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Abstract: In this work, we investigated the temperature dependence of the kinematic viscosity of
multicomponent Fe72.5−xNixCu1Nb2Mo1.5Si14B9 melts with a Ni content of up to 12.7 at. %. The
peculiarities of the temperature dependence of Ni-containing melts were explained by the tendency
of Ni atoms to surface segregation. Ni atoms are concentrated near the interfaces of the liquid and
solid phases in the mushy zone at the stage of melting and restrain the melting of the solid phase.
With increasing Ni content, the Arrhenius type of viscous flow begins at a higher temperature. Ni
atoms are concentrated at the periphery of clusters, increasing their size and decreasing their mobility.
The movement of Ni-containing clusters increases the activation energy and decreases the kinematic
viscosity. The change in the activation energy at a temperature of about 1700 K was associated with a
liquid-liquid structure transition (LLST). This structural transition is reversible since it is observed
both at the heating and cooling stages. The increase in kinematic viscosity at temperatures above
1900 K was associated with the decomposition of high-temperature clusters based on cementite and
silicon oxides.
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1. Introduction

The viscosity is associated with the movement of liquid particles (atoms, molecules,
clusters) relative to each other, and it depends on the diffusion mobility of these particles.
According to the Stokes-Einstein relation, the diffusion coefficient is inversely proportional
to viscosity. Since the temperature dependence of the diffusion coefficient is expressed by
the Arrhenius equation [1], the viscosity can be represented in the form [2]:

ν = ν0e
Ea
RT , (1)

where ν is the kinematic viscosity (m2·s−1), ν0 is the pre-exponential factor with the di-
mension of the kinematic viscosity, Ea is the activation energy of the viscous flow (J·mol−1),
R is the gas constant (J·K−1·mol−1), T is the absolute temperature (K).

From relation (1) it follows that the viscosity decreases with increasing temperature at
the constant activation energy Ea. The activation energy depends on the size and interaction
of the particles participating in the viscous flow, and the transition of individual particles
to a new state occurs after the particle reaches the activated state. Therefore, we can
assume that the melt structure remains sufficiently stable if the activation energy does
not change. The change in the activation energy on the temperature dependence of the
viscosity is associated with a change in melt structure, and this phenomena is interpreted
as a liquid-liquid structure transition (LLST) [3–11].

LLST is often observed in multicomponent melts since different groups of atoms
within them can form clusters that are stable over a wide temperature range. One of
the materials of great practical importance is the Fe-Cu-Nb-Si-B alloy, which is used for
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the production of nanocrystalline soft magnetic materials [12]. At the initial stage of
production, a precursor is obtained from the melt in the form of a thin metal ribbon with
an amorphous structure. Then, as a result of heat treatment, a nanocrystalline structure
with an average grain size of about 10 nm is formed in the ribbon. Together with Nb, the
alloy can also contain Mo, V or other inhibitors of nanograin growth, which affect the
crystallization process [13]. The alloy may also contain Ni or Co, which affects the constant
of magnetic anisotropy and makes it possible to obtain nanocrystalline material with a
linear magnetization curve and different levels of magnetic permeability [14–16]. Ni atoms
have negative energy of surface segregation in iron [17,18]. Therefore, Ni atoms tend to be
located near the free surface, slowing down the motion of grain boundaries and smoothing
the peak of heat release in the process of nanocrystallization [19]. These features should
affect the temperature dependence of the viscosity of Ni-containing iron-based melts.

In this work, we investigated the temperature dependences of the kinematic viscosity
of the multicomponent Fe72.5−xNixCu1Nb2Mo1.5Si14B9 melt with a Ni content of up to 12.7
at. %.

2. Materials and Methods

Fe72.5−xNixCu1Nb2Mo1.5Si14B9 alloys with Ni = 0; 2.5; 6.3; 12.7 at. % were smelted
in an induction vacuum furnace at a temperature of 1820 K and cooled in a flat mold.
The finished ingots were melted again at 1775 K, the melt was held at this temperature
for 5 min, and then an amorphous ribbon with a thickness of 20 µm thick and 10 mm
wide was obtained using the planar flow casting process. The temperature dependence
of the kinematic viscosity was measured on toroidal samples wound from an amorphous
ribbon, which was placed in a beryllium oxide cup. The determination of the kinematic
viscosity was carried out by the method of torsional vibrations in an atmosphere of pure
helium under a pressure of 105 Pa [20]. Using this method, the logarithmic decrement was
measured, and the kinematic viscosity was calculated from the formulas connecting the
logarithmic decrement with the kinematic viscosity. Before the measurement, the melt was
kept at a predetermined temperature for 8 min to stabilize the structural state. During
heating and cooling, the melt temperature was changed with a step of 30 K at a speed of
30 K/min. The error in the determination of the kinematic viscosity was 3%.

In addition to the main chemical elements, the content of Al, C, N and O was also
determined in the alloy. These elements have a high electronegativity and form strong
bonds with metals. The nature of these impurities is associated with the charge materials.
There is no interaction of the melt with the beryllium oxide cup, as evidenced by the
appearance of the cup after high-temperature studies. The content of the main chemical
elements, as well as aluminum and carbon, was determined using a DFS-500 Optical Emis-
sion Spectrometer, OKB Spectr, Saint-Petersburg, Russia. An ARL 4460 Metals Analyzer
Thermo Fisher Scientific, Walthan, MA, USA, was used to determine the N and O content.
The error in determining the chemical composition was 1%.

3. Results

Figures 1–3 show the kinematic viscosity on a natural logarithmic scale lnν as a
function of the inverse absolute temperature T−1 upon heating to maximum temperature
Tmax = 1985 K and cooling of the Fe72.5−xNixCu1Nb2Mo1.5Si14B9 alloy with Ni = 2.5 (1);
6.3 (2); and 12.7 at. % (3) as Arrhenius plot:

lnν = lnν0 +
Ea

RT
, (2)
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solute temperature T−1 upon heating to maximum temperature Tmax = 1985 K and cooling the
Fe72.5−xNixCu1Nb2Mo1.5Si14B9 alloys with Ni content 12.7 at. %.

The viscosity should decrease with increasing temperature. However, in the low-
temperature regions, which are marked with gray and black symbols, the viscosity increases.
This temperature region corresponds to the mushy zone, in which the liquid and solid
phases coexist [8]. An increase in the logarithmic decrement and calculated viscosity with
increasing temperature is caused by an increase in the volume of the liquid phase in the
measuring cup. Melts with a Ni content of 2.5 and 6.3 at. % begin to behave like the
Arrhenius type at temperatures above 1560 K both at the heating and cooling stages. The
melt with a Ni content of 12.7 at. % flows according to the Arrhenius equation when heated
above 1685 K, and at the cooling stage, this type of viscous flow takes place down to a
temperature of 1560 K.

The linear sections of the Arrhenius plots in Figures 1–3 are obtained as a result of
linear regression of experimental points and they correspond to a melt flow with constant ac-
tivation energy Ea. Upon heating, the activation energy changes at a temperature of 1685 K
for all Ni-containing melts. On cooling, the transition temperature drops with increasing
Ni content. Table 1 shows the calculated activation energies for the low-temperature and
high-temperature regions and additionally includes data for the Ni-free melt at the cooling
stage. It can be seen that in the low-temperature region the activation energy is lower and
has approximately the same value during heating and cooling. In the high-temperature
region, the activation energy is noticeably higher, and the highest value of Ea is in the melt
with a high Ni content.

At temperatures above 1900 K at the heating stage, the drop in kinematic viscosity is
replaced by an increase, see Figures 1–3. An increase in viscosity is observed at tempera-
tures above 1915 K in an alloy with a Ni content of 2.5 at. % and at temperatures above
1955 K in alloys with a Ni content of 6.3 and 12.7 at. %.
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Table 1. The calculated activation energy of viscous flow Ea in Fe72.5−xNixCu1Nb2Mo1.5Si14B9 melt
for linear sections of Arrhenius plots.

Ni Content (at. %)

Activation Energy Ea (kJ·mol−1)

Heating Cooling

T > 1700 K T < 1700 K T > 1700 K T < 1700 K

0 – – 55 24
2.5 141 42 88 43
6.3 134 54 95 44

12.7 151 – 120 50

Figures 4 and 5 show the kinematic viscosity on a natural logarithmic scale lnν as a
function of the inverse absolute temperature T−1 separately for heating (4) and cooling (5)
in Fe72.5−xNixCu1Nb2Mo1.5Si14B9 alloys. It follows from these figures that, at the heating
stage in the temperature range of 1700–1900 K, Arrhenius plots differ insignificantly, while
the viscosity is higher in the melt with a low Ni content. After heating to the maximum
temperature Tmax = 1985 K, the melt with a low Ni content of 2.5 at. % has the highest
viscosity. The maximum temperature is the starting point for the cooling stage. Therefore,
at the cooling stage in the temperature range of 1700–1900 K, melts with a low Ni content
have a flatter Arrhenius plot and lower activation energy, see Table 1. In general, at the
cooling stage, the kinematic viscosity is lower in alloys with a higher Ni content.
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4. Discussion

When discussing the experimental results, we will estimate the activation energy of a
viscous flow. The activation energy is equal to the energy that the particle must receive in
order to overcome the potential barrier and move to an empty place (hole) in the melt. From
general considerations, it follows that the activation energy is higher for large particles,
which have a large size and mass. Based on the theory of the transition state [21], the
following relationship was obtained between the reduced activation energy Ea/RT and the
size of particle a participating in a viscous flow [22]:

Ea

RT
= C1 + 0.5 ln a, (3)

where C1 is a constant, which in general depends on temperature. Thus, the activation
energy of viscous flow increases with increasing particle size.

When discussing the results, we will also use the relationship between particle size and
viscosity. Analysis of simple pure metals at the melting temperature, at which oscillations
of atoms about equilibrium positions prevail, showed [23,24] that the viscosity decreases
with an increase in the ratio of the atom mass to the square of their size m/a2. The viscosity
should decrease with an increase in the number of atoms in the cluster [23]. In the theory
of the transition state [21], the motion of one layer of liquid relative to another occurs due
to the transition of a particle from one equilibrium state to another in the same layer. In
this case, with an increase in the particle size, their velocity increases and the viscosity
decreases. A decrease in viscosity with an increase in the particle size in nanofluid was
observed experimentally [25].

Figure 4 shows that with an increase in the Ni content, the Arrhenius type of viscous flow
begins at a higher temperature. Boron is introduced into the Fe72.5−xNixCu1Nb2Mo1.5Si14B9
alloy to lower the melting point. Thus, the melting point of the Fe83B17 eutectic alloy is
1450 K. Therefore, the liquid phase in the mushy zone is formed on the basis of iron-boron,
in which Cu, Si and Ni are also present. Ni atoms have a high negative energy of surface
segregation and their concentration is highest near the interfaces. It can be assumed that
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the high concentration of Ni near the interface between the solid and liquid phases restrains
the melting of the residual solid phase in the mushy zone. This process also contributes to
the active transition of Ni to the liquid phase and the depletion of the solid phase. Similar
experimental results were obtained when studying the composition of the solid, partially
melted and liquid phases in Ni-containing alloys [26,27].

Electronegativity on the Luo-Benson scale for the main chemical elements Fe, Ni, Cu,
Nb, Mo, Si and B are 1.72; 1.90; 2.30; 1.43; 1.46; 3.41 and 3.66, respectively [28]. Boron
atoms are most strongly associated with iron atoms since this pair of elements has the
most distinct electronegativities. Therefore, in the low-temperature region, the most stable
clusters in the melt are formed on the basis of iron boride Fe2B with a melting point of
1663 K [29]. Clusters based on FeSi with a melting point of 1683 K are less stable and have
a lesser effect on structural transformations [30]. Therefore, the change in the activation
energy upon heating above 1685 K, see Figure 4 and Table 1, can be associated with the
decay of Fe2B-based clusters and the formation of new clusters based on iron triboride FeB3.
A similar model of structural transformations was proposed in [6]. The narrow temperature
range of LLST indicates that only one type of structural transition predominates.

From Figure 4 and Table 1, it follows that upon heating after the transition to the
high-temperature region, the activation energy increases. As we assumed earlier, with
an increase in the activation energy, the size and mass of the clusters participating in
the viscous flow increase. As a result of the transformation of Fe2B-based clusters into
FeB3-based clusters, the number of new B-containing clusters is reduced by three times,
while five iron atoms are released for each new cluster. As the temperature rises, the
structure of the melt should become more disordered, and various atoms and clusters tend
to have a more chaotic distribution. A more uniform arrangement of atoms and clusters
corresponds to a larger-scale structure of the multicomponent melt [31]. Clusters can be
joined by Ni, Nb, Mo atoms, as well as free Fe and Si atoms, which form a cloud around
B-containing clusters. The Ni and Nb atoms have a large negative surface segregation
energy of −0.65 eV per atom [17]; therefore, they are located at the cluster periphery. Due
to coalescence, clusters can form even larger associates—fractal clusters [32,33].

The Fe72.5−xNixCu1Nb2Mo1.5Si14B9 melt contains impurities: C = 0.1; Al = 0.05;
O = 0.05; and N = 0.005 at. %. These impurities can form clusters based on compounds
whose melting temperatures are between 1900 and 2000 K, that is, in the region of kinematic
viscosity growth at the heating stage, see Figure 4. Cementite Fe3C has a melting point
of 1923 K [34]. The melting point of silicon oxide in the β-cristobalite form is 1996 K, and
in the β-tridymite form, it is 1943 K [30]. Aluminum oxide Al2O3 and aluminum nitride
AlN have a melting point above 2300 K. An increase in kinematic viscosity at temperatures
above 1900 K can be associated with the decomposition of high-temperature clusters based
on cementite and silicon oxides. A similar increase in viscosity in the high-temperature
region was observed in liquid pipe steel [31]. The growth of the viscosity in the high-
temperature region in Figure 4 corresponds to the beginning of LLST. With an increase in
temperature and after the end of the structural transition, the Arrhenius plot should again
become linear with a certain activation energy. This was previously demonstrated in [23]
for Fe84.5Cu0.6Nb0.5Si1.5B8.6P4C0.3 melt.

The wide temperature transition region indicates that this process involves several
types of clusters based on phases with different melting points. The maximum heating
temperature Tmax = 1985 K forms the melt structure at the stage of decomposition. At this
temperature, the melt with a low Ni content has the highest viscosity, i.e., clusters break up
into smaller particles. According to the small-scale structure obtained by the melt at the
maximum heating temperature, the melt with a low Ni content has the lowest activation
energy, see Table 1.

At the cooling stage, there is also a transition temperature at which the activation
energy of the viscous flow changes. The transition temperature is about 1700 K and it is
slightly higher than the temperature of 1685 K for LLST at the heating stage. This allows
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us to assume that the structural transition of Fe2B-based clusters into FeB3-based clusters
is reversible.

It follows from Figures 4 and 5 that melts with Ni have lower viscosity and higher
activation energy. This effect of Ni can also be associated with the tendency of Ni atoms to
surface segregation. It can be assumed that Ni atoms are concentrated at the periphery of
B-containing clusters, increasing their size and decreasing their mobility.

5. Conclusions

The temperature dependence of the kinematic viscosity of multicomponent
Fe72.5−xNixCu1Nb2Mo1.5Si14B9 melts with a Ni content of up to 12.7 at. % was stud-
ied. An increase in the Ni content decreases the melt viscosity and increases the activation
energy of the viscous flow. The change in the activation energy at a temperature of about
1700 K was associated with LLST, as a result of which Fe2B-based clusters disintegrate
and new clusters based on iron triboride FeB3 are formed. This structural transition is
reversible since it is observed both at the heating and cooling stages. The increase in
kinematic viscosity at temperatures above 1900 K was associated with the decomposition of
high-temperature clusters based on cementite and silicon oxides. At the maximum heating
temperature Tmax = 1985 K, a structure is formed, which is the initial one for the activation
energy at the cooling stage. The specific features of the temperature dependence of the
kinematic viscosity in Ni-containing melts can be explained by the tendency of Ni atoms
to surface segregation. Ni atoms are concentrated near the interface between the liquid
and solid phases in the mushy zone at the stage of melting and restrain the melting of the
solid phase. Due to the increased Ni content in melts, the Arrhenius type of viscous flow
begins at a higher temperature. Ni atoms are concentrated at the periphery of B-containing
clusters, increasing their size and decreasing their mobility. The movement of such clusters
leads to a decrease in the kinematic viscosity and an increase in the activation energy.
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