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Abstract: Al2O3, Al2O3·TiN, Al2O3·MgO, and CaO·2Al2O3 are four different types of inclusions
in high Al steels. To improve the steel cleanness level, the effective removal of such inclusions
during secondary refining is very important, so these inclusions should be removed effectively via
inclusion dissolution in the slag. The dissolution behavior of Al2O3, Al2O3·TiN, Al2O3·MgO, and
CaO·2Al2O3 in CaO-SiO2-Al2O3-MgO slags, as well as the steel-slag reaction, was investigated
using laser scanning confocal microscopy (LSCM) and high-temperature furnace experiments, and
thermodynamic calculations for the inclusion in steel were carried out by FactSage 7.1. The results
showed that Al2O3·TiN was observed to be completely different from the other oxides. The composite
oxides dissolved quickly in the slags, and the dissolution time of the inclusions increased as their
melting point increased. SiO2 and B2O3 in the slag were almost completely reacted with [Al] in
steel, so the slags without SiO2 showed a positive effect for avoiding the formation of Al2O3 system
inclusions and promoting inclusions dissolution as compared with SiO2-rich slags. The steel-slag
reaction was also found to influence the inclusion types in steel significantly. Because of the rapid
absorption of different inclusions in the slag, it was found that the dissolution time of inclusions
mainly depends on the diffusion in the molten slag.

Keywords: LSCM; high Al steel; inclusions; refining slag; dissolution

1. Introduction

High-Al steel usually refers to steel grades with more than 0.7% aluminum in molten
steel. It is difficult to avoid the formation of hard alumina system non-metallic inclusions
in today’s steelmaking process [1–5]. The quality of high alumina steel is closely related to
the characteristics and quantities of non-metallic inclusions. The control of these inclusions
is mainly carried out in two steps: changing the morphology and composition of the
inclusions, and then removing the inclusions into the slag phase. For the first step, S.P. He
and K.W. Zhao found that low melting point CaO-Al2O3 inclusions were generated through
slag washing with low SiO2 high basicity slag [6,7]. R. Wang reported that the morphology
of inclusions in automobile steel can be changed by the interaction between inclusions and
refining slag, where Al2O3 dissolution speed increased with the increase of CaO/Al2O3
in top slag [8]. B. J. Monaghan reported that spinel inclusion dissolution can be affected
by changing the slag composition, where the rate controlling mechanism for Al2O3 micro-
particle dissolution in the liquid oxide compositions was found to be controlled by mass
transfer in the liquid oxide [9]. On this basis, further research on the separation of inclusions
from molten steel, and the adsorption and dissolution behavior in the slag become a
scientific frontier issue. In order to achieve removing inclusions, it is especially important
to get through the last step in high-Al steel.
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In recent years, many researchers have focused in-situ observations of different inclu-
sions in steel by means of laser scanning confocal microscopy (LSCM). H. Shibata and H.B.
Yin began to focus on single Al2O3 inclusions in the late 1990s [10,11], and S.K. Michelic dis-
cussed the dissolution behavior of titanium oxide and titanium nitride in Ti-microalloying
ferritic stainless steels [12,13]. The removal dynamic models of single large inclusion were
established by W. Liu and M.Z. Mu et al. [14–16]. In reality, the number of large alumina
and composite inclusions in Al killed steel is relatively small, but the proportion of small
inclusions is higher. There are few in-situ studies on fine composite inclusions such as cal-
cium aluminate, spinel, and alumina-titanium nitride. In addition, it has not been studied
for the absorption and dissolution process of fine inclusions in refining slag used for high Al
steel in particular. Based on the previous research results, the corresponding refining slags
were selected according to different types of micro-inclusions in this research. Secondly,
the dissolution process of the composite inclusions in refining slag and the modification of
inclusions in high Al steel after the interaction with top slag were analyzed, the absorption
and reaction process of the inclusions was studied finally.

2. Thermodynamic Calculation

The reactions of Al2O3, Al2O3·TiN, MgO·Al2O3, and CaO·2Al2O3 with different
CaO-Al2O3-SiO2-MgO refining slags were calculated using FStel and FToxid databases
in FactSage 7.1. According to the previous reports [6,7], the SiO2 content in the refining
slag suitable for high aluminum steel with 1wt% [Al] is generally lower than 5 wt%, so the
composition of the refining slag designed in this experiment is shown in Table 1.

Table 1. Compositions of the experimental slag, wt%.

Type CaO Al2O3 MgO SiO2 B2O3 CaO/Al2O3

Slag 1 54.1 31.9 6.00 5.00 3.00 1.7
Slag 2 50.2 35.8 6.00 5.00 3.00 1.4
Slag 3 53.1 37.9 6.00 - 3.00 1.4

The interaction calculated results between the slag and inclusions at 1550 ◦C can be
seen in Figures 1–4. This shows the change of different components in slag with various
inclusions entering slag. By comparing the reaction results of the four inclusions in three
slags, the effect of the inclusion absorption on the slag composition can be controlled, and
the following conclusions can be obtained:

1. With the increase of adding the amount of Al2O3 inclusions, the Al2O3 content in
the three slags increased gradually, with an average increase of about 2 wt%. As the
weight of the total slag remained basically unchanged, the other components, CaO,
SiO2, MgO, and B2O3, in the refining slag showed a decreasing trend, in which the
reduction of CaO was up to 1.58%, with SiO2, MgO, and B2O3 reduced below 0.18%.

2. With the increase of Al2O3·TiN inclusions, the Al2O3 content in the three slags also
gradually increased, with an average increase of about 1 wt%. Due to the presence of
TiN, new components such as TiO2 and Ti2O3 were generated in the slag, for which
the contents were both less than 1.2 wt%. It is estimated that the following reaction
(1) occurred between the inclusion and slag 1, resulting in the formation of titanium
oxides [13]. In addition, new nitrides such as Ca3N2, Mg3N2, AlN, Si3N4, BN, and
Ti3N4 were generated, and their contents were very low. Due to the formation of new
compounds, the other components, namely CaO, SiO2, and B2O3 of the refining slag,
showed a decreasing trend. MgO decreased in both slag 2 and slag 3, but increased
slightly in slag 1. The further reaction between MgO and alkaline oxides in the slag
led to the precipitation of cristobalite and Ca3Ti2O6.

x(TiN) +
y
2
(SiO2) =

(
TixOy

)
+

y
2
[Si] +

x
2
{N2} (1)
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3. With the increase of Al2O3·MgO inclusions, the Al2O3 content in the three slags also
gradually increased, and the average value improved by about 1 wt%. Due to the
absorption effect of the refining slag on the MgO component, the MgO content in
the slag also increased by 0.65%, and all other components showed a decreasing
trend—CaO was reduced by 1.58 wt%, and SiO2 and B2O3 were reduced by 0.15 wt-%
and 0.09 wt% respectively.

4. With the increase of CaO·2Al2O3 inclusions, the Al2O3 content also gradually in-
creased in slag 1 and slag 2, and the increasing value exceeded 1 wt%. Although
the other components, namely CaO, SiO2, B2O3, and MgO, in the slag showed a
downward trend, the decrease in the CaO component was less than 1 wt%, and the
downward trend was weakened. This was due to the decomposition reaction of the
calcium aluminate inclusions, and the refining slag absorbed the product CaO.
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3. Experiment Plan
3.1. Aggregation Behavior of Inclusions in Steel

The high aluminum steel was prepared using a vacuum induction furnace in the labo-
ratory. First, the behavior and type of original inclusions in the 15 mm × 15 mm × 15 mm
samples were observed using a scanning electron microscope (SEM) made by Zeiss,
Oberkochen, Germany.

The steel sample was placed in the corundum crucible (5 mm × 4.5 mm × 3.5 mm),
heated to 1773 K (1500 ◦C) at 1000 K/min, and then heated to 1873 K (1600 ◦C) at 100 K/min
by LSCM. The corundum gasket was placed under the steel to prevent the steel from
sticking to the crucible. After reaching the set temperature, the inclusions began to move
from the interior to the surface of molten steel, and then the aggregation behavior of the
inclusions was observed. To avoid the liquid steel becoming droplets due to interfacial
tension, a certain space should be maintained between the solid sample and crucible.

3.2. Dissolution Behavior of Inclusions on the Slag Surface

Based on the 1 wt% Al content, the composition of the refining slag (CaO, MgO,
SiO2, Al2O3, and B2O3) and the typical inclusions in molten steel ( 1©Al2O3, 2©Al2O3·TiN,
3©Al2O3·MgO, and 4©CaO·2Al2O3) were determined. The properties of four different

inclusions can be seen in Table 2, and Al2O3·TiN, Al2O3·MgO, and CaO·2Al2O3 were
prepared using pure compounds. To prepare these composite inclusions, it was necessary
to press them into a thin disk in advance, and to sinter them for 24 h at 1873 K (1600 ◦C).
The primary sintering product was broken into fine powder for secondary sintering, and
the sintering temperature was 1923 K (1650 ◦C) and the holding time was 6 h.
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Table 2. Molar mass (g/mol) and melting points of the inclusions.

Type Al2O3 TiN MgO CaO Melting Point, ◦C

Inclusion 1 102 2054
Inclusion 2 102 61.9 2930
Inclusion 3 102 40 2250
Inclusion 4 102 28 1762

The slag sample was placed into the Pt crucible first, and then the simulated inclusion
particles were placed on the slag sample. The slag sample made by pure reagents was
premelted, crushed, and dried gradually. Its composition was determined by X-ray fluo-
rescence spectrometer (XRF). The inclusion particles were put into the slag after melting,
and the lower melting point slag (inclusion particle) was heated to 1623 K (1350 ◦C) at
700 K/min, then to 1823 K (1550 ◦C) at 100 K/min. The higher melting point slag (inclusion
particles) was heated to 1723 K (1450 ◦C) at 1000 K/min, and then to 1823 K (1550 ◦C) at
100 K/min. The heating should be rapid in the early stage to prevent inclusions melting be-
fore reaching a predetermined temperature. The thermal cycle curve in LSCM experiments
can be seen in Figure 5.
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3.3. Steel-Slag Reaction in a High-Temperature Furnace

A controlled atmosphere high temperature furnace was used for the steel-slag reaction
in Figure 6; it is made by the Carbolite Gero company and its heating temperature can
reach 1973 K (1700 ◦C) under protective gas. About 170 g of steel sample (the composition
is shown in Table 3) was placed in the corundum crucible, and the graphite crucible was
sheathed. The premelted slag with 15 wt% of steel sample (based on the proportion of
actual slag weight in molten steel) was put into the crucible, and the inert gas Ar with a
flow rate of 20 L/h was introduced. The composition of the slag sample was determined by
previous experiments. The steel and slag were heated to 1823 K (1550 ◦C) and maintained
for 90 min, and then cooled rapidly to observe the modified inclusions in the steel and the
interface reaction between the steel, slag, and refractory. The whole sample and crucible
were split along the longitudinal axis, half of which was used to observe the change of the
steel-slag interface, and the other half was used for metallographic observation and oxygen
and nitrogen analysis.
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Table 3. Compositions of the experimental steel (wt%).

Low-Alloy
Model Fe C Si Mn P S Cr Al Nb Ti

Average 98.7 0.0385 0.00460 0.0105 0.000500 0.00290 0.00170 1.13 0.00110 <0.0005

3.4. Sample Analysis

The composition of high aluminum steel sample was analyzed using Foundry-Master
Pro (FMP) made by Oxford, UK. The morphology and composition of the inclusions in
the steel were analyzed using a Zeiss SIGMAFEG electron microscope and Oxford EDS.
The dissolution behavior of the inclusions in the slag was observed with a VL2000DX
high-temperature confocal microscope (the highest temperature was 1973 K (1700 ◦C),
the maximum heating rate was 20 K/s, the maximum cooling rate was 100 K/s, and
the maximum sample size was 8 mm × 8 mm × 4 mm), and it is made by Lasertec
Corporation, Yokohama, Japan. The slag samples after the high-temperature furnace test
were analyzed by XRF. The reaction interface between the inclusions, slag, and refractory
was also observed by SEM.

4. Results Analysis of LSCM Experiment
4.1. Inclusion Aggregation Behavior

Figure 7andFigure 8 demonstrate the aggregation growth behavior of Al2O3 inclu-
sions. Figure 7 shows a series of high-temperature confocal scanning electron microscope
continuous photographs, and Figure 8 corresponds to the aggregation state of inclusions
in the solidified sample. It can be seen the inclusions gradually aggregate from a single
particle smaller than 10 µm to large inclusions of more than 50 µm. More than 90% of
inclusions in steel belong to Al2O3. Because the LSCM equipment cannot analyze the inclu-
sion compositions in the test process, the compositions of different inclusions are mainly
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dependent on EDS. In addition, the type of inclusions can be determined by referring to
the morphological differences of different inclusions in the references [15–18].
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It can be seen intuitively that the alumina inclusions are mainly dendritic, and the
original alumina size is generally less than or equal to 10 µm. The collision and aggregation
of inclusions in Figure 7 are generally about 2–3 s. Moreover, the size of the polymerised
inclusions is greater than 30 µm, and they will also be combined with larger cluster
inclusions. The moving speed of the inclusions increases with the shortening of the
distance between the two. Before reaching the final aggregation, it can be clearly seen
that the attraction between large inclusions is stronger than that between small inclusions.
Based on the LSCM experiment, the attraction values between different inclusions can
be obtained by the calculation formula, referring to H. B. Yin [10,11]. Assuming that
two identical alumina sheets are suspended in parallel, close to each other and partially
immersed in the solution, the total attraction formula between the two inclusions can be
deduced as follows:

F = 0.5g(ρL − ρG )w∆h2 (2)

∆h = 2γ cosθ/g(ρL − ρG)δ (3)
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where w is the width of plates; g is the gravity acceleration; γ is the liquid surface tension;
θ is the contact angle between the liquid and solid plate; δ is the spacing between two
parallel plates; and ρL and ρG are the densities of the liquid and gas phases (ρG can be
ignored here), respectively. Obviously, ∆h is proportional to δ−1, which determines the
strength of the attraction.

If the separation between two inclusions is above 50µm, the attraction F between
them can be greater than 10−16 N. The formation of cluster-like alumina inclusions by a
collision can be promoted by the attraction between the inclusions, and eventually the
loose cluster-like inclusions will become dense, and the attractive distance increases in
series with an increase in the particle diameter.

4.2. Dissolution of Inclusions in the Slag Phase

Due to the high melting point and viscosity of slag 1, the residual bubbles in the
slag have difficulty escaping quickly. In the melting process, it is easy to cause internal
pores and surface foaming, which cannot complete the in-situ observation test of LSCM.
The following content focuses on the analysis and discussion of the dissolution process
of inclusions in slag 2 and slag 3. The detailing dissolution process of alumina in slag 2
and slag 3 are shown in Figure 9and Figure 10, respectively. Due to space limitation, the
dissolution processes of other composite inclusions are no longer listed in this section, and
the results are summarized in Table 4.
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Table 4. Summary of inclusions dissolution reactions in the HT-LSCM.

Al2O3 Al2O3·TiN MgO·Al2O3 CaO·2Al2O3

Reaction rate
Slag 1 - - - -
Slag 2 ↑↑ ↑ ↑↑↑ ↑↑↑
Slag 3 ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑

Reaction time
Slag 1 - - - -
Slag 2 70 s 100 s 30 s 17 s
Slag 3 11 s 12 s 13 s 11 s

Reaction description Reduction

Dissolution,
Precipitation of
CaAl2O4 and

Ca3Ti2O6

Reduction Reduction

↑means the speed of reaction rate.

By observing the dissolution condition of inclusions in slag 2, it can be seen that
MgO·Al2O3 can be rapidly dissolved into the slag within 30 s when the heating temperature
increases from 1523 K (1250 ◦C) to 1683 K (1410 ◦C). When the heating temperature increases
from 1523 K (1250 ◦C) to 1673 K (1410 ◦C), CaO·2Al2O3 can be rapidly dissolved into the
slag within 17 s. As the heating temperature increases from 1623 K (1350 ◦C) to 1723 K
(1450 ◦C), the dissolution process of Al2O3·TiN into slag takes about 100 s. Under similar
heating temperature conditions (1350 ◦C increased to 1430 ◦C), it only took about 70 s for
Al2O3 to dissolve into slag. According to the study of B.J. Monaghan, [19] the dissolution
rate of the alumina inclusion in the liquid slag is mainly affected by the mass transfer of
oxide in the liquid slag. The diffusion coefficient of the alumina inclusion at 1477–1577 ◦C
is 10−11 ~ 10−10 m2 s−1.
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Therefore, the order of the dissolution time of inclusions in slag 2 was CaO·2Al2O3 <
MgO·Al2O3 < Al2O3 < Al2O3·TiN. The order of final dissolution temperature was Al2O3·TiN >
Al2O3 > MgO·Al2O3 > CaO·2Al2O3. Among the above four inclusions, Al2O3·TiN had the
maximum dissolution temperature and dissolution time, which should be related to its
overhigh melting point (2930 ◦C).

By observing the dissolution condition of the inclusions in slag 3, it can be concluded
that Al2O3 can be quickly dissolved into the slag in 11 s when the heating temperature
increases from 1573 K (1300 ◦C) to 1723 K (1450 ◦C). When the heating temperature increases
from 1573 K (1300 ◦C) to 1723 K (1450 ◦C), Al2O3·TiN can be quickly dissolved into the
slag within 12 s. At the same heating temperature (1300 ◦C to 1450 ◦C), the CaO·2Al2O3
dissolved in slag only needed about 11.15 s. It took about 12.45 s for MgO·Al2O3 to dissolve
into the slag as the heating temperature rose from 1623 K (1350 ◦C) to 1748 K (1475 ◦C).
As in the above analysis, the dissolution time of CaO·2Al2O3, MgO·Al2O3, Al2O3, and
Al2O3·TiN inclusions was within 15s, and the dissolution rate was roughly the same. The
reaction rate of the composite inclusions was very rapid, and they often dissolved into
the slag before the slag was completely melted. Therefore, it is very important to select a
suitable size and shape inclusions for testing.

The conclusions are summarized in Table 4 as follows. The composite oxides dis-
solve quickly in the slags; they only need a very short time and the dissolution time
of the inclusions increases as their melting point increases. This indicates that the time
length of the inclusion removal mainly depends on the floating process rather than the
dissolution process.

5. Results Analysis of Slag-Steel Reaction Experiment
5.1. Composition Changes of Slag and Molten Steel

According to the high-temperature steel-slag reaction plan in Section 3.3, the slag and
steel were separated and analyzed by XRF after the test. The slag composition obtained is
shown in Table 5. In order to analyze the causes of change of each component, the reactivity
between the component and [Al] can be judged by calculating the Gibbs free energy of
the interface reaction between the slag component and dissolved [Al] in molten steel at a
refining temperature. However, in actual reactions, the above reaction direction depends
on the reaction constant resulting from the activity of individual reactant and product,
which is a combination of the concentration and activity coefficient. It is assumed that the
components in molten steel are in the standard state of 1% mass dilute solution, and the slag
components are in the standard state of the pure substance. The reaction Equations (4)–(7)
between the components in the slag and [Al] in the steel are as follows [20,21]:

3(SiO2) + 4[Al] = 3[Si] + 2(Al2O3) ∆Gθ = −668530 + 112.37T (4)

3(MgO) + 2[Al] = 3[Mg] + (Al2O3) ∆Gθ = −993760 + 333.11T (5)

3(CaO) + 2[Al] = 3[Ca] + (Al2O3)∆Gθ = −733500− 59.7T (6)

(B2O3) + 2[Al] = 2[B] + 2(Al2O3)∆Gθ = −458280 + 125.92T (7)

Table 5. Weight changes of the slag compositions after reaction with high Al steel (wt%).

Type CaO Al2O3 MgO SiO2 B2O3 Fe2O3 MnO

Slag 1 a 29.8 64.1 5.12 0.58 - 0.12 0.010
Slag 2 a 28.1 63.9 7.39 - - 0.32 0.002
Slag 3 a 27.7 61.3 10.44 - - 0.22 0.005

a Slag means the composition of slag after reaction.

The thermodynamic equilibrium calculation results of the slag and molten steel at
1873 K (1600 ◦C) are shown in Table 6. Combined with the change of slag composition in
Table 5, it can be seen that SiO2 and B2O3 were basically exhausted after the equilibrium
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reaction, which is consistent with the thermodynamic calculation results. A large number of
Al2O3 inclusions were absorbed by the slag, which led to an increase in Al2O3 content. The
oxidation ability of slag is very low, and (FeO + MnO) is not more than 0.322 wt%. The MgO
content in slag 3 increased, which may be related to the erosion of the lining refractory.

Table 6. Gibbs free energy of the chemical reactions between liquid steel and different slags (J·mol−1).

∆G,1873 K Slag 1 Slag 2 Slag 3

SiO2 −411,277.16 −425,145.13 -
B2O3 −250,216.69 −237,176.30 −234,726.58
MgO −19,835.69 −13,848.84 −15,368.97
CaO 351,489.4 391,461.65 345,238.0

According to the composition change situations of molten steel in Table 7, [Si], [B],
and [Ti] in the steel increased, and the [Al] content decreased sharply, which is consistent
with the changing trend of the components in the slag. The Gibbs free energy of the
reaction between SiO2, B2O3, MgO, and [Al] in molten steel had a very low negative value,
indicating that the reaction ability between them should be strong, and the reactivity of
CaO as relatively low in the reaction. The initial slag 1 and slag 2 included 5 wt% SiO2,
which would be reduced even if the content was small, because the ∆G between [Al]
and SiO2 was too small. During the slag-steel reaction, due to the crucible erosion and
inclusions, the absorption increased the overall weight of the slag, resulting in a decrease in
the relative content of CaO. In addition, with the decrease of other components in the slag,
the reaction trend between [Al] and CaO/MgO in the high basicity slag was enhanced [22],
and the CaO content in all of the slags decreased significantly.

Table 7. Compositions of high Al liquid steel after reactions with different slags (wt%).

Sample C Si Mn P S Cr Ni Al Ti B

Blank 0.023 0.013 0.013 0.0005 0.0033 0.0057 0.0081 1.25 0.0019 0.0014
Steel-1 0.052 0.263 0.015 <0.0005 0.0066 0.0054 0.0067 0.577 0.0072 0.0288
Steel-2 0.081 0.272 0.022 0.0005 0.0056 0.009 0.0087 0.569 0.0079 0.0276
Steel-3 0.037 0.022 0.015 0.0006 0.0049 0.0033 0.0078 0.832 0.0058 0.0394

5.2. Changes of Inclusions in Steel

From Figure 11, the inclusions were mainly Al2O3 or Al2O3-(AlN) in the blank sample,
with minimal spinel and calcium silicate aluminate. The collision time of the inclusions in
the steel was less than 3 s and they floated up very fast according to the previous discussion.
After the reaction of high Al liquid steel with different slags, the average total oxygen
content of the three samples was below 5 ppm according to the oxygen and nitrogen gas
analysis, which shows that the number of inclusions in the steel was relatively less, and
the residual inclusions types in other samples were as follows: (1) The types of inclusions
are mainly ≤10µm SiO2-Al2O3 and a small amount of MgO-Al2O3 in steel-1. (2) The
typical inclusions changed from Al2O3 into ≤5µm MgO-Al2O3-(AlN) and SiO2-Al2O3
in steel-2. (3) The typical inclusions finally changed into ≤5µm CaO-MgO-Al2O3 and
MgO-Al2O3-(CaS) in steel-3.
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The reasons for inclusion formation are as follows: according to the calculation results
in Table 6, the [Al] in steel can easily react with SiO2 in slag 1 and slag 2, resulting in
an increase in the [Si] content in molten steel, and SiO2-Al2O3 binary inclusions would
be formed first. MgO-Al2O3 inclusions can be generated by lining erosion generally. In
addition, MgO component is contained in all three slags, because Gibbs free energy of the
reaction between molten steel and furnace slag was negative at 1873 K (1600 ◦C) in slag 3,
and MgO is be reduced to [Mg] to form spinel, and MgO-Al2O3 inclusions can be found
in steel samples. Therefore, it is difficult to avoid the formation of the MgO-Al2O3 spinel
in the actual reaction process. Although slag 3 did not contain SiO2, the CaO content was
still high and it could be reduced by [Al], resulting in MgO-Al2O3 inclusions that could be
modified to CaO-MgO-Al2O3 ternary inclusions when dissolved [Ca] enters steel-3.

In summary, the content of Al2O3 increases with the reaction between the slag com-
position and liquid steel. If the top slag cannot dissolve the accumulated Al2O3 at the
slag-steel interface in time, Al2O3 inclusions will enter the liquid slag, which will destroy
the uniformity and flow stability of the liquid slag. At the same time, the accumulated
solid inclusions may also be trapped into the solidified shell during casting, resulting in
quality problems such as slab surface defects and subsurface inclusions. Some research
works [23–25] have been carried out for the dissolution of Al2O3 in slag, demonstrating
that the dissolution rate of Al2O3 decreased with increasing the Al2O3 content in the
slag, and because the driving force of the inclusion dissolution decreased, the boundary
layer diffusion inside the slag phase was the rate limiting step of the dissolution process.
Furthermore, the addition of small amounts of SiO2 could result in a significant decrease
in the dissolution rate, and because of this, the slag viscosity increased so as to decrease
diffusion coefficient, while MgO could lead to the opposite result. In order to reduce the
slag-steel reaction and improve the inclusion dissolution ability, the SiO2 content in the
slag components should be as low as possible, so the performance of slag 3 was better than
the other two slags, and Al2O3 or SiO2-Al2O3 inclusions could be changed into ≤5 µm
CaO-MgO-Al2O3 and MgO-Al2O3-(CaS) in high Al steel.

6. Conclusions

We focused on the behavior of Al2O3, Al2O3·TiN, Al2O3·MgO, and CaO·2Al2O3
inclusions in high Al steel in contact with three different slag compositions in this study.
The real-time dynamic process of various behaviors of small solid inclusion particles
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on molten steel and slag surface has been successfully observed by using LSCM, and
the important phenomena of the collision, agglomeration, and dissolution from different
particles are investigated. The main results can be summarized as follows:

(1) According to the thermodynamic calculations, the absorption of different inclusions
has little effect on the composition of refining slag, which is less than 2 wt-%. The
experimental results of the high-temperature experiment are consistent for the inter-
action calculations at the steel-slag interface. This showed that the slag composition
is greatly influenced by the slag-steel-refractory reaction.

(2) The order of dissolution time of inclusions in slag 2 is CaO·2Al2O3 < MgO·Al2O3 <
Al2O3 < Al2O3·TiN. The order of the final dissolution temperature is Al2O3·TiN >
Al2O3 > MgO·Al2O3 > CaO·2Al2O3, and the dissolution time of inclusions increases
as their melting point increasing. Compared with slag 2, the composite oxides dissolve
faster in slag 3, and the dissolution time of four inclusions only takes less than 15 s
and the dissolution rate is basically the same.

(3) In order to reduce the slag-steel reaction and improve the inclusion morphology
and size, the suitable slag composition should be CaO/Al2O3 = 1.4, MgO = 6 wt-%,
and B2O3 = 3wt-%. Al2O3 or SiO2-Al2O3 inclusions can be changed into ≤5µm
CaO-MgO-Al2O3 and MgO-Al2O3-(CaS) in high Al steel.
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