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Abstract: In this paper, a pragmatic technique has been developed to evaluate the erosion-corrosion
behavior of three kinds of ZrN coatings (i.e., monolayer, multilayer, and gradient layers) which were
deposited on AISI 420 martensitic stainless steel using an ion-assisted deposition technology. Among
them, the monolayer coating refers to the coating with no change in composition and structure,
the multilayer coating refers to the coating with alternating change of Zr/ZrN, and the gradient
coating refers to the ZrN coating by increasing N2 partial pressure gradually. The morphology,
composition, and microhardness of these ZrN coatings were examined by means of integrating the
scanning electron microscopy (SEM), X-ray diffraction (XRD), and Knoop hardness measurements,
while anodic polarization tests and salt fog spray tests in a simulated industrial environment have
been performed to evaluate and identify the corrosion mechanisms of these coatings. The surface
microhardness and corrosion resistance of the AISI420 martensitic stainless steel is found to be
significantly improved by depositing the ion-assisted deposition ZrN coatings. The study indicates
that the erosion-corrosion behavior in the slurry is the result of the synergistic effect of small-angle
erosion and acid solution corrosion. Three ZrN coatings hinder the slurry erosion-corrosion behavior
from two aspects (i.e., erosion resistance of small-angle particles as well as corrosion resistance of the
substrate), thereby significantly improving the erosion-corrosion resistance of AISI 420 stainless steel.
In addition, the ZrN gradient coatings show a much better erosion-corrosion resistance than that of
the monolayer/multilayer ZrN coating because they have excellent crack resistance, bearing capacity,
and electrochemical performance.

Keywords: ion-assisted deposition; ZrN coatings; erosion-corrosion; stainless steel

1. Introduction

The martensitic stainless steel AISI 420 has been widely used in manufacturing tur-
bine blades because of its excellent mechanical properties and high corrosion resistance.
However, due to the low hardness and poor wear resistance, AISI 420 martensitic stainless
blades are subject to solid-liquid two-phase erosion-corrosion [1,2]. As for a steam turbine,
its erosion-corrosion remains a crucial problem, especially on the last blades at its tip end.
When the steam turbine is working, the surfaces of these blades are impacted by high-speed
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airflow containing a small amount of liquid drops and solid particles, leading to the fact
that the surfaces of these blades are gradually eroded and peeled off. In this way, the blade
strength is significantly reduced, aerodynamics of the cascade is worsened, and there may
be even sudden blade breakage, posing a serious threat to the safe operation of the steam
turbine [3,4].

Numerous efforts have been made to improve the erosion-corrosion performance of
steam turbine blades. The gas metal arc welding or high velocity oxygen fuel (HVOF)
CaviTec coatings can improve the surface erosion-corrosion performance, but they are
prone to micro-cracks and cavitation corrosion because of their hard and brittle surface [5,6].
Nagentrau et al. [7] and Kuznetsov et al. [8] improved the erosion resistance of blades with
overlaying welding Tungsten carbide coatings and laser cladding Stellite 6 alloy (alloys
based on Co, 150 µm); however, it is easy to cause deformation defects because such
treatments undergo large heat inputs. At present, the aforementioned improvements are
found to be only suitable for small turbines [5,7,8]. Recently, the ion-assisted deposition
technology allows us to treat a surface by combining traditional physical vapor deposition
(e.g., multi-arc ion plating and ion sputtering) with various ion-assisted sources [9,10].
Such combined treatment improves the film performance at a low deposition temperature
and ensures that the blades do not deform due to the low heat input. Compared with
physical vapor deposition (PVD), such combined treatment leads to better coating bonding
strength, denseness, and deposition atom mobility [11–13].

In recent years, some progress has been made in improving the small-angle solid
particle erosion properties of ZrN coatings prepared by ion-assisted deposition technol-
ogy [14–16]. However, there are few studies on the solid-liquid two-phase erosion-corrosion
resistance. When the turbine blades rotate at a high speed, they are not only eroded by
solid particles, but also corroded by the surrounding medium, which is a synergistic ef-
fect of the two aspects [6,8,17,18]. Recent studies have shown that multilayer films and
gradient films have greater advantages than single-layer films in improving the corrosion
resistance of metal materials, but there are fewer studies on solid-liquid two-phase erosion-
corrosion [19–21]. So it is extremely important to evaluate and identify the mechanisms of
corrosion resistance and erosion-corrosion behaviors of ZrN coatings with different structures.

In this work, a pragmatic technique has been developed to evaluate the erosion-
corrosion behavior for various ZrN coatings (i.e., monolayer, multilayer, and gradient
layers). The ZrN coatings were prepared on the surface of AISI 420 martensitic stainless
steel by ion-assisted arc deposition technology. Then, SEM, XRD, and Knoop hardness tests
were performed to evaluate morphology, composition, and microhardness of the coatings,
while salt fog spray corrosion tests and modified rotary slurry erosion-corrosion tests were
conducted to measure the electrochemical potentials and erosion-corrosion volume damage
ratio. Moreover, effect of the coating structure on the erosion-corrosion performance has
been examined and analyzed.

2. Experiments
2.1. Materials

The chemical composition (wt%) of the substrate material AISI 420 martensitic stain-
less steel is presented in Table 1. The material was annealed at 860 ◦C for 4 h, followed
by oil quenching at 900 ◦C for 3 h and tempering at 600 ◦C for 6 h. Disk-type samples of
30 mm in diameter and 10 mm in thickness were cut from a stainless steel bar. Prior to
surface treatments, the sample surfaces were ground and polished with 400#, 800#, and
1200# abrasive papers. Finally, the surfaces were ultrasonically washed with acetone and
distilled water, and dried for ion-assisted arc deposition.

Table 1. Chemical composition of AISI 420 martensitic stainless steel (wt%).

C Cr Mn Si Ni Cu P S Fe

0.190 12.650 0.200 0.280 0.120 0.110 0.028 0.007 balance
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2.2. Experimental Setup

Figure 1 shows a schematic diagram and detailed photographs of the PIEMAD-03
(Foxin Vacuum Technology Co., Ltd., Foshan, China) ion-assisted multi-arc deposition
system which combines the traditional multi-arc ion plating with ion-assisted enhancement
methods. The system consists of a slit plane ion-assisted source, a multi-arc ion zirconium
target, a pulsed bias power supply and a vacuum system.
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Figure 1. PIEMAD-03 ion-assisted multi-arc deposition system: (a) Schematic diagram, (b) photos of instruments, (c) corre-
sponding components.

The slot plane ion source is an important ion-assisted enhancement deposition device,
PIEMAD-03 (Foxin Vacuum Technology Co., Ltd., Foshan, China), in which the working
gas was high-purity argon. Before and during the preparation of coatings, the slit plane
ion source can ionize a lot of Ar+, and bombard the surface of the sample to achieve the
purposes of cleaning, film/base atom mixing, and enhancing the deposition. Because of
the enhanced deposition effect of the slit plane ion-assisted source, the distance between
the sample and the target reaches 150 mm, which can significantly reduce the temperature
of the sample below 300 ◦C. The zirconium target (99.95 wt%) was bombarded either by
Argon ion in the case of pure Zr layers or nitrogen ion in the case of ZrN layers. The pulsed
bias power (Haoyuan, Guangzhou, China) supply is used to bias the sample, and increase
the film/base bond strength and deposition rate. During the deposition process, a bias
voltage of −350 V was applied to the substrate. The vacuum system is a two-stage pump
(i.e., molecular pump-mechanical pump) vacuum system, which can maintain a pressure
of 5–8 × 10−1 Pa in the vacuum chamber to prevent the coating from being oxidized.

Figure 2 shows a modified rotary erosion-corrosion test device (home-made) that
consists of a glass container, a polyethylene sample holder, a glass shaft, a governor device,
and a main motor. The glass container is used to store the experimental slurry, while the
prime motor is used to provide liquid rotation power. The polyethylene sample holder
is used to hold and seal the sample, and only the test surface is exposed in the solution.
The governor device is mainly used to control the erosion-corrosion linear velocity of
the sample.
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2.3. Experimental Procedures
2.3.1. Coating Deposition

Three kinds of ZrN coatings were prepared using the PIEMAD-03 ion-assisted multi-
arc ion deposition equipment. Each coating contains a 2.0 µm Zr primer layer. Coating
structures are designed as follows: (1) ZrN monolayer coating (i.e., Coating #1) is composed
of a 6.0 µm ZrN surface layer; (2) ZrN multilayer coating (i.e., Coating #2) is composed
of 5 layers of Zr/ZrN surface alternate deposition layers, in which thickness of each
surface layer is 0.9–1.2 µm and the total thickness is 8.0 µm; and (3) ZrN gradient coating
(i.e., Coating #3) consists of a 6.0 µm ZrN gradient surface layer, where the high-purity N2
partial pressure is gradually increased from 0.1 Pa to 4.0 Pa during the preparation of the
gradient surface coating.

2.3.2. Coating Characterization

The surface cross-section morphology of the ZrN coatings was examined with an
HITACHIS-570 scanning electron microscope (HITACHI, Tokyo, Japan) operated at 20 kV.
The surface compositions of these coatings were analyzed with an X-ray diffraction facility
(X’Pert PRO, PANALYTICAL, Amsterdam, the Netherlands). The surface microhard-
ness profiles were measured by means of an HV-1000 Knoop hardness tester (BIUGED,
Guangzhou, China) for 20 s with a Knoop pressure head [4]. In the hardness test, each
point is tested five times. The hardness test error is given, and the average value is taken as
the final result.

2.3.3. Corrosion Tests

The electrochemical corrosion behavior of samples was tested using a PARSTAT2273
electrochemical measuring system (AMETEK, Santiago, California, USA) with a three-
electrode flat cell. The scanning potential was in the range of −0.6 to +0.8 V, and the
potential scan rate was 0.166 V/s. The test solution (pH = 3 ± 0.2) consisted of 5.0 wt% NaCl
and H2SO3 solution maintained at 25 ± 2 ◦C in order to simulate the service environment
of turbine blades [22].

The salt fog spray corrosion test was performed using a SY/Q-750 salt fog spray
corrosion test instrument (Aoke, Wuxi, China) in accordance with ASTM B117 [2]. The
solution used for salt fog spray corrosion tests was the same as that of the electrochemical
test. The salt fog spray test was conducted continuously with 20 mL/min CO2 gas flow. The
test temperature was maintained at 35 ± 2 ◦C, and the relative humidity was maintained
at 94 ± 4% for 720 h.
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2.3.4. Slurry Erosion-Corrosion Tests

The slurry erosion corrosion experiment was carried out on a rotary testing machine
(Figure 2). The solution used for slurry erosion-corrosion tests was the same as that of the
electrochemical test. In order to simulate the erosion-corrosion environment of industrial
blades, a content of 10 wt% silica sand was added to the erosion-corrosion solution. The
total slurry volume of the erosion-corrosion tests is 10 L. The silica sand was used as
an abrasive agent with a particle size between 150 µm and 250 µm, and suspended in
the solution. The erosion-corrosion line speed was 4.8 m/s, and the test time was 24 h.
Since the density of the substrate and each coating was different, the erosion process was
evaluated according to the volume loss. In order to compare the volume loss caused by
the erosion process, the profiler was used to measure the erosion pit morphology of the
sample after the erosion test, and the erosion volume loss was calculated to evaluate the
corrosion process. The sample is cleaned in alcohol by ultrasonic before weighing so that
the influence of impurities can be avoided. Electrochemical tests, salt spray corrosion tests,
and erosion-corrosion tests were carried out three times for each coating to ensure the
consistency of the experimental results.

3. Results
3.1. Surface and Cross-Sectional Morphology

The photograph of particle-assisted deposition ZRN coating sample is shown in
Figure 3. The surface micrographs of the ion-assisted arc deposition ZrN coatings are
shown in Figure 4. The coating is found to be smooth and golden in color. There are
many small particles of bright white color on the surface of the coating, as shown in
secondary electron image (SE, Figure 4a), which can be more clearly observed with the
scanning backscattering electron microscope (BSE). As can be observed in Figure 4b, the
micro-convex particles on the surface of the ZrN coating and the circular pits are left
after individual particles fall off. This phenomenon is caused by the incompletely ionized
zirconium droplets sputtered from the arc spot on the cathode arc target [23].
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Figure 4. Surface micrographs of the ion-assisted arc deposition ZrN coatings: (a) SE and (b) BSE.

Figure 5a shows the cross-sectional morphology of Coating #1 which is composed of
a Zr underlayer with a thickness of 2.0 µm and a ZrN single homogeneous surface layer
(6.0 µm). There is a clear interface between the underlayer and the surface layer. As shown
in Figure 5b (Coating #2: A Zr underlayer of 2.0 µm and 5 Zr/ZrNs alternately deposited
layers), each alternately deposited layer (1.2 µm) looks very dense and alternate in color.
Figure 5c indicates that Coating #3 consists of a Zr underlayer (2.0 µm) and a ZrN gradient
layer (6.0 µm). Compared with Coatings #1 and #2, the interface of Coating #3 between the
underlayer and the surface layer is less obvious. Because of the strong ion bombardment
of sample surface by the slit plane ion source, the bonding strength between the layers is
significantly increased. As such, it can be seen form Figure 5, all of the three ZrN coatings
deposited by the ion-assisted deposition technology are very dense, defect-free, and tightly
bonded. This observation is similar to those documented elsewhere [11,24].
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multilayer, (c) Coating #3 gradient layer.

Figure 6 shows the element distribution curve of Coating #1 and Coating #3 along the
layer-depth. It can be seen that in the Coating #1, the Zr layer is located between the ZrN
layer and the stainless steel substrate. Similarly, it can be seen from Coating #3 that there is
also a Zr layer between the ZrN gradient film and the stainless steel substrate. Comparing
Coating #1 and Coating #3, it can be seen that the changes of Zr and N in the ZrN gradient
film layer are smoother and slower than that of the single layer, and there is no obvious
step. Therefore, it can be seen from the element change diagram that the Coating #3 is a
gradient film layer.
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Because the surface composition of the three coatings is the same, take Coating #1 as
an example for analysis. According to the XRD test results (see Figure 7). The surfaces of
the three ZrN coatings are confirmed to be pure ZrN, and exhibit a preferred orientation of
the (200) plane. This is the same as those observed by Jiménez et al. [25].
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3.2. Microhardness

The microhardness of AISI420 stainless steel with three kinds of ZrN coating samples
were measured under several test loads (Figure 8). The microhardness of the substrate
is 278 HK0.1, while that of the ZrN coatings are higher than 3000 HK0.1. The hardness of
substrate is relatively low and basically does not change with loads. The microhardness
of Coating #1 was the highest of about 3737 HK0.1 among the three ZrN coatings, and the
hardness of Coating #2 was the lowest of about 3074 HK0.1. The surface microhardness of
Coating #3 was 3381 HK0.1 that is decreased more gradually with the increase of the load,
while the surface hardness of the other two coating samples is decreased significantly with
the increase of the load.
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When the test load is smaller, the ZrN single-phase homogeneous surface layer of
Coating #1 is the thickest and has the highest bearing capacity, and thus the apparent
microhardness is the highest. When the test load is increased to a certain value, the coating
is broken and the microhardness is decreased rapidly [26]. Coating #2 has a multilayer
in which Zr metal layer and ZrN ceramic layer are alternatively deposited. Since the Zr
layer and the ZrN layer are both very thin and the hardness of the Zr layer is low, the
comprehensive bearing capacity and surface microhardness of Coating #2 are the lowest,
and they decrease rapidly with an increasing load [27]. Coating #3 has a gradient structure
with gradually changing coating composition from the inner Zr metal layer to the outer
ZrN ceramic layer. As shown in Figure 8, when the test load is gradually increased, the
micro hardness of Coating #3 changes linearly and decreases slowly. It is also shown
that Coating #3 has better deformation coordination ability, crack resistance, and bearing
capacity. These scientific findings are consistent with those documented elsewhere [28].

3.3. Corrosion Resistance
3.3.1. Salt Fog Spray Tests

The corroded surface morphology of the AISI420 stainless steel samples and three
ZrN coating samples after 720 h salt fog testing is illustrated in Figure 9. The red rust can
be seen on the substrate sample, which has poor corrosion resistance (Figure 9a) [29,30];
however, there is almost no red rust on the surfaces of the three coating samples. As can be
seen in Figure 9b–d, the ZrN monolayer, multilayer, and gradient layers have significantly
improved the corrosion resistance of AISI420 stainless steel substrate.
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3.3.2. Electrochemical Behavior Tests

Figure 10 shows the anodic polarization curves of AISI420 stainless steel and three
ZrN coating samples in 5.0 wt% NaCl + H2SO3 solution (pH = 3 ± 0.2). As can be seen from
Figure 10, the AISI420 stainless steel sample does not have an evident passivation region,
and the corrosion potential (Ecorr) is −0.580 V. However, the corrosion potentials (Ecorr) of
the Coatings #1, #2, and #3 samples are −0.272 V, −0.238 V, and −0.273 V, respectively, while
the polarization curves show evident passivation regions. According to the comparison
of the corrosion potential (Ecorr), the third ZrN coating samples exhibit a much higher
corrosion resistance. According to the Tafel’s linear extrapolation method [31,32], the
corrosion current density (Icorr) of the AISI420 substrate is 3.77 × 10−6 A/cm2. On the
other hand, the corrosion current densities (Icorr) of Coatings #1, #2, and #3 samples are
6.54 × 10−7 A/cm2, 7.32 × 10−8 A/cm2, and 1.58 × 10−7 A/cm2, respectively. Compared
with the corrosion current of the AISI420 substrate, the ZrN monolayer is reduced by 82.7%
under the same corrosion conditions, while the ZrN multilayer and the gradient layer are
reduced by 98.1% and 95.8%, respectively.
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3.3.3. Erosion-Corrosion Behavior

Table 2 shows the results of erosion-corrosion tests of AISI420 steel and three kinds
of structure ZrN coating samples in an acidic slurry solution. Since the density of the
substrate and each coating was different, the erosion process was evaluated according to
the volume loss. In order to compare the volume loss caused by the erosion process, the
profiler was used to measure the erosion pit morphology of the sample after the erosion test,
and the erosion volume loss was calculated to evaluate the corrosion process. Volume loss
refers to the volume reduction (in mm3) after erosion-corrosion test. The volume damage
ratio refers to the proportion of volume loss of coated samples in uncoated samples during
erosion-corrosion test. If the volume loss of the untreated sample is positioned at 100%,
the volume loss of the three surface treated samples after the 24 h slurry erosion corrosion
test will be 6.2, 6.5, and 4.7%, respectively. This means that all three coating structures, i.e.,
ZrN monolayer, multilayer, and gradient layer have significantly improved the solid-liquid
two-phase erosion-corrosion resistance of the AISI420 stainless steel.
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Table 2. Erosion-corrosion results of AISI420 steel with and without coatings.

Test Medium Sample Volume Loss
(mm3)

Erosion-Corrosion Volume
Damage Ratio

(%)

Acid slurry
(pH: 3 ± 0.2)

AISI 420 21.5 -
ZrN monolayer(Coating #1) 1.34 6.2

Zr/ZrN multilayer(Coating #2) 1.40 6.5
ZrN gradient layer(Coating #3) 1.02 4.7

Figure 11 shows the surface micrographs of samples after slurry erosion-corrosion
tests. It can be seen from the figure that, under the action of scouring, deep plough grooves
appeared on the surface of AISI 420 sample. The erosion-corrosion damage of the substrate
is serious. However, only shallow scratches appeared on the surface of the three coating
samples. Compared with the plough groove caused by the uncoated sample, the number
of scratches on the coated sample is less and the depth is shallow. The erosion-corrosion
resistance was significantly improved through the PVD surface treatment method.
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4. Discussion

It can be seen that the ZrN coatings with three structures can significantly improve the
corrosion resistance of AISI420 stainless steel, and the improvement effects of Coatings #2
and #3 are more significant. These phenomena can be explained with the following three
main reasons. First, as cross-sectional morphology presented in Figure 4, the three ZrN
coatings can effectively prevent the corrosive medium from contacting the substrate as
they are relatively dense and have a certain thickness [33]. Second, during the preparation
of the ZrN monolayer, micro-pores and other defects will be formed in the layer due to
the existence of the columnar crystal structure of the layer and the surface droplets [27,34].
During the preparation of ZrN multilayer and gradient layer, however, changes in the
partial pressure of N2 will cause changes in the composition of the film layer, resulting in
micro-pores closure and limiting their growth. Furthermore, in electrochemical behavior
test, new micro-pores will be formed at other suitable locations, so that there will be
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no channels or cracks from the surface of the film layer to the inner substrate, which
prevents the substrate from directly contacting the electrolyte solution [35]. Therefore,
both the ZrN multilayer and gradient layer films have better electrochemical corrosion
protection effect on the AISI420 substrate than the ZrN monolayer coating. Finally, the
formation of columnar crystals and micro-pores in the film layer can be better prevented
when the Zr metal layer and the ZrN ceramic layer are alternately deposited [15,21]. In
addition, the Zr metal layer has an excellent corrosion resistance, which ultimately makes
the electrochemical corrosion resistance of the ZrN multilayer coating is the best among
the three coatings.

In slurry erosion-corrosion tests, as shown in Table 2, ZrN monolayer, multilayer, and
gradient layer have significantly improved the solid-liquid two-phase erosion-corrosion
resistance of the AISI420 stainless steel, especially multilayer, and gradient layer. Figure 12
shows the surface profiles and curves of slurry erosion-corrosion pits of samples after
erosion-corrosion tests. It can be seen that erosion-corrosion pits of AISI 420 are deeper,
and volume loss of pits of three kinds of surface treated samples is lower than that of
AISI 420. At a 30-degree erosion-corrosion angle, the erosion-corrosion mechanism of the
material is the result of the combined effect of micro-cutting and corrosion. The erosion-
corrosion resistance mainly depends on the surface hardness and corrosion resistance of
the material. Because the substrate of AISI 420 sample has low hardness and poor wear
resistance, the bulk loss is the largest. After three kinds of surface treatments, the surface
hardness of the sample was significantly improved, as depicted in Figure 8 in current
research. Therefore, under the same slurry erosion test conditions, the volume loss of the
three coating samples was significantly reduced, and the erosion corrosion performance
was significantly improved.
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In an erosion-corrosion process, the tangential motion of droplets and solid particles
will be enhanced, while the normal motion will be weakened. In this way, the erosion-
corrosion effects on the surface of samples are resulted from the synergistic effect of both
the small-angle erosion of droplets and solid particles and the corrosion of liquid acid
solution [36]. Previous studies have shown that Coatings #1, #2, #3 can significantly
improve not only the erosion resistance of small-angle particles, but also the corrosion
resistance of the substrate [37]. Therefore, the three coatings hinder the slurry erosion-
corrosion behavior from above two aspects, thereby significantly improving the erosion-
corrosion resistance of the AISI420 stainless steel [38]. In addition, compared with the
other two coatings, the gradient layer (i.e., Coatings #3) has the best crack resistance and
load-bearing capacity as well as good corrosion resistance. As such, the comprehensive
results show that the erosion-corrosion damage of Coatings #3 is the smallest and its erosion
corrosion resistance is the best.
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5. Conclusions

(1) The microhardness of AISI420 stainless steel is measured to be 278 HK0.1, while
those of the ZrN monolayer, multilayer, gradient layer samples prepared by the ion-assisted
arc deposition method are higher than 3000 HK0.1. Among them, the ZrN gradient coating
has the best crack resistance and bearing capacity, and its hardness decreases more slowly
with an increasing test load.

(2) In acidic corrosive environments, ZrN monolayer, multilayer, and gradient coatings
have significantly improved the corrosion resistance of the AISI420 stainless steel substrate,
reducing its corrosion current density by 83.0%, 99.8%, and 95.8%, respectively. Because
the ZrN multilayer and gradient layer coatings can constrain the growth of some columnar
crystals and reduce the number of micro-pores inside the coating, their corrosion resistances
are better than that of the ZrN monolayer coating.

(3) The ZrN coatings with three structures have significantly improved the bearing
capacity and corrosion resistance of the AISI420 substrate, which further hinders the
solid-liquid two-phase erosion-corrosion damage from the aspects of small-angle erosion
resistance and corrosion resistance. Among them, the ZrN gradient coating has the best
mechanical properties and electrochemical corrosion performance, and thus, it has the best
erosion-corrosion resistance.
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