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Abstract: The effects of surface softening on fatigue behavior of AISI 316L stainless steel were
investigated. Using cold-rolling and electromagnetic induction heating treatment, a gradient structure
was fabricated on AISI 316L stainless steel within which the grain size decreased exponentially from
micrometers to nanometers to mimic the surface softening. Stress-controlled fatigue tests were
applied to both the gradient and homogeneous structures. Compared with the homogeneous sample,
surface softening had no evident effect on fatigue behavior when the stress amplitude was greater
than 400 MPa, but significantly deteriorated the fatigue behavior at stress amplitude ≤400 MPa.
At high-stress amplitude, fatigue behavior is dominated by crack propagation. When the stress
amplitude is lowered, strength reduction and stress concentration caused by surface softening
accelerate crack initiation and propagation, resulting in an inferior fatigue behavior.

Keywords: surface softening; fatigue; crack initiation; AISI 316L stainless steel; cyclic deformation

1. Introduction

In most cases, fatigue crack initiates at the surfaces of materials and propagate into the
interior [1,2]. Optimization of the surface structure and properties may effectively enhance
the global behavior of a material and its service lifetime [3–5]. Surface strengthening tech-
nology such as shot peening [6–8], surface mechanical attrition treatment [1,9–11], surface
mechanical rolling treatment [2,12,13], and surface mechanical grinding treatment [14–16]
can effectively improve the fatigue strength of materials, which have been confirmed by
numerous studies. The strength of the surface layer, surface residual compressive stress,
and work-hardened surface region play a significant role in enhancing the fatigue limit [17].

However, surface strength is inevitably influenced by working conditions during
service. Thermal, chemical, and stress effects are likely to cause surface softening. For
example, recrystallization could be triggered by temperature rise induced by friction
and wear, which results in surface softening [18]. Grain coarsening is also common in
nanograined metals under tension [15], compression [19], or cyclic loading [14,20–22].
In addition, chemical change such as decarburization could induce a surface strength
declination of approximately 39% in steel [23,24], resulting in a reduced rolling contact
fatigue strength and fretting fatigue strength. Considerable research has been conducted
on surface strengthening, but seldom on surface softening. It is believed that surface
softening is deleterious to the global fatigue property but its effects and mechanism are
unclear. In the present work, by using cold-rolling and subsequent ultra-high-frequency
electromagnetic induction heating (EMIH) treatment [25], an inverse gradient nanograined
structure (IGNS) layer was fabricated on austenitic 316L stainless steel (SS) to imitate the
surface softening. In the IGNS, grain sizes are decreased from micrometers to nanometers
with depth. Stress-controlled fatigue testing was applied on both IGNS and homogeneous
samples to investigate the effect of surface softening on the fatigue property. The IGNS
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sample exhibits different fatigue behavior at different stress amplitudes and the underlying
mechanisms are discussed in detail.

2. Materials and Methods

A commercial AISI 316L SS slab (20 mm in thickness) with chemical composition
(wt.%): 0.02C, 0.05Si, 1.19Mn, 17.14Cr, 10.16Ni, 2.01Mo, 0.347Cu, 0.146Co, and Fe (balance)
was first annealed at 1100 ◦C for 1 h, and then cold-rolled (CR) to an area reduction of 80%
(equivalent true strain to 1.6). Then, EMIH was adopted to fabricate the surface softening
sample. In brief, the CR sample was placed at an alternating magnetic field. An induced
current was generated in the sample and eventually transformed into heat. Due to the “skin
effect”, the induced current tends to concentrate onto the surface and decays exponentially
with depth. Consequently, materials at different depths experience recrystallization and
grain growth to different extents. Thus, an IGNS surface layer is fabricated on austenitic
316L SS. In this work, an E-05 ultra-high frequency induction heater (Northstar Electronics
Co. Ltd. Wenzhou, China, with a maximum frequency ~860 kHz) was used for the EMIH
treatment. The duration time was set at 1.3 s and the input power was fixed at 5 kW.
During the EMIH treatment, the sample was fixed on a rotator with a rotation speed of
2000 r/min to guarantee uniformity. Meanwhile, the homogeneous sample was obtained
through elaborate annealing of the CR sample at 650 ◦C for 30 min in a T-1200N muffle
furnace (hereafter referred to as CRA sample).

Symmetrical stress-controlled push–pull fatigue tests were performed on an MTS-
Landmark-100KN electro-hydraulic machine. Fatigue tests were carried out with the stress
ratio R = −1, sinusoidal wave, and a frequency of 25 Hz. Fatigue specimens were cut into a
dog-bone shape with a gauge section of 4 × 4 mm2 and a gauge length of 10 mm using a
spark wire cutting machine (Figure 1). The load step and number of specimens per test are
summarized in Table 1. Prior to fatigue testing, the specimens were ground with SiC grit
paper from #400 to #5000 and then electro-polished to obtain a similar surface quality.
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Figure 1. Illustration of the specimen geometry and dimensions.

Table 1. Load step and number of specimens per test.

Sample
Load

750(MPa) 700 650 600 550 500 400 300 250 200 180

IGNS 1 2 1 1 1 4 4 1
CRA 2 2 2 2
CG 1 1 3 2

The cross-sectional morphology of the IGNS sample was characterized by using
a scanning electronic microscope (SEM) with an attachment of electron backscattered
diffraction (EBSD). The fracture surface was examined by SEM with secondary electron
mode. Detailed microstructural characterizations of the IGNS surface layer were performed
on a JEOL−3010 high-resolution transmission electron microscopy (HR-TEM) operating at
a voltage of 200 kV.

The hardness variation was measured on a microhardness tester with a load of 200 g
and a holding time of 10 s. Uniaxial tensile tests were performed on an Instron 5982 system
with a strain rate of 5 × 10−3 s−1 at ambient temperature. The residual stress values were
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measured by Proto−IXRD. A Rigaku MiniFlex X-ray diffractometer (XRD) with Cu Kα

radiation was used to determine the phase constitutions. The scan angle ranged from 40◦

to 140◦ with a step size of 0.02◦.

3. Results
3.1. Microstructure Characterization of IGNS and CRA Sample

Figure 2a shows the typical cross-sectional microstructure of the IGNS sample. Clear
evidence of recrystallization was observed on the surface. With increasing depth, both
the volume fraction and grain size of recrystallization are decreased as the thermal effect
decays. When the depth exceeded 250 µm, the deformed structure remains intact, and
plastic deformation streamlines are well preserved. Detailed microstructure was revealed
by SEM and HR-TEM. At the top-most surface, the deformed structure was entirely
recrystallized as revealed by electron backscatter diffraction (EBSD), as shown in Figure 2b.
Recrystallized grains were equiaxed, with an average grain size of 3 ± 1.6 µm. At a
depth of 100 µm (Figure 2c), recrystallization consumes most nanograins in shear bands.
Statistical TEM measurements indicate that the average grain size reached 278 ± 89 nm
in this layer. With the depth increased to 250 µm (Figure 2d), recrystallization was rarely
detected. Instead, recovery occurred in nanograins and nanotwins. When the depth
exceeded 250 µm, deformed structures remained unchanged except for an evident decline
in the dislocation density. According to the observation, an IGNS layer was successfully
fabricated to simulate the surface softening.
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Figure 2. Typical microstructure of the inverse gradient nanostructure. (a) Overall picture. (b) EBSD
image of the top-most surface. TEM image at depth of (c) 100 µm and (d) 250 µm.

The homogeneous sample was obtained through elaborate annealing of the CR sample.
After annealing, the microstructure of the CRA sample was similar to the core structure
of the IGNS sample, as shown in Figure 3a. Plastic deformation streamlines were evident.
TEM observation (Figure 3b) confirmed that recovery prevails in the CRA sample and
recrystallization was absent. Grain size remained the same as the initial CR structure.
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Figure 3. (a) ECC image of the uniform structure (as-cold rolled). (b) TEM bright field image of the
cold rolled sample annealed at 650 ◦C for 30 min.

Figure 4 shows the XRD profile of different samples. The coarse-grained (CG) sample
was completely composed of austenite phase (γ) and no peak of the martensite phase (α)
could be observed. Deformation-induced martensite phase was absent after CR treatment
due to temperature rise during deformation [26]. For the IGNS and CRA sample, diffraction
peaks indicate that all of them were single-phase austenite. No new phase appeared. The
change in the relative intensity of the diffraction peaks was due to the difference in the
view plane. Phase analysis eliminated the interference of martensite (or other secondary
phases) on the fatigue properties.
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Figure 4. XRD profiles of the samples in various conditions.

3.2. Mechanical Properties of IGNS and CRA Sample

Figure 5a presents the cross-sectional hardness profile in different conditions. Results
showed that the CRA sample achieved a high hardness of 4.18 ± 0.09 GPa, slightly lower
than the CR sample (4.44 ± 0.01 GPa). The fluctuation was relatively small, indicating a
homogeneous structure in the CRA sample. In contrast, a gradient distribution of hardness
was present in the IGNS sample. The hardness initiated from 2.44 GPa at the topmost
surface and increased gradually with depth. At a depth of 250 µm, it leveled off at about
4.18 GPa, which is close to the hardness of the CRA sample. Beyond the depth of 250 µm,
the hardness of the IGNS sample overlapped that of the CRA sample and denotes that
the only difference between IGNS and CRA samples is the softened surface layer. For
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comparison, the CG sample possessed the lowest hardness of 1.31 ± 0.05 GPa. From the
hardness results, the thickness of the IGNS layer was estimated to be 250 µm, which is
consistent with the TEM observation.
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Corresponding uniaxial tensile tests are displayed in Figure 5b. The CG sample
yielded at 305 MPa and obtained a uniform elongation of 40%. For the IGNS and CRA
samples, the yield strength (σ0.2%) and uniform elongation were 1113± 35 MPa, 5.9± 1.2%,
and 1144 ± 26 MPa, 3.8 ± 0.3%, respectively. The yield strength of the IGNS sample was
only ~30 MPa lower than that of the CRA sample due to surface softening. However, the
uniform elongation was evidently improved. TEM, hardness, and tensile results confirmed
that the only difference between the IGNS and CRA sample was the softened surface.

3.3. Fatigue Behavior of the IGNS and CRA Sample

The Wöhler stress amplitude–number of cycles (S–N) curves of the IGNS, CG, and
CRA samples are shown in Figure 6. Compared with the CG sample, the CRA sample
exhibited significant improvement in both the fatigue life and the fatigue strength. For
instance, the CRA sample maintained a cycle life of 2.3 × 104 at the stress amplitude of
700 MPa, while it was 250 MPa for the CG sample at a similar cycle life (1.4 × 104). At a
cyclic life of 6.4 × 105, the fatigue strength of the CRA sample was elevated to ~400 MPa,
over 100% higher than that of the CG sample. In contrast, the fatigue behavior of the IGNS
sample was distinctly different. When the stress amplitude was high, the fatigue life of the
IGNS sample was similar to the CRA sample. This trend persisted to the stress amplitude
of 500 MPa. Surface softening caused no significant impact on fatigue behavior. As the
stress amplitude decreased to 400 MPa, the cyclic life of the IGNS sample (only ~1.4 × 105)
was greatly reduced relative to the CRA sample (~6.4 × 105). When the stress amplitude
further decreased, the cyclic life of the IGNS sample followed the current trend.
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Figure 6. S–N curves of samples in various conditions. The fitted lines follow the Basquin equation.

3.4. Fractography

Because the fatigue behaviors of the IGNS and CRA samples changed at a stress
amplitude of 400 MPa, the fractography was focused on 500 MPa (Figure 7) and 400 MPa
(Figure 8). At the stress amplitude of 500 MPa, the cycle number of the two samples were
close. Similar fractography was obtained in both samples, as can be seen from Figure 7a,d.
Cracks started on one side of the surface and extended to the other until an instantaneous
fracture occurred. Areas of crack initiation and propagation were similar in shape and size.
Careful observation (Figure 7b,d) revealed subtle differences between these two samples.
The crack initiation region of the CRA sample was tortuous, which is the result of multiple
crack initiation and coalescence. In contrast, the edge was relatively flat in the IGNS sample,
which means that the crack started from one single source and then expanded rapidly.
This difference was especially obvious when the stress amplitude was 400 MPa. As shown
in Figure 8a, cracks in the CRA sample started from multiple positions and propagated
independently (marked by arrows). In contrast, the fatigue crack in the IGNS sample was
still developed from a single initial crack (Figure 8b). The crack initiation area was flat and
smooth, indicating that the crack initiation and propagation process was relatively easy.
By comparing Figures 7d and 8b, it can be seen that the fracture morphology of the IGNS
samples was very similar under different stress amplitudes.
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4. Discussion

Compared with the homogeneous structure, the cyclic deformation behavior of the
IGNS sample was clearly divided into two stages. When the stress amplitude exceeded
400 MPa, the performance of the IGNS sample was not different from that of the CRA
sample. When the stress amplitude was less than 400 MPa, the fatigue life of the IGNS
sample was significantly lowered. In this section, the effects of surface softening on the
fatigue behavior were analyzed in various stress amplitudes, in terms of crack initiation
and propagation, cyclic deformation behaviors, and residual stress.

4.1. Effect of Surface Softening on Fatigue Behavior at Stress Amplitude >400 MPa

The S–N curve shows that the surface softening had no obvious effect on the fatigue
life when the stress amplitude was larger than 400 MPa, relative to the CRA sample. There
are three reasons for this phenomenon. First, when the stress amplitude is greater than
>400 MPa, both samples are in the low-cycle fatigue zone and the proportion of crack
initiation to the whole fatigue life is low. Crack initiation was relatively easy in both
samples. Therefore, the difference in crack initiation rate had little effect on the overall life,
although surface softening did accelerate crack initiation. Second, the gradient structure
(especially with inverse grain size distribution) is beneficial to hinder crack propagation.
As shown in Figure 7, the crack propagation area of the IGNS sample was larger than that
of the CRA sample, which means that more energy is expended on crack propagation in
the IGNS sample. Recrystallized grains along the crack growth path consume energy and
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blunt the crack tip (Figure 2c). Kermanidis [27] et al. found that the crack growth rate in the
negative gradient structure (i.e., the grain size gradually decreases) was lower than that in
the uniform and positive gradient aluminum alloys. Third, the coarse grains on the surface
impart a strong work hardening ability to the IGNS sample. The cross-section hardness of
the IGNS sample changed significantly before and after fatigue, as shown in Figure 9. The
hardness of the surface layer was greatly increased from 2.44 GPa to 4.155 GPa. Meanwhile,
the hardness outside the IGNS layer remained unchanged. The results showed that the
surface softening layer underwent significant work hardening during fatigue, and work
hardening helped to restrain the growth of fatigue cracks.
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4.2. Effect of Surface Softening on Fatigue Behavior at Stress Amplitude ≤400 MPa

When the stress amplitude was lower than 400 MPa, the fatigue life of the IGNS
sample was significantly lower than that of the CRA sample. Under this stress range, the
material enters the high-cycle fatigue region. A significant feature of high-cycle fatigue is
that the proportion of the crack initiation stage to the total fatigue life increases significantly.
Experiments carried out on the AlSi7Mg06 alloy proved that the portion of crack initiation
increased with the increase in total fatigue life [28]. In the 316L samples treated by surface
mechanical rolling at low-stress amplitude, the crack initiation stage even exceeded 90% [2].
Figure 10 shows the cyclic deformation strain curves of the IGNS and CRA samples under
different stress amplitudes. For higher stress amplitude, the behavior was significantly
different. After the initial stage, there was a visible reduction in the strain amplitude for
the IGNS 700 MPa sample. The reduced strain amplitude indicates cyclic hardening, which
is attributed to the work hardening of the IGNS layer. However, for the CRA sample, it
was almost constant. For the stress amplitude of 400 MPa, the same behavior of CRA and
IGNS was rather visible.
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Recrystallization significantly reduces the yield strength of the surface. Based on
the statistics, the surface yield strength can be calculated as 335 MPa (according to the
Hall–Patch relationship [29]). Grains on the IGNS sample surface yielded under the stress
amplitude, resulting in permanent deformation and premature crack initiation. In contrast,
the CRA sample was elastic under the same stress amplitude and the crack initiation stage
was substantially prolonged. It can also be seen from the cyclic strain curve (Figure 10) that
the strain amplitude of the IGNS sample in a steady state was larger than the CRA sample.
The extra strain amplitude came from the permanent deformation of the surface. Due to
the large proportion of crack initiation in the high cycle fatigue, the divergence in the crack
initiation stage between the IGNS and CRA samples resulted in a significant difference in
the total fatigue life.

4.3. Effects of Surface Softening on Fatigue Behavior

According to the above analysis, the influence of surface softening on the fatigue
behavior is mainly to reduce the threshold of crack initiation and shorten the crack initiation
stage. Figure 11 clearly shows this difference. Before cyclic deformation, the surface quality
was the same in the IGNS (Figure 11a) and CRA samples (Figure 11c). When the cyclic
number reached 1.0 × 104, slip traces appeared on the IGNS sample surface (Figure 11b).
These traces developed into large intrusions and extrusions in the subsequent deformation
process and became the source of crack initiation. With an even higher cyclic number
(1.3 × 104), the surface morphology of the CRA sample remained the same as the initial
state (Figure 11d). This result is consistent with previous literature where the crack initiation
tendency decreases with grain refinement [30].

On the other hand, coarse recrystallized grains affect the crack growth rate in the
primary stage. It is generally recognized that a structure with a relatively larger grain size
tends to have a higher fatigue-crack-growth threshold and lower crack-growth rate [31–34].
CG steel exhibited an enhanced fatigue crack growth resistance due to the more tortuous fa-
tigue crack path and roughness-induced crack closure effect, compared to the nano-grained
counterpart [32]. Cao RQ et al. specifically measured crack growth rates in gradient and
uniform structures [35]. It was found that both normal and inverse gradient structures
displayed a much-improved toughness compared to uniform grain-sized materials. Par-
ticularly, the inverse gradient (i.e., CG→NG) specimen was far superior to the normal
gradient structure in the crack-initiation toughness, which is ascribed to excessive crack-tip
blunting in the coarse-grained microstructure. Therefore, it can be inferred that the coarse



Metals 2021, 11, 1788 10 of 13

grains formed by surface softening can effectively absorb the energy of crack growth and
reduce the crack growth rate.
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Surface softening directly affects the fatigue strength of the material. Empirically,
the stress-controlled fatigue behavior of a material is typically described by the Basquin
equation as [36]:

σa = σ′f(2Nf)
b (1)

where Nf is the number of cycles to failure; σa is stress amplitude; b is the fatigue strength
exponent; and σ′f is the fatigue strength coefficient. According to Equation (1), σ′f and b
were determined and listed in Table 2. Statistics show that the fatigue strength exponent b
of the CRA sample was ~0.16 (in absolute value), consistent with the reported data [37,38].
In comparison, it was found that b was extraordinarily high in the IGNS samples. The
literature [39] demonstrated that b is influenced by strain localization at the crack initiation
stage as well as the stress gradient at the crack propagation stage. In the IGNS sample,
the softened surface layer imparts a lower resistance to fatigue crack initiation and strain
localization. Therefore, b is expected to be increased during both the crack initiation and
propagation stages. As the proportion of crack initiation in the total fatigue life increases,
the performance of materials in high cycle fatigue depends largely on the crack initiation.
Surface softening significantly reduces the threshold of crack initiation; therefore, the high
cycle fatigue performance of the material is largely determined by the surface strength.

Table 2. Mechanical and derived fatigue parameters of CG, IGNS, and CRA samples according to
Equation (1) in comparison with those obtained in dynamic plastic deformation (DPD), data from [38]
and equal channel angular pression (ECAP), data from [37].

Sample σu (MPa) σ′
f (MPa) b

CG 644 539 −0.08
IGNS 1241 9651 −0.25
CRA 1310 3912 −0.16
DPD 1190 1812 −0.10

ECAP 1340 1367 −0.11
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4.4. Effects of Residual Stress on Fatigue Behavior

Compressive residual stresses are suggested to improve the fatigue properties by
increasing the surface resistance to crack initiation as well as reducing the crack propagation
rate [40]. In this work, the residual stress in the surface layer of the CG, CRA, and IGNS
samples was measured by XRD, as listed in Table 3. The averaged residual stress of the CG
sample was −56 ± 34 MPa. The influence of residual stress was negligible. Compressive
residual stresses were induced in the surface layer by CR and most of them were retained
after annealing. As shown in Table 3, the residual stresses in the CRA and IGNS samples
were −417 ± 43 and −384 ± 18 MPa, respectively. These two values were very close.
The fatigue life of the two materials was also similar in the stress range of 400~700 MPa.
Therefore, it might be concluded that residual stress is not the main reason for the difference
in fatigue properties. Other studies have shown that the main relaxation of residual stress
normally takes place in the first few cycles [41,42], and residual stress has little effect on
the followed lifetime.

Table 3. Residual stress of the surface layer in the CG, IGNS, and CRA sample.

Sample Residual Stress (MPa)

CG −56 ± 34
IGNS −384 ± 18
CRA −417 ± 43

5. Conclusions

By using a gradient structure, the effect of surface softening on fatigue performance
was studied.

Stress-controlled tension-compression fatigue results show that the surface softening
affects crack initiation. When the stress amplitude is high, the proportion of the crack
initiation stage to the whole life is relatively low. Therefore, the fatigue life of the gradient
sample is close to that of the homogenous sample. When the stress amplitude is lower
than a critical value, the fatigue behavior of the gradient sample is deteriorated due to the
accelerated crack nucleation. The critical stress amplitude is close to the surface strength.
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