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Abstract: Analyzing the structural integrity of ferritic steel structures subjected to large temperature
variations requires the collection of the fracture toughness (KJc) of ferritic steels in the ductile-to-
brittle transition region. Consequently, predicting KJc from minimal testing has been of interest for
a long time. In this study, a Windows-ready KJc predictor based on tensile properties (specifically,
yield stress σYSRT and tensile strength σBRT at room temperature (RT) and σYS at KJc prediction
temperature) was developed by applying an artificial neural network (ANN) to 531 KJc data points. If
the σYS temperature dependence can be adequately described using the Zerilli–Armstrong σYS master
curve (MC), the necessary data for KJc prediction are reduced to σYSRT and σBRT. The developed KJc

predictor successfully predicted KJc under arbitrary conditions. Compared with the existing ASTM
E1921 KJc MC, the developed KJc predictor was especially effective in cases where σB/σYS of the
material was larger than that of RPV steel.

Keywords: fracture toughness; machine learning; artificial neural network; predictor; yield stress;
tensile strength; specimen size

1. Introduction

Both researchers and practitioners have characterized the fracture toughness (KJc) of
ferritic steels in the ductile-to-brittle transition (DBT) region, which is key for analyzing
the structural integrity of cracked structures subjected to large temperature changes. KJc is
associated with (I) a large temperature dependence (a change of approximately 400% corre-
sponding to a temperature change of 100 ◦C) [1–10]; (II) specimen-thickness dependence
(roughly, KJc ∝ 1/(specimen thickness)1/4) [8,11–21]; and (III) large scatter (approximately
±100% variation around the median value) [8,22,23]. Thus, understanding these three
effects is necessary for efficient KJc data collection.

Since Ritchie and Knott introduced the idea of using critical stress and distance to pre-
dict fracture toughness temperature dependence [4], researchers who explicitly or implicitly
applied this idea have obtained results that demonstrate a strong correlation between the
temperature dependence of fracture toughness and that of yield stress (σYS) [5,6]. Wallin
observed that the increase in fracture toughness with increasing temperature is not sensi-
tive to steel alloying, heat treatment, or irradiation [7]. This observation led to the concept
of a universal curve shape that applies to all ferritic steels, i.e., the difference in materials is
reflected by the temperature shift. This concept is now known as the master curve (MC)
method, as described by the American Society for Testing and Materials (ASTM) E1921 [8].
The existence of a KJc MC was physically supported by Kirk et al. based on dislocation
mechanics considerations [9,10]. They argued that the temperature dependence of KJc is
related to the temperature dependence of the strain energy density (SED). Furthermore,
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because all steels with body-centered cubic (BCC) lattice structures exhibit a unified σYS
temperature dependence, as described by the Zerilli–Armstrong (Z–A) constitutive model
(i.e., Z–A σYS MC) [24], the existence of a BCC iron lattice structure is the sole factor needed
to ensure that KJc in the DBT region has an MC. Note that Kirk et al. implicitly assumed
that the tensile-to-yield stress ratio does not vary with materials, which is not true, and will
be a source of deviation from the MC. For example, the failure of this MC to evaluate in-
creases in KJc at high temperatures has been reported for non-reactor pressure vessel (RPV)
steels [25,26]. Despite the successful application of KJc MC to RPV steels, a reexamination
of the basis of KJc MC existence and additional application limits must be reexamined for
the application of ASTM E1921 MC to ferritic steels in general and not be limited to RPV
steels.

The size dependence of KJc has been understood based on the weakest link theory
deduced as KJc ∝ 1/(specimen thickness)1/4 [17], but because this relationship cannot
describe the existence of a lower-bound KJc for large specimens, researchers have begun to
investigate the size dependence of KJc as the critical stress distribution ahead of a crack-
tip requires a second parameter in addition to J (J-A, J-T approach, etc.) [18,19], which is
categorized as a crack-tip constraint issue. Consequently, it appears that the development of
a deterministic and data-driven size effect formula is possible. ASTM E1921 provides a semi-
empirical size effect formula based on the KJc of a 1-inch-thick specimen, which considers a
lower-bound KJc of 20 MPa·m1/2 and proportionality to 1/(specimen thickness)1/4. There
are various opinions regarding this lower-bound value [27–30]; thus, the establishment of
a data-driven size effect formula that does not depend on the ∝ 1/(specimen thickness)1/4

relationship seems possible and necessary.
The statistical nature of fracture toughness has been modeled using the Weibull

distribution; some researchers used stress [22] and some used KJc [8] as the model mean
parameter. The idea of using Weibull distributions stems from the understanding that the
cleavage fracture can be modeled using the weakest link theory. ASTM E1921 [8] applies
a three-parameter Weibull distribution, which assumes a shape parameter of four and a
position parameter of 20 MPa·m1/2. The failure of this model to predict the scatter in KJc
has also been reported; Weibull parameters (shape and position) vary as functions of the
specimen size and temperature, and the parameters differ from those specified in ASTM
E1921 [31,32]. If the observed model parameters differ from the assumed parameters,
the predicted KJc and scatter deviate from the measured values. Hence, a more practical
method that can potentially prevent the mismatch of the assumed statistical model, i.e., a
data-driven approach, is necessary.

Considering the three aforementioned issues, it was considered that a data-driven KJc
predictor that captured features of a variety of BCC metals could improve KJc prediction
accuracy. Another idea was to replace time- and material-consuming fracture toughness
tests with tensile tests, assuming that KJc has a direct relationship with SED obtained via
tensile tests. Thus, the artificial neural network (ANN) approach was applied to 531 KJc
data collected in our previous works [30,33] to construct a KJc predictor based on tensile
test properties, thereby eliminating the need to conduct fracture toughness tests. The data
were obtained for five heats of RPV and seven heats of non-RPV steels. The widths W of the
specimens ranged from 20 to 203.2 mm, and the thickness-to-width ratio B/W was limited
to 0.5 (i.e., data obtained with PCCV specimens of B/W = 1 were excluded). As a result, a
Windows-ready KJc predictor, which enables KJc prediction by giving specimen size, tensile
and yield stress, was developed. Time- and material-consuming fracture toughness tests
are no more necessary.

2. Materials and Methods
2.1. Selection of Machine Learning Model

Machine learning models are used in many fields, such as search engines, image
classification, and voice recognition, and various methods have been proposed according
to the application. In this study, a tool to predict the fracture toughness KJc of a material
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under arbitrary conditions such as the specimen size and temperature, without performing
the fracture toughness test, was conducted; this is treated as a regression issue. There
are various algorithms for machine learning models for regression. In this study, a multi-
layer perceptron (MLP) was classified into an ANN that can express complex nonlinear
relationships. The regression model was constructed using the MLP regressor, which is a
scikit-learn library of the general-purpose programming language Python [34].

2.2. Overview of Multilayer Perceptron in an Artificial Neural Network

Figure 1 shows a schematic diagram of the MLP network. The MLP is a hierarchical
network comprising an input layer, a hidden layer, and an output layer; the unit of the
hidden layer is completely connected to the input and output layers [34,35].
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Figure 1. Schematic diagram of multilayer perceptron in an ANN [35].

In Figure 1, only one hidden layer is schematically shown; however, in general,
multiple hidden layers are used to enhance the expressiveness of the model. The unit in
the hidden layer (hereinafter, referred to as the activation unit aj (j = 1~k)) is calculated
using Equation (1), where n input values are Xi and the output values are f (X).

aj = φ

(
n

∑
i=0

wh
j,iXi

)
(1)

Here, wh
j,i is the connection weight, X0 is a constant called bias, and φ of Equation (1)

is a function called the activation function. For the activation function, a function with
differentiable nonlinearity was selected to enhance the expressiveness of the model. In
this study, the rectified linear unit (ReLU) function φ(z) = max(0, z) was used and aj was
assigned to the hidden layer. The total number k of aj (the number of nodes in the hidden
layer) and the number of hidden layers are parameters that were adjusted according to the
learning accuracy. The output value f (X) can be obtained via Equation (2).

f (X) = φ
(
∑k

j=0 wo
j aj

)
, (2)

where wo
j denotes the connection weight. In Equations (1) and (2), the connection weights

wh
j,i, wo

j are unknown constants and can be obtained from the combination of known
input and output values. By assuming that the known teaching data (true value) are Y
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(to distinguish it from f (X), predicted from the input value Xi from Equation (2)), the
connection weights can be updated in Equation (3), using the loss function E.

E =
1
2 ∑

l
(Yl − fl(X))2 +

α

2 ∑
l
|wo

l |
2 (3)

Here, the first term in Equation (3) is the sum of the squared residuals of the teaching
data Y and the output value f (X), and the second term is a regularization term using the
L2 norm to suppress overfitting. α is a parameter that is adjusted according to learning
accuracy. Overfitting is a problem in which training data are overfitted and unknown
data cannot be effectively generalized. Several effective optimization algorithms have
been developed to avoid falling into a locally optimal solution for updating the connection
weights. In this study, adaptive moment estimation (Adam) [36] was used. The connection
weight w is updated using Equations (4)–(9).

W(t) = w(t−1) − η
ˆm(t)√

ˆv(t) + ε

(4)

ˆm(t) =
m(t)

1− βt
1

(5)

ˆv(t) =
v(t)

1− βt
2

(6)

m(t) = β1m(t−1) + (1− β1)
∂E
∂w

(7)

v(t) = β2v(t−1) + (1− β2)

(
∂E
∂w

)2
(8)

m(0) = v(0) = 0 (9)

The recommended values were used for the adjustment parameters η, β1, β2, and
ε [36]. The error backpropagation method to update the connection weight was used,
which calculates the gradient of the loss function by moving backward from the output
layer. This method is known to be less computationally expensive than updating weights
in the forward direction [37].

2.3. Goodness Valuation of Constructed Learning Model

The goodness of valuation of the constructed machine learning model is based on the
coefficient of determination R2 in Equation (10), where n is the amount of teaching data, Yi
is the true objective value, f (X) is the predicted objective value, and the average value of
the true objective values is σY.

R2 = 1− ∑i (Yi − fi(X))2

∑i(Yi − µY)
2 (10)

The coefficient of determination indicates the goodness of fit of the regression model
and is an evaluation index for assessing how well the predicted and true values match.
R2 = 1 when the true and predicted values are the same. There is no clear standard for the
coefficient of determination, but it can be considered compatible if it is approximately 0.5
or more.
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2.4. Dataset

For machine learning, the fracture toughness test data of 531 ferritic steels in the DBTT
region obtained by the authors or previous studies were used. Table 1 presents the chemical
compositions of the test specimens of the materials considered in the teaching data.

Table 1. Chemical compositions of the test specimens (wt %) of the considered materials.

Heat
No. Material C Si Mn P S Ni Cr Mo V Cu Nb Ti Al

1 MiuraSFVQ1A [38]
0.18 0.18 1.46 0.002 <0.001 0.90 0.12 0.52 <0.01 - - - -
0.17 0.17 1.39 0.002 <0.001 0.87 0.11 0.50 <0.01 - - - -

2 Gopalan20MnMoNi55 [39] 0.20 0.24 1.38 0.011 0.005 0.52 0.06 0.30 - - 0.032 - 0.068

3 ShorehamA533B [40] 0.21 0.24 1.23 0.004 0.008 0.63 0.09 0.53 - 0.08 - - 0.04

4 MiuraSQV2Ah1 [38] 0.22 0.25 1.44 0.021 0.028 0.54 0.08 0.48 - 0.10 - - -

5 MiuraSQV2Ah2 [38] 0.22 0.25 1.46 0.002 0.002 0.69 0.11 0.57 - - - - -

6 GarciaS275JR [41] 0.18 0.26 1.18 0.012 0.009 <0.085 <0.018 <0.12 <0.02 0.06 - 0.022 0.034

7 GarciaS355J2 [41] 0.2 0.31 1.39 <0.012 0.008 0.09 0.05 <0.12 0.02 0.06 - 0.022 0.014

8 CiceroS460M [42] 0.12 0.45 1.49 0.012 0.001 0.016 0.062 - 0.066 0.011 0.036 0.003 0.048

9 CiceroS690Q [42] 0.15 0.40 1.42 0.006 0.001 0.160 0.020 - 0.058 0.010 0.029 0.003 0.056

10 MeshiiFY2017SCM440 [25] 0.39 0.17 0.62 0.011 0.002 0.07 1.02 0.17 - 0.10 - - -

11 MeshiiFY2012S55C [6] 0.55 0.17 0.61 0.015 0.004 0.07 0.08 - - 0.13 - - -

12 MeshiiFY2016S55C [26] 0.54 0.17 0.61 0.014 0.003 0.06 0.12 - - - - - -

Tables 2–4 summarize the material heats (heat No. 1–12) used in this study, nT
indicates the specimen thickness, and n is expressed in multiples of 25 mm. They are
fundamentally extracted from previous work [30,33], but differ slightly in terms of the
following: (1) KJc > KJc(ulimit) invalid data were excluded, (2) KJc data were limited to cases
obtained with standard specimens of thickness-to-width ratio B/W = 0.5, (3) When there
were no σYS data for the fracture toughness test temperature, it was obtained by using the
following modified Z–A σYS temperature-dependent MC [9]

σ0ZA(T) = σ0RT + C1exp
[
(T + 273.15)

(
−C3 + C4 log

( .
ε
))]
− 49.6 (MPa), (11)

where T is the temperature (◦C), C1 = 1033 (MPa), C3 = 0.00698 (1/K), C4 = 0.000415 (1/K),
and

.
ε = 0.0004 (1/s). The three Miura heats (heat No. 1, 4, 5) were another exception for

which linear interpolation of raw data was used because the fracture toughness and tensile
test temperatures were different.

Table 2. KJc data used to construct the proposed tensile property-based MC: RPV steel ASTM A508 equivalent.

Heat
No. Material

Specimen Temps. Num. of
Temps.

σYS σYSRT σBRT Num. of
Specimens

T0
Type (◦C) (MPa) (MPa) (MPa) (◦C)

1 MiuraSFVQ1A [38]

1TC(T) −120~−60 4 530~640 454 594 32 −98
2TC(T) −120~−60 4 530~640 454 594 16 −98
4TC(T) −100~−80 2 560~607 454 594 12 −98

0.4TC(T) −140~−80 4 560~695 454 594 34 −98
0.4TSE(B) −140~−80 4 560~695 454 594 29 −98

2 Gopalan20MnMoNi55 [39] 1TC(T) −140~−80 3 560~667 479 616 18 −133
0.5TC(T) −140~−80 3 560~667 479 616 12 −133
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Table 3. KJc data used to construct the proposed tensile property-based KJc MC: RPV steel ASTM A533B and equivalent.

Heat
No. Material

Specimen Temps. Num. of
Temps.

σYS σYSRT σBRT Num. of
Specimens

T0
Type (◦C) (MPa) (MPa) (MPa) (◦C)

3 ShorehamA533B [40] 1TC(T) * −100~−64 3 551~586 488 644 18 −91

4 MiuraSQV2Ah1 [38]

1TC(T) −100~−60 3 544~600 473 625 14 -93
2TC(T) −100~−60 3 544~600 473 625 14 −93
4TC(T) −80~−60 2 544~566 473 625 12 −93

0.4TC(T) −120~−60 4 544~658 473 625 32 −93
0.4TSE(B) −120~−60 4 544~658 473 625 29 −93

5 MiuraSQV2Ah2 [38]

1TC(T) −140~−80 4 542~709 461 602 23 −121
2TC(T) −100~−80 2 542~607 461 602 12 −121
4TC(T) −100~−80 2 542~607 461 602 12 −121

0.4TC(T) −140~−80 4 542~709 461 602 33 −121
0.4TSE(B) −140~−80 4 542~709 461 602 32 −121

*: Side-grooved specimens.

Table 4. KJc data used to construct the proposed tensile property-based MC: non-RPV steels.

Heat
No. Material

Specimen Temps. Num. of
Temps.

σYS σYSRT σBRT Num. of
Specimens

T0
Type (◦C) (MPa) (MPa) (MPa) (◦C)

6 GarciaS275JR [41] 1TC(T) −50~−10 3 338~349 328 519 14 −26

7 GarciaS355J2 [41] 1TC(T) −150~−100 3 426~528 375 558 13 −134

8 CiceroS460M [42] 0.6TSE(B) −140~−100 3 597~686 473 595 14 −92

9 CiceroS690Q [42] 0.6TSE(B) −140~−100 3 899~988 775 832 13 −111

10 MeshiiFY2017SCM440 [25,30]
0.9TSE(B) −55~100 4 410~524 459 796 18 17
0.5TSE(B) −55~100 4 410~524 459 796 22 17

11 MeshiiFY2012S55C [6] 0.5TSE(B) −25~20 3 394~444 394 707 17 27

12 MeshiiFY2016S55C [26,30]
0.9TSE(B) −45~35 3 375~475 382 685 17 15
0.5TSE(B) −85~20 3 382~562 382 685 19 15

The objective variable was KJc. Assuming a direct relationship between the SED tem-
perature dependence and that of KJc, σB temperature dependence was the first candidate
explanatory parameter. However, considering that (i) σB/σYS temperature dependence
is small, (ii) ferritic steel has a σYS temperature-dependent MC such as Z−A MC, and
(iii) σB/σYS at RT is usually easily available, σB and σYS at RT, and σYS at KJc test tempera-
tures and specimen width W were selected as the explanatory variables. To optimize the
connection weight, 371 points, i.e., 70% of the 531 points in the known dataset, were used
as the training data. The data were divided by “train_test_split” of Python’s scikit-learn
library. If the digits of the input value and output value to be learned are significantly dif-
ferent, the influence of variables with small digits may not be fully considered in learning.
Therefore, in this study, the input values W, σYS, σYSRT, σBRT, and output value KJc were
standardized, as shown in Equation (12).

W (mm)
σYS (MPa)

σYSRT (MPa)
σBRT (MPa)

KJc

(
MPa·m1/2

)


Normalized→


W/50

σYS/550
σYSRT/550
σBRT/550
KJc/100

 (12)

Here, with reference to ASTM E1921, W was normalized using the width 50 mm
of a 1T specimen, and the yield stress and tensile strength were normalized using the
average value of 550 MPa of the yield stress of 275 to 825 MPa in the allowable temperature
range targeted by the standard. KJc was normalized to a fracture toughness of value
100 MPa·m1/2 at the reference temperature.
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2.5. Fracture Toughness Prediction by the Constructed Learning Model

Table 5 presents a list of hyperparameters used for the machine learning model in
this study. Using the data in Tables 2–4 and the parameters in Table 5, which is currently
an invariant model, the coefficient of determination R2 of the developed KJc predictor
was 0.61 for the training data and 0.53 for the test data. Table 6 presents the explanation
variables for predicting fracture toughness KJc.

Table 5. Hyperparameters used for the learning model.

Parameters Value

Number of hidden layers 4

Number of hidden layer nodes 100, 50, 25, 10

Activation function ReLU

Solver Adam

α 0.01

η 0.001

β1 0.9

β2 0.999

ε 1.0 × 10−8

Table 6. Explanatory variables for case studies applied to the developed tool.

Heat
No. Material W (mm) T (◦C) σYSRT (MPa) σYS (MPa) σBRT (MPa)

1 Miura SFVQ1A

20 −140, −120,
−100, −80 454 695, 640, 607, 560 594

50.8 −120, −100,
−80, −60 454 640, 607, 560, 530 594

101.6 −120, −100,
−80, −60 454 640, 607, 560, 530 594

203.2 −80, −100 454 607, 560 594

10 MeshiiFY2017SCM440
25 −55, 20, 60 100 459 524, 459, 435, 410 796
46 −55, 20, 60, 100 459 524, 459, 435, 410 796

The input data (W, σYS, σYSRT, σBRT) for the developed KJc predictor and output
window after its execution (the coefficient of determination R2 and the predicted KJc) are
shown in Figure 2. In Figure 3, the comparison of KJc of ASTM E1921 MC and predicted
KJc by the predictor is shown. In Figure 3, the horizontal axis is T, the vertical axis KJc(1T)
is the test data, and the predicted KJc is converted to 1T thickness. The KJc of the ASTM
E1921 MC is plotted as a black solid line, the KJc of the test data are plotted as open black
symbols, and the predicted conditions listed in Table 6 are plotted as open red symbols.
In Figure 3a, for RPV steel, both the KJc by the ASTM E1921 MC and the predicted KJc
by this model are in agreement with the test results. However, in Figure 3b for SCM440,
although the KJc by the ASTM E1921 MC significantly differs from the test results at high
temperatures, the predicted KJc values by this model are in agreement with the test results.
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fully predicted training data with R2 = 0.61 and test data with R2 = 0.53. 

To predict KJc at a specific temperature of interest, the user needs σYS at this tempera-
ture as well as σYSRT and σBRT at RT. If the material of interest is known to be well fitted by 
the Z–A σYS MC, the quantities for which test data are necessary for KJc prediction are only 
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to evaluate it together, which is a future issue. 
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Figure 3. Comparison of KJc of ASTM E1921 MC (solid line) and predicted KJc by the predictor (open red symbols):
Dataset used for training model and result of predicted KJc. (a) RPV steel (Miura SFVQ1A); (b) Meshii FY2017SCM440. KJc

pre-dicted by the developed predictor accurately predicted KJc regardless of materials.

3. Discussion

By applying the ANN, a KJc predictor for ferritic steels that only requires tensile
properties (i.e., σYS at the desired temperature for predicting KJc, and the RT values σYSRT
and σBRT) were derived. This method eliminates the need for time- and material-consuming
fracture toughness tests. The tool for predicting KJc by considering the specimen size and
material properties is based on 531 fracture toughness test data values obtained from five
RPV steel heats and seven non-RPV steel heats. The specimen sizes ranged from 0.4T to
4T to learn the size effect, the yield stress ranged from 328 to 775, and the tensile strength
ranged from 519 to 832 to learn the material properties. The data range used in the training
was equal to the application limit of the predictor. The developed KJc predictor successfully
predicted training data with R2 = 0.61 and test data with R2 = 0.53.

To predict KJc at a specific temperature of interest, the user needs σYS at this tempera-
ture as well as σYSRT and σBRT at RT. If the material of interest is known to be well fitted by
the Z–A σYS MC, the quantities for which test data are necessary for KJc prediction are only
σYSRT and σBRT.

A considerable advantage of the proposed KJc predictor is that fracture toughness
tests are not necessary to predict KJc. The key novel idea here is to use tensile properties
(such as σYS and σB) and specimen size W.

Although the developed KJc predictor predicts one KJc for a combination of explana-
tory variables, the predicted KJc fracture probability is predicted by assuming the probabil-
ity distribution of the data to be learned (e.g., Weibull distribution). It is also possible to
evaluate it together, which is a future issue.

According to Tables 2–4, the (σB/σYS)RT of non-RPV and RPV are different. Accepting
Kirk’s opinion that KJc and SED correspond, ASTM E1921 MC may deviate from non-RPV.
However, this KJc predictor has an advantage in that it considers this. On this point, the
developed KJc predictor, compared with the existing ASTM E1921 KJc MC, is expected to
be especially effective in cases where σB/σYS of the material is larger than that of RPV steel.
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The predictors that were generated and analyzed during the current study are avail-
able from the corresponding author upon reasonable request.

4. Conclusions

In this study, a tool was developed that can predict KJc for an arbitrary specimen
size W and material properties (σYSRT, σYS, σBRT) via an ANN applied to 531 fracture
toughness test data values. Currently, the conditions applicable to the tool are material
properties ranging from σYSRT = 328 to 775 MPa, σBRT = 519 to 832 MPa, specimen size
ranging from 0.4T to 4T and its types are CT and SEB. By using the tool developed through
the application of data-driven ideas, it is possible to predict the fracture toughness at this
temperature from the tensile test results and the specimen size at the target temperature
of the fracture toughness without performing a fracture toughness test. In the future, it is
planned to predict the predicted probability of fracture toughness.
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Nomenclature

B test specimen thickness
J J-integral
KJc fracture toughness
T temperature (◦C)
T0 ASTM E1921 MC reference temperature (◦C) for a 25 mm thick specimen with a fracture

toughness of 100 MPa·m1/2

W specimen width
σYS, σB yield (0.2% proof) and tensile strength
σ0ZA yield stress at the temperature T (◦C) described by the Zerilli equation (i.e., Equation (11))
R2 coefficient of determination
Xi input value of MLP
aj activation unit of MLP
n number of input value
k number of activation unit
f(X) output value of MLP
wh

j,i connection weight between input value Xi and activation unit aj

φ activation function
wo

j connection weight between activation unit aj and output value f(X)
Y teaching data
E loss function
α regularization strength of L2 norm term
w(t) connection weight at timestep t in Adam
m(t) exponential moving averages of the gradient at timestep t in Adam
v(t) exponential moving averages of the squared gradient at timestep t in Adam

ˆm(t) bias-corrected first moment estimates at timestep t in Adam

https://doi.org/10.1016/j.engfailanal.2020.104713
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ˆv(t) bias-corrected second raw moment estimates at timestep t in Adam
η learning rate in Adam
ε hyper parameter for numerical stability in Adam
β1 hyper parameter for m(t) in Adam
β2 hyper parameter for v(t) in Adam
µY average value of the true objective values

Abbreviations

ASTM American Society for Testing and Materials
BCC body-centered cubic
C(T) compact tension; specimen type
DBT ductile-to-brittle transition
MC master curve
nT notation used to indicate specimen thickness, where n is expressed in multiples of 25 mm
RPV reactor pressure vessel
RT room temperature
SE(B) single-edge notched bend bar; specimen type
Z–A Zerilli–Armstrong
SED strain energy density
PCCV pre-cracked Charpy V-notch; specimen type
MLP multiplayer perceptron
ANN artificial neural network
ReLU rectified linear unit
Adam adaptive moment estimation
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