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Abstract: The FeCoNiCrMo0.5Alx system with x up to 2.13 was analyzed from the point of view
of evolution of the phase composition and microstructure. Cast samples were synthesized by
induction melting and analyzed by X-ray diffraction, energy dispersive spectroscopy, scanning
electron microscopy, and Vickers microhardness test methods. Phase compositions of these alloys
in dependance on Al concentration consist of FCC solid solution, σ-phase, NiAl-based B2 phase,
and BCC solid solution enriched with Mo and Cr. Phase formation principles were studied. Al
dissolves in a FeCoNiCrMo0.5 FCC solid solution up to 8 at.%.; at higher concentrations, Al attracts
Ni, removing it from FCC solid solution and forming the B2 phase. Despite Al not participating in
σ-phase formation, an increase in Al concentration to about 20 at.% leads to a growth in the σ-phase
fraction. The increase in the σ-phase was caused by an increase in the amount of B2 because the
solubility of σ-forming Mo and Cr in B2 was less than that in the FCC solution. A further increase in
Al concentration led to an excess of Mo and Cr in the solution, which formed a disordered BCC solid
solution. The hardness of the alloys attained the maximum of 630 HV at 22 and 32 at.% Al.

Keywords: high entropy alloys; σ-phase; XRD; phase composition; microstructure; hardness

1. Introduction

The concept of high-entropy alloys (HEA) arose in 2004. It was initiated by the
works of Cantor et al. [1] and Yeh et al. [2]. In the former [1], there was a single-phase
five component Fe20Cr20Mn20Ni20Co20 alloy reported [1], after that, this composition
was named the Cantor alloy. In the latter [2], the idea of high entropy stabilization of
multi-principal solid solution was proposed, and the term “high-entropy alloys” was
introduced. It was postulated that high entropy promotes the formation of disordered
substitutional solid solutions instead of intermetallic phases due to a decrease in free
energy. Later in [3,4], based on the experimental data, other criteria of multicomponent
solid-solution stabilization have been proposed, namely, atomic-size difference (δ), which
should not be higher than 6.6%; mixing enthalpy of solid solution (∆Hmix), which should
be in the range of −15–5 KJ/mol; and Ω, defined as Tm∆Smix/|∆Hmix|, which should
be ≥1.1. However, these values are based on back-tested correlations, and have little
evidence of predictive capability [5]. The unique features attributed to HEA such as solid
solution strengthening due to severe lattice-distortion, sluggish diffusion, and the cocktail
effect [5–7], were supposed to be caused by the multiprincipal solid solution effect, so in this
context, the term HEA should refer to single-phase multiprincipal alloys [8]. However, the
majority of HEA considered nowadays in the equilibrium state at an ambient temperature
has several phases [9–25], even those that were considered to be single-phase in early
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research [16,17]. It is likely that during solidification, the different atoms distribute in
accordance with their affinity, leading to liquation, namely, the appearance of regions
of different compositions not satisfying the criteria of solid solution formation. On the
other hand, when the temperature is lowered, the effect of entropy decreases, so the solid
solution tends to decompose or order, but due to sluggish diffusion, these processes may
go slowly, and so are not completed at ambient conditions [8,17]. Precipitation behavior in
HEA is complex and abstruse and may induce the formation of useful properties as well as
their deterioration and instability. Currently, methods are being developed to predict the
formation and stability of HEA taking into account the formation enthalpies of competing
phases [13,26]. To date, among all the others that ever proposed HEA, the alloys based on
an AlCoCrFeNi system have been the most studied [2,5,9–15,19–25]. The reason for this are
the outstanding mechanical properties and phase formation phenomena. In AlCoCrFeNi
alloys, Al has the largest impact on the structure: a crystal structure transforms from FCC
to BCC as the Al content increases [2]. In [27], an effect of valence electron concentration
(VEC) on the stability of FCC and BCC solid solutions was demonstrated: the FCC solid
solution was found to be stable at higher VEC and instead, BCC phase is stable at lower
VEC (<6.87). In [28], the effect of Al on the crystal structures was analyzed using first-
principles electronic structure calculations. It was demonstrated that due to strongly
attractive interactions between Al and other elements, partially disordered structures (L12,
DO3, and B2) became more stable than the disordered solid solutions. As a result, the
elements segregate, forming Ni-Al-rich and Fe-Cr-rich areas [9,13,15,22]. Cr and Fe stabilize
the BCC structure [11,12,28], while Ni and Co stabilize the FCC solid solution [10,22,28].
Compared to disordered solid solutions, ordered BCC (B2) compounds based on NiAl have
a unique set of strength characteristics at elevated and high temperatures, and their strength
practically does not degrade up to temperatures of 800–900 ◦C [29]. The high hardness
of AlCrFeCoNi and AlCrFeCoNiTi alloys was attributed namely to the formation of the
NiAl-B2 phase [19,20]. Partially disordered NiAl-based B2 alloys with refractory metals
may be considered as promising structural materials for high-temperature applications [29].
An addition of Nb to AlCoCrFeNi studied in [30] results in the formation of a Laves phase
of the (CoCr)Nb type and BCC solid solution and an increase in strength and hardness. An
effect of V addition was studied in [31] and it was found that V addition reduces element
segregation and homogenizes the microstructure. An addition of Mo significantly increased
the strength and thermal stability of CoCrFeNiMo alloys, and the effect was caused by the
σ or σ and µ phase formation [32,33]. The σ-phase occurs in the majority of transition-metal
alloys [16,17,21,23,33–36]. It is a hard and brittle topologically close packed phase, and its
appearance in stainless steels usually results in the deterioration of the properties due to
brittleness and the removal of Cr from the solid solution matrix [35,36].

In this work, the AlxFeCoNiCrMo system was analyzed from the point of view of
the evolution of phase composition and microstructure. Mo is a refractory metal and
is added to AlCoCrFeNi with the aim to increase alloy strength and thermal stability,
however, it is known to be a strong promoter of the σ-phase. Al, in contrast, suppresses
σ-phase formation, and tends to form an ordered NiAl-based B2 structure with high
strength characteristics at elevated and high temperatures. Thus, AlxFeCoNiCrMo HEA
may be considered as promising structural materials for high-temperature applications,
and understanding of the phase formation principles and structure stability in this system
is necessary for the development of further alloys. The aim of the study was to observe
and analyze the effect of Al concentration on the crystal structure of HEA containing Mo.

2. Materials and Methods

A series of multicomponent alloys of the FeNiCoCrMo0.5Alx system with x varying
from 0 to 2.13 (0–32 at.% Al) were melted in a high-frequency induction furnace in quartz
crucibles under an argon atmosphere. Elemental components with a purity of 99.93% or
greater were used. The induction melting process took about 2 min, then the samples were
cooled in water. Melting of refractory elements occurred via their gradual dissolution in the
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melt. For homogenization of the melts, the alloys were remelted three times. The prepared
ingots were approximately 30 g. The designation of the samples and the exact composition
of the ingots are presented in Table 1.

Table 1. Chemical composition and designation of the FeNiCoCrMo0.5Alx alloys.

Alloy
Designation

Atomic Concentration, % ∆Hmix
(kJmol−1)

∆Smix
(JK−1mol−1) δ (%) VEC

Fe Ni Co Cr Mo Al

Al0 (x = 0) 21.98 21.97 21.84 22.22 11.99 - −4.39 13.18 3.63 7.97

Al4 (x = 0.18) 21.24 21.35 21.15 20.82 11.62 3.82 −6.14 14.03 4.32 7.799

Al8 (x = 0.42) 20.09 20.16 20.01 20.33 10.98 8.42 −8.04 14.47 4.93 7.555

Al12 (x = 0.64) 19.22 19.31 19.15 19.38 10.53 12.41 −9.42 14.64 5.35 7.359

Al16 (x = 0.91) 18.40 18.45 18.32 18.17 10.07 16.69 −10.98 14.74 5.71 7.161

Al22 (x = 1.29) 17.21 17.28 17.14 16.86 9.43 22.08 −12.47 14.67 6.06 6.887

Al25 (x = 1.52) 16.56 16.54 16.55 16.55 8.65 25.15 −13.2 14.54 6.21 6.735

Al29 (x = 1.84) 15.71 15.68 15.73 15.7 8.26 28.92 −14.0 14.34 6.37 6.546

Al32 (x = 2.13) 14.98 15.03 14.99 15.01 8.04 31.95 −14.43 14.17 6.44 6.392

Scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) were
performed on using a MIRA 3 microscope (TESCAN, Brno-Kohoutovice Czech Republic).
In order to determine the volume fraction of the structural components, the images of the
microstructures were analyzed with the software THIXOMET (THIXOMET Pro, Thixomet,
Saint-Petersburg, Russia).

The phase composition was examined with a D8 Advance diffractometer (BRUKER,
Billerica, MA, USA) under Cu Ka radiation. The solid solution lattice parameter was
determined based on the XRD patterns, which were collected in the 2Θ range from 20◦ to
140◦ with a speed of 2◦/min. In order to eliminate the systematic error, the definition of
the lattice parameter was calculated using the Nelson–Riley extrapolation function [36].
For convenience, we calculated the shortest interatom distance for each cubic lattice using
the lattice parameters determined by XRD. The shortest interatomic distance for FCC was
1
2 [110] and 1

2 [111] for BCC. Quantitative phase analysis was fulfilled using DIFFRAC.EVA
software (DIFFRAC.EVA V6, BRUKER, Billerica, MA, USA).

Vickers microhardness was tested with a Micromet 5103 (BUEHLER, Lake Bluff,
IL, USA) under a load of 1 N and with a dwelling time of 10 s, at least six measurements
per point were made. The density of the samples was determined by hydrostatic weighing
at a water temperature of 24 ◦C.

3. Results
3.1. Phase Compositions (XRD Results)

Figure 1 demonstrates the XRD patterns of the samples. FCC, BCC solid solutions,
B2, and σ-phase were determined. Al4 consists of an incoherent FCC solid solution
and σ-phase. In Al8, the peaks of FCC shifted left as evidence of its lattice parameter
increase due to a dissolution of Al. Apart from this, in Al12, a peak belonging to the BCC
may be observed. Further increase in Al concentration in the alloys (Al25–Al32) led to
a total disappearance of the reflexes belonging to the FCC phase and a development of
BCC reflexes; besides, a peak at 2Θ = 32◦ denoting the BCC solution ordering becomes
pronounced. In the alloys with an Al concentration higher than 25 at.% (Al25), there were
two sets of reflexes of BCC structures observed and intervals between the peaks belonging
to each phase increase with an increase in Al concentration in the alloys. The found phases
for each alloy are listed in Table 2.
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Figure 1. XRD patterns of the FeNiCoCrMo0.5Alx.

Table 2. Phase found by XRD.

Alloy Phase/Lattice Parameter, Å

Al0 FCC/3.5960; σ-phase

Al4 FCC/3.6158; σ-phase

Al8 FCC/3.6248; BCC/2.8908; σ-phase

Al12 FCC/3.6151; BCC/2.8893; σ-phase

Al16 FCC/3.5885; BCC/2.8880; σ-phase

Al22 BCC(B2)/2.8823; σ-phase

Al25 BCC(B2)/2.8852; BCC_2/2.9098; σ-phase

Al29 BCC_1(B2)/2.8863; BCC_2/2.9434; σ-phase

Al32 BCC_1(B2)/2.8893; BCC_2/2.9636

3.2. Microstructure Observation

The microstructures and the element distribution for the alloys with an Al content
of 4, 8, and 16 at.% are presented in Figures 2 and 3. The structural components of Al4
are primary FCC solid solution dendrites and interdendritic eutectic consisting of the FCC
solid solution and σ-phase. When Al content is increased to 8 at.%, the microstructure
changes considerably, and the structural components become much smaller. Instead of an
eutectic on peripheries of the FCC dendrites, there is a layered structure consisting of two
phases; one of these consists predominantly of Mo, Cr, and Fe, and another of Al and Ni.
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According to the XRD, the results show the former is the σ-phase, and the latter is BCC(B2).
Obviously, the layered structure formed as a result of FCC solid solution decomposition,
the composition of which became unstable due to dendritic liquation. The length of the
σ-phase did not exceed 2 µm, the thickness was 200 nm, and the size of the FCC dendrites
was reduced by about 10 times compared to the previous alloy.
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Figure 2. SEM microphotographs of the Al4, Al8, and Al16 alloys. σ-phase—the lightest, BCC(B2)—the darkest, and
FCC—grey structural components.

Further increase in Al to 16 at.% considerably reduced the solution stability; one can
see the σ and BCC(B2) phases, which is in agreement with the XRD observations, where
only a small amount of FCC may be found. According to EDS, the σ-phase is enriched
with Mo, Cr, and Fe; Al and Ni preferably form BCC(B2); Co is homogeneously distributed
between both phases. The composition of the phases determined with EDS are presented
in Table 3. It should be noted that the determined composition of the phases is not precise
because of the small size of the phases and the limitations of the method.

The microstructures of the alloys with 22, 25, and 32 at.% Al and their elemental distri-
butions are presented in Figures 4 and 5. All alloys had primary dendrites of BCC_1(B2),
and its volume fraction increased with an increase in Al concentration. Inside the BCC_1(B2)
dendrites, one can see thin coherent precipitates obviously caused by a decomposition of
the solid solution. Interdendritic space in Al22 and Al25 is filled with a complex structure
consisting of the σ-phase, BCC_1(B2), and BCC_2. However, in Al32, there were only
traces of the sigma phase observed, and interdendritic space was predominantly filled with
BCC_2 with spherical precipitates of BCC_1(B2).
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Table 3. Composition of the phases determined with EDS.

Alloy Phase
Atomic Concentration, %

Fe Ni Co Cr Mo Al

Al4
FCC 22 22 22 21 9 4

σ 18 14 18 25 21 4

Al8

FCC 21 22 21 19 8 8

BCC(B2) * 18 24 20 17 7 14

σ * 19 17 19 23 15 6

Al12

FCC 24 19 22 21 7 8

BCC(B2) 17 25 19 16 5 18

σ 19 16 19 20 16 9

Al16
BCC(B2) 15 28 17 14 4 21

σ 20 16 19 22 13 11

Al22
BCC(B2) 13 24 18 10 3 31

Interdendritic 21 11 17 26 13 11

Al25
BCC_1(B2) 14 20 18 13 5 30

Interdendritic 19 14 18 20 10 18

Al29
BCC_1(B2) 14 20 18 12 5 32

Interdendritic 22 7 13 26 15 16

Al32
BCC_1(B2) 13 19 17 9 5 37

BCC_2 20 6 11 24 20 19
* Low accuracy due to the small size of the phase.
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4. Discussion

The volume fractions of the phases found in the investigated alloys were determined
by two methods, XRD and SEM, and are presented in Figure 6.
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circles) and SEM (squares).

At Al additions up to 8 at.%, a fraction of the FCC slightly increased; this may be
explained by the dissolution of Al in the FCC solid solution. At higher Al concentration,
the BCC phase occurs. Al is known as a BCC stabilizer, and an increase in Al content in
Fe–Co–Ni–Cu–Cr–Mn–Al HEA leads to a change in the solid solution crystal lattice from
FCC to BCC. This fact has been repeatedly demonstrated by different authors and is usually
connected with valent electron concentration [27]. According to [27], at VEC less than 6.87,
the FCC solid solution disappears and only the BCC structure forms, which is consistent
with our observation for the Fe–Co–Ni–Mo–Cr–Al system (Figure 6). However, according
to our observation, the formed BCC phase is an ordered NiAl-based B2 structure. Apart
from the B2 phase, Al additions influence the amount of σ-phase. σ-phase was observed
in HEA containing Cr, Fe, Co, and others after prolonged annealing [16,17,23,33] and in
as-cast HEA alloys containing Mo and Fe [18,24,32]. Al does not participate in the σ-phase
and suppresses its formation [34]. It is interesting that according to our observation, an
increase in Al to 16–20 at.% led to a growth in σ-phase content (up to 50%) in spite of a
decrease in the concentration of σ forming elements. At Al content over 22 at.%, the fraction
of the σ-phase began to decrease and almost disappeared at 32 at.% Al. The decrease of
σ-phase coincided with the formation of the second BCC_2 solid solution enriched with
Mo, Cr, and Fe.

To explain this observation, a simplified scheme of the phase composition formation
in dependence on Al content is proposed in Figure 7. σ-phase has AB stoichiometry, where
A is an element of bigger atomic radius and less d electrons [34]. In the Fe–Co–Ni–Cr–Mo
system, Cr and Mo are A elements, and Fe, Co, Ni–B elements. Despite Ni entering the
σ-phase as a B element, it was reported as a destabilizer of the σ-phase in CrMnCoFeNi
HEA [23]. In the composition of FeCoNiCrMo0.5 (0% Al) the ratio of A elements (Cr
and Mo) to B elements (Fe, Co, and Ni) was 1:2. Because Ni is less prone to form the
σ-phase compared to Fe and Co [35], it remains in excess and promotes FCC solid solution
formation. This is consistent with [23], where it was reported that an excess of Ni results in
FCC stabilization and σ-phase suppression.
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It can be suggested that in the multicomponent solution, each atom is most likely to
be surrounded by other atoms, with which it has a higher negative enthalpy of mixing.
Figure 8 presents the enthalpy of mixing for each pair of atoms in the system [37]. Based
on this, Al attracts Ni first of all, leading to Al–Ni segregation. Thus, the more Al is added,
the more Ni is bound to Al and, correspondingly, is removed from the solid solution. The
removal of Ni from the FCC solid solution destabilizes it, leading to an additional σ-phase
precipitation. It should be noted that the proposed scheme is only a simplified presentation,
and it is obvious that not only do B elements (Ni, Co, and Fe) compose the FCC solid
solution, but also that Cr and Mo have some solubility in it. Solubility of Cr and Mo in
FCC was about 20 and 8 at.%; however, their solubility in B2 was only about 13 and 5 at.%
correspondingly (Table.3). Therefore, an increase in the amount of B2 is followed by an
increase in the amount of σ-phase. Further increase in Al concentration causes bonding not
only with Ni, but also with Co and Fe, which occupy Ni positions in B2. This results in an
excess of A elements (Mo, Cr) in the solution, which forms another BCC structure.
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Figure 9 shows a change of interatomic distance in FCC, BCC_1(B2), and BCC_2
lattices depending on the alloy’s concentration. An increase in Al content to 8 at.% caused
an expansion of the FCC crystal lattice, taking into account an increase in the fraction
of FCC (Figure 6), which proves that up to this concentration, Al dissolves in the FCC
solid solution.
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In the alloys with an Al concentration higher than 8 at.%, the FCC lattice parameter
decreased, which showed a change in the FCC solid solution composition. As we proposed
earlier, at this Al content, Ni leaves the solid solution after being attracted to Al. It is
known that Ni has the smallest atom radius among the other elements of this system,
and its removal from the solid solution should result in a growth of its lattice parameter,
which contradicts with our observation. However, destabilization of the FCC solid solution
due to Ni removal also leads to a removal of other elements with larger radii such as
Mo, Cr, and Fe, which form the σ-phase, and the growth of the fraction of the σ-phase
proves our assumption. On the other hand, a decrease in the FCC solid solution lattice
parameter may be connected with the formation of a coherent BCC_1(B2) phase based on
Al–Ni segregations, so the coherent boundaries may lead to elastic shrinkage of the FCC
crystal structure.

The lattice parameter of the BCC_1(B2) phase was almost the same for all compositions,
which may be a consequence of more rigid interatomic bonds or more constant composition
compared to the FCC solid solution.

The lattice parameter of the second BCC_2 solid solution enriched with Cr and Mo
strongly increased with an increase in Al concentration. As we suggested, Al bonds to
σ-forming B elements, namely Ni, Co, and Fe into the BCC_1(B2) phase, and A elements
with bigger atomic radius (Mo, Cr) remain in the BCC_2 solid solution, resulting in the
increase in its lattice parameter.

5. Properties

Changes of the microhardness and density of the alloys in dependence on the Al
content are shown in Figure 10. An increase in Al results in hardness growth; at an interval
of 25–29 at.% Al, microhardness falls by 100 HV and then rises up again to 630 HV.
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The microhardness rising with an Al concentration of up to 22 at.% is caused by
both an increase in the amount of σ-phase and a formation of B2 instead of the soft
FCC solid solution (Figure 3). The slight decline in the microhardness at the interval
of 25–29 at.% may be associated with a decrease in the fraction of hard σ-phase. It is
interesting that at 32 at.% Al, when the σ-phase almost disappeared, the microhardness
leapt up by 100 HV, which may be explained by an increase in the amount of BCC_2 as
well as its hardness due to a high concentration of Mo and Cr. As was said previously, an
increase in Al (in interval of 25–32 at.%) led to an increase in Mo and Cr in the BCC_2 solid
solution, which was confirmed by an increase in its lattice parameter (Figure 9). Thus, the
composition of FeCoNiCrMo0.5Al2.13 had the highest hardness of 630 HV and the lowest
density of 6.65 g/cm3.

6. Conclusions

Multicomponent alloys of the FeCoNiCrMo0.5Alx system with x varying up to 2.13
were analyzed by XRD, SEM, EDS, and microhardness test. It was found that:

1. Al dissolves in an FeCoNiCrMo0.5 FCC solid solution up to 8 at.%. At higher concentra-
tions, Al attracts Ni, removing it from the FCC solid solution and thereby destabilizing
it. At an Al content of 22 at.% and higher, corresponding to VEC ≤ 6.87, the FCC
phase disappears. The Al and Ni formed the ordered BCC (B2) phase, in which Co
and Fe also dissolve, occupying Ni positions.

2. Additions of Al to FeCoNiCrMo0.5 strongly influence the fraction of the σ-phase.
Despite Al not participating in σ-phase formation, an increase in Al concentration to
about 20 at.% led to a growth in the σ-phase fraction to 50%. The increase in σ-phase
was caused by an increase in the amount of B2 instead of the FCC solid solution
because the solubility of Mo and Cr in B2 was less than that in the FCC solution. A
further increase in Al concentration led to an excess of Mo and Cr in the solution,
which formed a disordered BCC solid solution. At an Al content of 32%, the alloy
consisted of two BCC phases: a solid solution enriched with Cr and Mo and ordered
B2 (Ni, Co)Al-based phase.

3. The rise in microhardness with an increase in Al concentration to 22 at.% was caused
by both an increase in the amount of σ-phase and the formation of B2 instead of
a soft FCC solid solution. In a composition with 32 at.% Al, when the σ-phase
almost disappeared, the microhardness reached a maximum of 630 HV, which may be
explained by both an increase in the fraction of disordered BCC enriched with Mo, and
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by the increase in Mo concentration in it. Thus, the composition FeCoNiCrMo0.5Al2.13
had the highest hardness of 630 HV and the lowest density of 6.65 g/cm3 among the
considered compositions.
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