinc
and other impurities [18,19]. Recent conductivity modelling studies in copper and silver
electrolytes have demonstrated that every metal element ion present has an independent
coefficient that can affect the electrolyte conductivity [20–22]. As a result, the main objective
of this study is to develop an improved zinc electrolyte conductivity model, increasing pre-
diction accuracy by taking into account the independent effects of metal impurities—such
as Mn and Mg—along with the typical process parameters of zinc concentration, acidity,
and temperature.

2. Materials and Methods

Conductivity measurement experiments were conducted with a series of synthetic
electrolytes over a range of chemical compositions and temperatures that were selected
as being representative of typical industrial zinc electrowinning processes (Table 1). Elec-
trolytes were prepared using zinc sulfate (ZnSO4·7H2O, ≥99%, VWR Chemicals, Belgium),
Magnesium sulfate (MgSO4·7H2O, ≥99.5%, Merck KGaA, Germany), Manganese sulfate
(MnSO4·H2O, ≥99.5%, VWR Chemicals, Belgium), and sulfuric acid (H2SO4, 95–97%,
Merck, Germany). All solutions were prepared with Millipore Milli-Q deionized water
(≤2 µS/cm at 25 ◦C, EMD Millipore, Finland). The temperature of the electrolytes was
controlled by a MGW Lauda MT/M3 circulating water bath (LAUDA, Lauda-Königshofen,
Germany).

Table 1. Parameters and levels use in this study.

Parameters Levels Units

[Zn2+ ] 50, 60, 70 g/dm3

[H2SO4 ] 150, 175, 200 g/dm3

[Mn2+ ] 0, 4, 8 g/dm3

[Mg2+ ] 0, 2, 4 g/dm3

T 30, 35, 40 ◦C

Conductivity measurements were performed using a Knick Portamess® 913 Cond
conductivity meter (Knick Elektronische Messgeräte GmbH & Co. KG, Germany). Prior
to measurement, the conductivity meter was calibrated in a standard reference solution
(Reagecon, Ireland) with a conductivity of 12.88 mS/cm at 25 ◦C.
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The design software MODDE 8.0 (MKS Data Analytics Solutions, Sweden) was uti-
lized for experimental design and data analysis. Full experiments were designed using
a linear model with the factors and levels outlined in Table 1, which resulted in a total of
30 individual conductivity measurements with three center points. Additionally, a further
19 measurements were conducted to help reduce any skewness of the data distribution.
All models were evaluated using the following parameters: goodness of fit (R2), accuracy
of prediction (Q2), standard deviation of the response (SDY), residual standard deviation
(RSD), validity, and reproducibility values. Based on these parameters, a good mathemati-
cal model is required to have values of Q2, with validity and reproducibility values higher
than 0.5, 0.25, and 0.5, whilst the difference between Q2 and R2 should be <0.3 [23].

Industrial validation of the models was conducted at Boliden Odda Zinc Smelter,
Norway. As shown in Figure 1, four points of measurement were conducted in each of
the four cells (A to D) investigated: at the inlet, 1/3 and 2/3 of the cell distance from the
inlet, and the outlet. These points were selected to accommodate the possibility of any
changes in acid and zinc concentrations induced by the electrowinning process. A sample
of electrolyte was also taken for analysis from each point (Table 2) and further used for
conductivity measurements at different temperatures.
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Figure 1. Schematic illustration of cells in the tank house, and the in situ conductivity measurements
and sampling points.

Table 2. Composition of industrial electrolytes obtained from Boliden Odda Zinc Smelter.

Sample
ID Cell Position

Composition (g/dm3)

Zn H2SO4 Mg Mn Na Ca

1

A

inlet 52.8 189.6

11.8 7.3

2.3–2.5 0.4

2 1/3 49.4 192.2
3 2/3 49.0 194.9
4 outlet 50.3 192.2
5

B

inlet 52.6 187.7

11.2 7.1
6 1/3 48.5 198.9
7 2/3 48.5 193.2
8 outlet 48.9 192.8
9

C

inlet 54.3 191.0

11.2 7.2
10 1/3 47.2 194.1
11 2/3 49.2 193.0
12 outlet 50.1 193.7
13

D

inlet 50.1 192.2

11.3 7.2
14 1/3 46.9 193.0
15 2/3 49.4 195.3
16 outlet 48.7 200.6
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3. Results and Discussion

The raw data obtained from conductivity measurements performed with the synthetic
electrolyte solutions (Table S1) are shown in groups comprised of 5 mS/cm intervals in
the related histogram (Figure 2). The figure shows that the data distribution is statistically
symmetric and unimodal in nature; therefore, it provides an ideal basis for the development
of the conductivity model.
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Figure 2. Histogram of the specific conductivity measured from the synthetic zinc electrowinning solutions utilized in
this study.

Three models were developed, each with a distinctive character: Aalto-I (Equation (15))
was based on the assumption that each of the investigated parameters had an independent
effect on the conductivity, while Aalto-II (Equation (16)) included the model with the
interaction effects of concentration and temperature, as previously demonstrated by Scott
et al., as shown in Equation (11) [18]. Finally, the Aalto-III (Equation (17)) was developed
purely on the valid first-order full-factorial correlation of all parameters. This approach was
taken by considering the previous model from Mahon et al., as shown in Equation (12) [16].

3.1. Aalto Conductivity Models

The three conductivity models in this study are shown in Equations (15)–(17), whilst
the scaled and centered coefficients of these are shown in Figure 3.

κAalto−I = 129.239− 2.657[Zn] + 1.687[H2SO4] + 5.658T − 2.802[Mn]

−8.116[Mg]
(15)

κAalto−I I = 346.304 + 0.626[Zn]− 0.674[H2SO4] + 0.6471T − 3.668[Mn]

−7.372[Mg]− 0.092[Zn]T + 0.061[H2SO4]T
(16)

κAalto−I I I = −135.072 + 9.924[Zn] + 1.283[H2SO4] + 4.692T − 26.705[Mn]

−8.568[Mg]− 0.028[Zn][H2SO4]− 0.201 [Zn]T

+0.055 [H2SO4]T + 0.668[Mn]T

(17)

where concentrations are in g/dm3, T is the temperature in ◦C, and κ is in mS/cm.
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Aalto-I, Aalto-II and Aalto-III.

From Figure 3, it can be seen that model Aalto-I clearly has valid coefficients through-
out the parameters tested, whereas Aalto-II shows that there are valid correlations between
both Zn and H2SO4 with temperature. Nevertheless, the correlation of the minor con-
centrations of Mn and Mg to the temperature was deemed to be insignificant, and was
thus excluded from the final model. For the pure, full-factorial model of Aalto-III, a strong
correlation is observed between Zn and H2SO4. Furthermore, similar to the Aalto-II, valid
interrelation of the minor concentrations was not observed either with other concentrations,
or the temperature.

In order to select the most representative out of these models, a comparison was
conducted, as can be observed in Figure 4. All the models show very accurate predictions
of conductivity, with strong values of R2, Q2, validity, and conductivity. Nevertheless, from
the comparison, Aalto-I has the highest values for all the statistical value requirements;
in particular, the related validity value is superior to those of the other two models. As a
result, Aalto-I was selected as the proposed conductivity model from this study.
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According to Aalto-I, increases in both temperature and H2SO4 have a positive effect
on conductivity, whereas the presence of metal ions (Zn, Mn, Mg) has a negative impact
on solution conductivity. These findings are in agreement with earlier studies of Zn
electrowinning conductivity [15,24–26], and are similar to the behavior found for Cu, Ni,
and As, in copper electrowinning electrolytes [22].

3.2. Comparison of Models with Synthetic Solutions

A comparison of the Aalto-I model with those available in the literature (Figure
5), demonstrates a significant improvement in the calculation accuracy. Interestingly,
the model from Mahon et al. [16], with the second-order full-factorial correlation (Equa-
tion (12)), shows good accuracy whilst having lower linearity than the model Aalto-I. On
the other hand, the model proposed by Scott et al. [18] shows excellent linearity, even
though it results in much higher calculated conductivities than the observed values. The
overcalculation of the Scott et al. [18] model may result from the fact that the coefficients
of the metal ions are set to a single value, rather than allowing each different ion type
to contribute individually, which results in the deviation of the values. In comparison,
whilst Aalto-I is shown to have a slight advantage with synthetic electrolyte conductivity
measurements, further validation of the real industrial electrolytes of the available models
is required to determine the most representative model.

3.3. Industrial Validation

A further comparison of Aalto-I with the models from previous studies, based on
the industrial electrolyte results (Table S2), was carried out, as shown in Figure 6. This
comparison in the industrial electrolytes shows that the Aalto-I model quite clearly deviates
from the other models examined. As can be seen in Figure 6, Aalto-I offers the best
accuracy and linearity for the electrolyte qualities used in industry. The significance of
the improvement can be seen with the help of the ideal (dotted) line, showing an ideal
correlation (Y = x). In contrast, the presence of other concentrations in the real electrolyte
that were not taken into account during the model development, such as Na and Ca, only
result in a non-significant deviation.
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3.4. Model Utilization

An approach to calculate the ohmic drop of the electrolyte (Eohmic) during zinc elec-
trowinning can be conducted by combining the equation of model Aalto-I with Equa-
tion (8), as shown in Equation (18). The sensitivity analysis result with the center point:
60 g/dm3 Zn, 175 g/dm3 H2SO4, 4 g/dm3 Mn, 2 g/dm3 Mg, at a temperature of 35 ◦C, is
shown by Figure 7. The selected value varied by ±15%, and its effect on the conductivity
was observed.

Eohmic =
jl

(129.239−2.657[Zn]+1.687[H2SO4]+5.658T − 2.802[Mn] − 8.116[Mg])
(18)

where j is in mA/cm2, l is in cm, concentrations are in g/cm3, and T is in ◦C.
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It can be seen that both the increase in [H2SO4] and T lowered the Eohmic value, whereas
an increase in the concentration of metal ions (in particular Zn) increased the level of ohmic
drop. The variation from the defined H2SO4 concentration (175 g/dm3 H2SO4) has the most
significant influence on Eohmic in the investigated parameter magnitude, while the effects of
T and [Zn] are slightly lower. These findings suggest that increases in temperature, and/or
acid concentration, can be considered to effectively decrease the electrolyte ohmic drop.

In some cases, the bleeding of metal ions with high concentrations should also be
considered to alleviate issues related to ohmic drop. For example, Boliden Odda Zinc
Smelter has a relatively high acid concentration (ca. 190 g/L) and temperature (ca. 40 ◦C),
and a low zinc concentration (ca. 50 g/L). Mn concentration in the electrolyte is main-
tained at between 7 and 8 g/dm3 in order to produce the MnO2 layer required for the
corrosion protection of the Pb-Ag anodes [27–29]. However, the high concentration of
Mg (11–12 g/dm3), besides causing the blockage of pipe systems [30–32] and difficulties
in the mass-transfer process of zinc deposition [33], could also create extra electrolyte
overpotential. From Aalto-I and Equation (18), approximately 15% of the electrolyte ohmic
drop can be reduced by lowering the Mg concentration from 11.2 g/dm3 to 2 g/dm3.
Furthermore, the model Aalto-I results based on the published data of Zn electrorefining
show a large deviation of the ohmic drop contribution to the cell potential, from the lowest
at app. 6.1%—as discussed by We et al.—to more than double for the highest contribution
to cell potential of 14.8% (outlined by Yanqing et al.) [13,18,34–44], as shown in Table 3.
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Table 3. Zinc electrowinning operating conditions and calculated Eohmic.

Parameters Calculated
Eohmic

(V)

Ecell
(V) Ref.

Eohmic/Ecell
(%)[Zn]

g/dm3
[H2SO4]

g/dm3
T
◦C

Mn
g/dm3

Mg
g/dm3

l/
cm

j
mA/cm2

60 180 38 8 0 2.0 50 0.21 2.898 [34] 7.4
55 155 40 0 0 2.5 40 0.21 2.89 [35] 7.4
55 150 40 0 0 3.0 40 0.26 2.91–2.98 [36] 8.7
50 150 35 5 0 2.0 50 0.23 3.22–3.8 [37] 6.1
50 210 45 4.6 12.2 3.8 40 0.31 3.21 [18] 9.6
62 190 38 0 0 2.5 50 0.25 2.91–2.99 [38] 8.4–8.6
58 160 38 0 0 2.5 50 0.27 3.03 [39] 9
55 165 38–42 3.5 15.87 3 50 0.42–0.44 3.0–3.25 [40] 12.8–14.8

48–52 170–190 35 0 0 3.5 58 0.39–0.44 3.45 [41] 11.3–12.4
65 150 35 5 0 3.5 50 0.44 3.15 [42] 14.1
50 150 38 3 0 3.0 50 0.33 3.28–3.31 [43] 10
50 160 35 2 0 3.0 50 0.33 2.66–2.82 [44] 11.6–12.3

61.5 171 38 5.2 5.31 2.5 50 0.30 3.00–3.05 [13] 10.0–10.1

It is worth noting, however, that the above discussions are primarily focused on the
cell voltage and ohmic drop, whilst optimal operating parameters are the complex result
of many other factors. For instance, high acid concentration may increase the likelihood
for hydrogen evolution, and reverse zinc dissolution, leading to a decrease in the current
efficiency, while elevated temperature would cause nodule formation [18]. Consequently,
the comprehensive effects of electrode reactions, and electrolyte ohmic drop, should be
evaluated in detail during parameter optimization.

4. Conclusions

The three zinc electrolyte conductivity models constructed in this study were found to
have good validities, and high correlation coefficients (Aalto I–III). Furthermore, Aalto-I was
shown to offer a significant improvement to the accuracy of prediction when compared
to the previously published models, due to the inclusion of individual coefficients for
each metal present, rather than as a single collective effect of all metals. The industrial
validation of the models—conducted at the Boliden Odda facility in Norway—further
demonstrated the high accuracy of the Aalto-I conductivity model. Even though the effects
of minor impurities (Na and Ca) were excluded during the development of the model,
the model can accurately predict conductivity. This indicates that the parameters and
levels taken into account within the model development were representatives of the real
conditions present in industrial processes. Consequently, Aalto-I can be used as an effective
tool for the prediction of electrolyte conductivity, and the optimization of industrial zinc
electrowinning processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/met11111824/s1, Table S1: Raw data obtained from the conductivity measurements of the
synthetic zinc electrolytes. Table S2: Conductivity measurements of industrial electrolytes from the
electrowinning cells at different temperatures.
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