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Abstract: A critical assessment has been performed to determine the stacking fault energy (SFE) of 
the austenite phase in high manganese steels using X-ray diffraction (XRD). It was found that the 
SFE varies substantially with the chosen elastic constants. This strong dependence induces substan-
tial errors in the estimated values of the SFE of the austenite and, thus, the mechanical behavior of 
Fe-Mn-Al-C steels. The SFE of three different Fe-Mn-Al-C alloys with varying aluminum (Al) con-
tent was determined in order to establish the main plastic deformation mechanism. The aim of this 
work is to establish a more straightforward and reliable methodology to calculate the SFE by XRD. 
In this effort, it was determined that uncertainty in the elastic constants can generate errors in up to 
37% of the SFE. Moreover, in the studied case, for average of elastic constant values, the predomi-
nant deformation mechanism is defined, but when considering one set of constants, these can pre-
sent uncertainty of 2.7 mJ/m2 and 4.4 mJ/m2 for alloys of 0% Al and 3% Al, respectively. This would 
lead them to be within the following plastic deformation mechanism, while for 8% Al the uncer-
tainty is negligible. 
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1. Introduction 
Manganese steel alloys containing aluminum simultaneously exhibit high mechani-

cal resistance and ductility, or high wear resistance [1,2], as well as a high rate of work 
hardening. This is mainly due to plasticity mechanisms in addition to conventional slip 
dislocations, such as transformation induced plasticity (TRIP) [3], twinning induced plas-
ticity (TWIP) [4], and microband induced plasticity (MBIP) [5]. The presence of these plas-
ticity mechanisms in this alloy is largely related to the SFE of austenite [6] which in turn 
dictates the final mechanical properties and dynamically recrystallized microstructures 
[7–10]. Different methods have been presented in the literature to estimate the SFE of a 
given alloy. The use of thermodynamic models has been widely reported [11–13]. How-
ever, this method has the same limitations that are inherent in any mathematical model. 
For example, interfacial energy values between austenite and martensite phases are as-
sumed since these values are difficult to determine experimentally. In the same way, lin-
earity assumptions are used for binary, ternary, or quaternary alloys to combine different 
Gibbs free energies, as well as the effect of their interactions or use of different thermody-
namic functions available for the same chemical element. This has led to variations in the 
SFE values for the same alloy depending on the author (e.g., the reported SFE differs by 
52.4% between authors for a Fe-18Mn-0.5C alloy) [14,15]. 
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Transmission electron microscopy (TEM) [16–18] is a direct method with high reso-
lution and accuracy for estimation of the SFE. Certain aspects limit its use compared to 
other indirect methods, such as the following: (i) exhaustive preparation of the sample 
(~100 μm3) is required to obtain electron diffractions and the sample does not represent 
the generalities of the microstructure or of the bulk [19], (ii) dislocations can only be ob-
served as thin lines at the nanoscale [20] and special attention is required to not confuse 
them with contrast phenomena, (iii) deviations in measurements may exceed the average 
value [20], (iv) the probability of finding dislocations with the required geometries is low, 
(v) the precision depends largely on the models with which the data are interpreted and 
the skill of the person who performs and interprets the studies, and (vi) this technique is 
generally limited to steels with low values of SFE and no previous deformation since these 
two conditions are required in order to observe and measure the radius of the dislocation 
node [21] or clearly distinguish dissociated dislocations. 

The SFE can also be estimated from first principles (ab-initio) [22], but this method 
requires a large computing capacity and is limited in terms of spatial resolution (only ap-
plicable for short-range systems measuring a few nanometers). Moreover, the first princi-
ple is restricted to binary systems and a few ternary cases, which further prohibits its ex-
tended application. Molecular dynamics is an additional method demanding great com-
putational resources, but there are inherent limitations in the atomic models used at na-
noscopic scales where only the equations that define the interaction between atoms for 
binary systems, some ternary systems, and few quaternary systems [23] can be utilized to 
determine properties, such as elastic constants [24]. 

An alternative procedure for determining the SFE is XRD [25–29]. This technique has 
a low cost, offers greater ease of use, and a larger volume of the sample can be analyzed. 
However, calculating the SFE using XRD currently presents different challenges. There 
are characteristic errors in the selection of elastic constants. While some authors recom-
mend using steel elastic constants with properties like the alloy under study, in most cases 
there is little or no information on elastic constants for certain alloys. Likewise, the length 
at which the microstrain must be determined must be on average 50 Å in the direction 
normal to the diffraction plane (111) [29] to avoid the Hooke effect (non-linearity). Varia-
tion exists in the calculated quantity because the microstrain is computed as the slope in 
the graph of ln{(ܮ)ܣ}  is real coefficient of the Fourier series and L (ܮ)ܣ where [27] ܮ ݏݒ 
is the measure of the column of the unit cell. For simplicity, other authors determine the 
microstrain with techniques, such as the Williamson-Hall plot [28]. An important consid-
eration for this method lies in the fact that it assumes contributions related to the size of 
the grain and deformation in the crystal lattice in the diffraction profile as approximations 
of a Lorentzian function for both contributions (size and microstrain). However, this fact 
is highly unlikely to occur in practice, leading to the Williamson-Hall plot currently being 
used only to provide qualitative information on the microstructure of the analyzed mate-
rial. Some of the assumptions raised above have produced overestimates of up to 15% 
[15], which may be one of the reasons why this technique has not been adopted as widely 
as the other methods. Although computational methods, such as thermodynamic models 
and the ab-initio method to determine SFE, have become more widespread, reliable ex-
perimental methods are still needed to verify the results [25]. Taking into account the 
points mentioned above, the present work seeks to stimulate research in this field by 
providing a clear and simple methodology to calculate the SFE in austenitic manganese 
steels using the XRD technique through the work proposed by Reed and Schramm [26]. 
Furthermore, while the effect of elastic constants in the calculation of SFE is well-known, 
very few papers have considered the variations on the SFE due to their selection. In other 
words, many authors have overlooked this fact and have assumed that the elastic con-
stants’ variations can be easily considered to be equal or similar to other alloys with sim-
ilar chemical compositions [30]. Therefore, this work aims to determine the sensitivity in 
the selection of the elastic constants, in addition to presenting a detailed methodology for 
their calculation and the necessary considerations to be made. 
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2. About the Stacking Fault and Stacking Fault Energy 
From the crystallographic point of view, the difference between a structure free of 

deformations and one that has undergone plastic deformation must be clear in order to 
understand how these factors affect and are reflected in the diffraction peaks. Stacking 
defects can be introduced in a crystal through plastic deformation or during solidification. 
An ideal f.c.c structure can be considered as a sequence of stacking planes ABC ABC ABC 
(Figure 1a) packed in the direction of the <111> plane. Stacking fault can be visualized as 
existing when the stacking changes to ABC ACA BCA. That is, there is a plane that does 
not follow the previous order in the sixth plane. Crystallographically, this area is config-
ured as a sequence of planes characteristic of the hexagonal close packed (h.c.p.) structure 
(Figure 1b). Another possibility is the generation of an ABCACBCAB fault type, where A 
is the plane of symmetry, which is defined as a twinning fault (Figure 1c) [31]. 

. 

Figure 1. Representation of the stacking fault sequence in a f.c.c. structure. (a) represent the sequence 
for a f.c.c. structure, (b) h.c.p. structure, and (c) f.c.c. to h.c.p. and twin. 

From the phase transformation standpoint, in austenitic manganese steels the stack-
ing fault begins as a perfect dislocation in the f.c.c. structure, called austenite (γ). When 
subjected to plastic deformation, there is sliding of the lowest dense planes that separate 
in Shockey partial dislocations along each intercalated plane in the <111> direction form-
ing local h.c.p. (martensite-ε) structures or twins (crystallographic mirror image) [32]. In 
summary, there is susceptibility to prompting either a transformation from ߛ → -mar-ߝ
tensite or twinning and to change the way that the dislocations behave to form micro-
bands depending on the SFE of the austenite. Figure 2 was constructed to schematically 
show the change in the main plastic deformation mechanism of austenite as a function of 
increasing SFE; this was the result of a literature review and the author’s knowledge [6,33]. 
As the deformation progresses, the martensite-ε tends to transform into martensite-α’ 
(b.c.c. or b.c.t.). For industrial applications, transformation to α’-martensite contributes to 
the strain hardening and ductility of TRIP steels [34]. 
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Figure 2. Schematic representation of the plastic deformation mechanisms in austenitic manganese 
steels. 

SFE has achieved great importance as a design parameter in austenitic steels contain-
ing manganese because their mechanical strength, ductility, and strain hardening rate de-
pend on the stability of austenite (martensitic transformation induced by deformation in 
ε-martensite, α’-martensite, mechanical twins, or slip dislocations), which is determined 
by the SFE. The general ranges in which these mechanisms are predominant as a function 
of SFE are reported by various authors and are presented in Figure 3. The SFE for steels 
based on the deformation mechanism is listed as follows: TRIP (ܵܧܨ < 20 mJ mଶ⁄ ), TWIP 
(SFE between 20 mJ mଶ⁄  and 40 mJ mଶ⁄ ), and MBIP (SFE > 40 mJ mଶ⁄ ). These mecha-
nisms dynamically reduce the movement of dislocations within the grains, which reflects 
the variation in the mechanical properties. 

 
Figure 3. Deformation mechanisms of Fe-Mn-Al-C austenitic steel as a function of SFE where the 
vertical lines represent the deformation mechanism threshold. I [12], II [35], III [36], IV [37], V [22], 
VI [38], VII [5], VIII [39]. 
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3. About the X-ray Diffraction Technique for Determining the SFE 
In the 1950s, the first investigations to determine the SFE in austenitic steels based on 

XRD methods were published. These studies were mainly based on the work carried out 
by Paterson [31], who showed that the stacking faults in the <111> planes in f.c.c. structures 
resulted in the widening and shifting of the diffraction peaks. Smallman and Westmacott 
[40] later revealed that the probability of the stacking faults (α) or sum of the probabilities 
is related to the crystallite size and the magnitude of the microstrain. In the 1960s, the 
works of Otte and Welch [41], Adler and Otte [42], and Otte [43], were questioned for their 
accuracy compared with direct electron microscopy methods [44]. Subsequently, in 1974 
Reed and Schramm [26] presented the relationship between SFE, microstrain, and the 
stacking fault probability for the first time, allowing for the application of this method for 
wide ranging SFE alloys with easily reproducible results. This method is widely used due 
to its relative ease of use and interpretation. The crystallographic study using XRD was 
called line profile analysis, which provides information on larger sample sizes than other 
techniques, such as TEM. The shape and width of an XRD profile is basically determined 
by the mean size of the crystallites and by the microstrains present in the crystal lattice of 
the material under study [45] in addition to the instrumental contribution. If the defor-
mation is not homogeneous, which occurs in most cases, and is produced in the material 
by mechanical deformation processes [46], there will be a widening of the peak, while 
peak shifts will be apparent due to the presence of stacking faults, changes in the lattice 
parameter, and/or residual stress [47]. The XRD method has been widely used to establish 
the mean square microstrain (MSM), and stacking fault probability (SFP); these are the 
parameters required for the calculation of the SFE in austenitic alloys [48–50]. The mean 
square microstrain is defined as the average square of the deformation associated with 
changes in the internal structure, shape, and volume on a microscopic scale involving pla-
nar discontinuities and/or displacements of atoms in the crystal lattice [51]. Furthermore, 
the SFP is associated with the probability of stacking fault occurring between two adjacent 
<111> planes [52]. This method allows for the determination of structural parameters sta-
tistically averaged for a volume of 10ଽμmଷ , which is equivalent to approximately 10଻ 
times the required volume in TEM analyses. Additionally, the calculation is simpler and 
more reliable for the characterization of the microstructure by refining the line profile 
without limitations in the measurement range [53]. The method proposed by Schramm 
and Reed [29] for the estimation of SFE has been the basis of numerous studies. However, 
the SFE values for some pure materials in this study tend to be overestimated by up to 
36% if the SFE values determined by TEM are considered true; particularly those values 
which are determined using techniques, such as weak-beam, dark field technique on ex-
tended nodes, among others [54]. 

The following information is intended to clarify the parameters required to deter-
mine the SFE by XRD in a critical, structured, and orderly manner, with the aim of obtain-
ing more reliable values from a simpler and more didactic methodology, starting from the 
shift of the peaks and profile lines. 

The traditional methodology for calculating the SFE by XRD uses Equation (1). 

ܧܨܵ = ஂభభభఠబீభభభ௔బ஺షబ.యళ

√ଷగ
〈ఢఱబ

మ 〉భభభ
ఈ

  (1)

where: 
 stacking fault energy (mJ/m2) = ܧܨܵ
Κଵଵଵ߱଴ = 6.6 (constant value) 
ܣ = ସସܥ2  ଵଵܥ) − ⁄(ଵଶܥ , A is the Zener elastic anisotropy and ܥ௜௝ are elastic stiffness coef-
ficients 
ଵଵଵܩ =  1 3⁄ ସସܥ) + ଵଵܥ −  ଵଶ) is the shear modulus in <111> direction (GPa.)ܥ
ܽ଴ = lattice constant (Å) 
〈߳ହ଴

ଶ 〉ଵଵଵ = root mean square microstrain in the <111> direction averaged over the distance 
of 50 Å 
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 .stacking fault probability = ߙ
The flow chart for calculating the SFE using the Equation (1) from XRD is presented 

in Figure 4, which includes material constants that can be obtained by experimental meth-
ods or values from the literature for alloys with similar composition. In this flow diagram, 
the first step is to adjust the background of the profile to a curve or, in general, to a straight 
line; taking special care with the tails of the profiles and avoiding underestimating or 
overestimating the intensity. The instrumental broadening must then be calculated from 
a standard sample and subtracted from the profile of the sample in order to calculate the 
microstrain. Next, the SPF is computed, since it only depends on the position of the peaks. 
The SFE can be calculated by considering the variables that depend on the elastic constants 
of the material, such as the Zener elastic anisotropy (A) and shear modulus (G) in the 
<111> direction. 

 
Figure 4. Chart to calculate the SFE from XRD and material elastic constants. 

In polycrystalline metals, the broadening and shift of the diffraction profiles are the 
product of plastic deformation. The broadening of the diffraction profiles is due to micro-
deformations, stacking faults and change in the size of the lattice parameter. Peak shift is 
the result of stacking faults, residual stresses, and variations in crystallite size due to the 
interstitial or substitutional atoms. Through mathematical models, it is possible to sepa-
rate the contribution from the factors that cause the shifting and broadening of the peak, 
as we will see in the following sections. 
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3.1. XRD Background Setting 
The number of counts should be enough to obtain high reflection intensity, which is 

reflected in the shape of the peaks. The intensity of the radiation recorded for the different 
Bragg angles is due to factors that, in principle, do not depend on the diffraction angle. 
Therefore, they must remain constant and the intensity fluctuation must be related in 
some way to the standard deviation of the count. For the correction of the background, a 
linear regression of the tails on both sides of the peaks is enough to later be subtracted and 
bring the baseline to zero. Another important consideration is to select the appropriate 
anode to perform the XRD measurements, since this determines the quality of the profile, 
which allows for the reduction in the amount of noise in the diffractogram data. The de-
termination of the background to bring the baseline to zero can be accomplished using 
software, such as OriginPro®, (Origin lab corporation, Northampton, MA, USA) X’Pert 
HighScore®, (Malvern Panalytical, Marlvern, UK) and FullProf®, (ILL, Genobre, France) 
among others. 

3.2. XRD Determination of the Mean Square Microstrain 〈ߝଶ(ܮ)〉 
To determine the microstrain present in the sample from the line profile breadth, it 

is necessary to use appropriate experimental techniques and mathematical treatments that 
consider factors, such as the peak profile width and shift. The broadening caused by the 
crystallite size and the stacking faults is independent of the reflection order. However, 
broadening due to the plastic deformation is dependent on the reflection order. The broad-
ening caused by the crystallite size and stacking faults is independent of the order of re-
flection, while the peak shift caused by plastic deformation produced by faults and resid-
ual stresses varies with the crystallographic orientation of the diffraction planes. The in-
strumental broadening can be determined using a calibration sample, under the same ex-
perimental conditions that are planned for the sample of interest. 

Refining the XRD profiles is a process involving the adjustment of one or more func-
tions to facilitate the analysis. The diffraction peaks of a sample are given by the convolu-
tion of two functions: one that refers to the experimental contribution (E) and the other 
that refers only to the reference, whose profile is free of instrumental factors (I). Therefore, 
to correct the experimental contribution in a diffraction profile, a deconvolution must be 
performed that involves the function related to the sample profile and the profile of a 
reference material free of any deformation. A rapid and easy method to apply deconvo-
lution by function fitting is proposed by Langford [55] who uses two functions, the Gauss-
ian and Cauchy function (or Lorentzian), considering that instrumental correction can be 
easily performed by subtraction as shown in Equations (2) and (3): 

௖ߚ = ௖ߚ 
ா − ௖ߚ

ூ  (2)

ଶ(ீߚ) = ீߚ) 
ா)ଶ ீߚ) −

ூ )ଶ  (3)

Therefore, the deconvolution of the instrumental profile can be performed through 
the integral breadth (ߚ), where ߚ௖ and ீߚ are the integral breadth of the profiles of the 
Cauchy and Gauss functions, respectively. The integral breadth is defined as the relation 
between the area and the maximum peak intensity. 

A strain-free sample with a homogeneous crystallite size greater than 100 nm is con-
sidered as calibration standard quality, such as ܤܽܮ଺, diffracted under the same condi-
tions where the instrumental width is ߚ௜ (Equation (4)) using the Caglioti Equation [56]. 

௜ߚ = ߠଶ݊ܽݐ ݑ√  + ߠ݊ܽݐ ݒ + (4)  ݓ

The values ݒ ,ݑ, and ݓ are obtained from a complete profile adjustment using re-
finement programs for XRD, where ݑ is the contribution of the microstrain breadth, ݒ 
and ݓ are the contribution of the instrumental breadth, and ߠ is the diffracted angle 
(e.g., for the GSAS (General Structure Analysis System is a set of programs for the pro-
cessing and analysis of both single crystal and powder diffraction data obtained with 
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XRD, which can be downloaded for free) program [57] those values correspond to ܩ௨, ܩ௩  
and ܩ௪, respectively. 

The contribution of the instrumental breadth as a function of ߚ ,ߠ௜, and the contri-
bution of the integral breadth (2ݓ) or full width at half maximum (FWHM) based on the 
work of Langford [58] is computed. We consider the following approximation corre-
sponding to the Lorenzian and Gauss contribution from the instrumental breadth (Equa-
tions (5) and (6)): 

ఉ೎
ఉ೔

= ܽ଴ + ܽଵ ቀଶ௪
ఉ೔

ቁ + ܽଶ ቀଶ௪
ఉ೔

ቁ
ଶ
  (5)

ீߚ

௜ߚ
= ܾ଴ + ܾଵ ൬

ݓ2
௜ߚ

−
ߨ
2

൰
ଵ/ଶ

+ ܾଶ ൬
ݓ2
௜ߚ

൰  + ܾଷ ൬
ݓ2
௜ߚ

൰
ଶ

 (6)

where ܽ଴ = 2.0207 , ܽଵ =  −0.4803 , ܽଶ =  −1.7756 , ܾ଴ = 0.6420 , ܾଵ = 1.4187 , ܾଶ =
 −2.2043 and ܾଷ = 1.8706 [58]. Compared to the exact solution, the value approxima-
tions do not exceed 1% error [58]. 

Once the instrumental contribution of the sample profile has been considered, the 
microstrain is calculated. To this end, the literature presents different methods, such as 
the Williamson–Hall plot method [28] and the Warren–Averbach method [59]. Ungár [60] 
used the Williamson–Hall plot to demonstrate that the high dispersion of points in the 
graph may signify the presence of high anisotropy in the microstrain. Moreover, although 
it is not possible to estimate the average size of the crystallites and the microstrain with 
precision, the high anisotropy in the microstrain can be verified qualitatively with this 
graph. On the other hand, the Warren–Averbach method for the analysis of the broaden-
ing of diffraction profiles allows for the determination of the crystallite size and the mi-
crostrain by considering the XRD profiles as a Fourier series expansion in reciprocal space. 
The real coefficient of the Fourier series is represented as the convolution of two terms 
described from the symmetric functions of Cauchy and Gaussian functions or the Voigt 
function. The latter function is the most used, due to its versatility and practicality, in 
addition to being a convolution of the Cauchy and Gaussian function [45]. For the real 
coefficient, one term is dependent on the column of the unit cell measured in the direction 
perpendicular to the reflection planes (L). Therefore, the crystallite size and the other in-
formation related to the deformation of the crystal is dependent on the reciprocal of the 
interplanar distance corresponding to the evaluated peak (d). Consequently, it can be ex-
pressed by Equation (7) [59]. 

,ܮ)ܫ 1 ݀⁄ ) = ,ܮ)஽ܫ(ܮ)௦ܫ  1 ݀⁄ )  (7)

where I represents the cosine Fourier coefficient, and ܫ௦ is related to size, while ܫ஽ rep-
resent deformation (ߝ௅). The last term is dependent on the reflection order and can be 
expressed as the average 〈cos (2ߝߨ௅ ܮ ݀⁄ )〉, which can be expanded as 1 − /〈(ܮ)ଶߝ〉ଶܮଶߨ2
݀ଶ [59]. Applying the logarithm to both sides of Equation (7), we can rewrite the expres-
sion as show in Equation (8) for small values of L as a Gaussian function. 

,ܮ)ܫ݊ܮ 1 ݀⁄ ) = (ܮ)௦ܫ݊ܮ   − ଶ (8)݀/〈(ܮ)ଶߝ〉ଶܮଶߨ2

-is the MSM over the mean L assessed, where angle brackets indicate spatial aver 〈(ܮ)ଶߝ〉
aging. (ܮ)ߝ is not deformation as it is generally defined, but corresponds to the changes 
along the planes normal to the diffraction planes of the vectors of displacement in posi-
tions at a distance L [61]. Additionally, for different higher-order reflections diffracted on 
the same family of lattice planes, ܫ௦  and 〈ߝଶ(ܮ)〉 are equal and thus the size and mi-
crostrain for each L value can be obtained for at least two reflection peaks from the same 
crystallographic-plane family [62]. In general, the size and microstrain occur simultane-
ously, but the presence of the Hook effect (loss of linearity when L approaches zero) gen-
erates substitutions. For this reason, the MSM value for an arbitrary value of 50 Å has 
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been considered as a reference [63] due to the fact that at this distance the Hook effect is 
not present. 

From Equations (2), (3) and (7), considering only the effect of the microstrain, the 
following can be written [62]. 

〈(ܮ)ଶߝ〉 =  
1
ଶݏ ൭

஽ீߚ
ଶ

ߨ2
+

஽஼ߚ

ଶߨ ൬
1
ܮ

൰൱ (9)

where 

ܮ =  
ߣ݊

ଶߠ݊݅ݏ)2 − ଵ) (10)ߠ݊݅ݏ

ݏ =  
ߠ݊݅ݏ2

ߣ
=  

1
݀

 (11)

 ஽ீ is the Lorentzian size integral breadth andߚ ,஽஼ is the Cauchy size integral breadthߚ
 radiation coming from anode. To set the diffraction profile ߙܭ is the wavelength of the ߣ
and determine the MSM, one can use software, such as Shadow [64], which allows the 
user to choose the fit function and provide refined positions of the maximum peaks, in-
tensities, and parameters depending on the function and considering the instrumental 
profile. Another option is the program Breadth [65], which computes the MSM from the 
integral breadth or input FWHM at least two diffraction peaks. The program also allows 
one to choose different fit functions and obtain output files that allow plotting <ε2(L)> as a 
function of 1/L. It should be noted that the Breadth program is found within the Shadow 
package. 

3.3. Determination of Peak Positions 
Precise determination of the position of’ the diffraction peak at each reflection angle, 

-begins with selecting the intensity data at several points on the peaks. Before deter ,ߠ2
mining the peak positions, the background must be corrected by subtracting it as men-
tioned above in Section 3.1. There are several methods, graphical and analytical, to deter-
mine the angular position of a diffraction peak. The simplest method is to locate two 
points over 2θ axis on either side of the peak at which the intensity is equal and to suppose 
the peak position to be at the midpoint [66]. Other authors recommend calculating the 
vertex of the parabola defined by points whose intensities are greater than 85% of the 
maximum intensity, with an approach to 0.01° resolution and fitting a parabola by least 
squares regression and then calculate the peak vertex [67]. If the intensity has many points, 
the peak position can be calculated as the centroid of the area above the background, but 
extreme care must be taken with the tail truncation of the diffraction peak [66]. Fitting the 
diffraction data for each peak to Voigt function is another method that is widely used. 

3.4. Stacking Fault Probability 
The stacking fault probability is obtained from the relative shift of the diffraction 

peaks. To determine this shifting, it is necessary to accurately determine the position of 
the diffraction peaks as discussed in the Section 3.3. 

The SFP can be determined directly from the diffractogram considering the change 
in the position of the diffraction lines of the deformed sample with respect to the stress-
free or annealed sample. Therefore, the accuracy of the SFP depends on the position where 
the diffraction peak can be located. Warren [47] analyzed the displacement of the diffrac-
tion peaks at 2θ due to the stacking fault, which allows for the derivation of Equation (12) 
to calculate the SFP (α): 

(௛௞௟ߠ2)∆ = +
90 √3 α tan(ߠ௛௞௟)

 ଶ ℎ௢ߨ
ଶ ݑ) + ܾ) ෍ ଴ܮ( ± )

௕
 (12)

where: 
 change in the position of the diffraction lines = (௛௞௟ߠ2)∆
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௛௞௟ߠ  = the diffraction angle for each peak 
°∑ ଴௕ܮ( ± ) ℎ଴

ଶ(ݑ + ܾ)⁄  = constant specific to each h k l reflection (Table 1). 

Table 1. Constants for calculating the SFE in f.c.c. structures [59]. 

Indices of Reflection 
[H K L] 

෍ ૙ۺ( ± )
܊

૙ܐ
૛(ܝ + ൗ(܊  

1 1 0   1 4⁄  
2 0 0 − 1 2⁄  
2 2 0   1 4⁄  
3 1 1 −1 11⁄  
2 2 2 −1 8⁄  
4 0 0   1 4⁄  

Warren [60] presented a simple method for measuring the SFP from the shift of the 
peaks by proposing the comparison of two samples, one free of deformations and the 
other deformed, considering only the reflection peaks corresponding to (111) and (200) in 
order to increase sensitivity. In this way they derived Equation (13): 

ଶ଴଴ߠ2)∆
଴ − ଵଵଵߠ2 

଴  ) =  −
ߙ3√45

ଶߨ ଶ଴଴ߠ݊ܽݐ) +  
1
2

ଵଵଵ) (13)ߠ݊ܽݐ

The requirement to have strain-free alloys for the same composition was overcome 
by Talonen and Hänninen [68] who developed a method to determine the SFP assuming 
that (i) the sample is free of long-range residual stresses and (ii) peak positions are affected 
only by lattice spacing according to Bragg’s law and due to stacking faults. Thus, they 
suggested using the five reflection peaks of the γ to generate five equations with two un-
known parameters (interplanar spacing dhkl and α), and thereby allowing for the compu-
tation of the variables shown in the Equation (14) using less squares. This method has 
been used by multiple authors to calculate the SFP in austenitic steels, with results that 
are close to 3.2% variation, compared to the other models [68–71]. 

௛௞௟ߠ2 = ݊݅ݏܿݎܽ 2 ൬
ߣ

2 ݀௛௞௟
൰ +

90 √3 α tan(ߠ௛௞௟)
ଶ ℎ଴ߨ

ଶ (ݑ + ܾ) ෍ ଴ܮ( ± )
௕

 (14)

݀௛௞௟ =  
ܽ଴

√ℎଶ + ݇ଶ + ݈ଶ
 (15)

3.5. Elastic Constants 
The elastic constants reflect the nature of the interatomic bonds and the stability of 

the solid. The following inequalities are related to a solid’s resistance to small defor-
mations and they must hold true for cubic structures: ܥଵଵ − ଵଶܥ > ସସܥ ,0 > 0 and ܥଵଵ +
ଵଶܥ2 > 0 [72]. These criteria will be used in Section 5 to determine the range of variation 
of the SFE as a function of the elastic constants for a specific alloy. It is important to men-
tion that the quality of the SFE values obtained are related to the values used for the elastic 
constants (ܥଵଵ, ,ଵଶܥ  ସସ), which define the material properties and depend on the alloy andܥ
quantity. Therefore, variations in these constants will have an important impact on pa-
rameters, such as the Zener constant (A) (see Equation (1)) and the shear modulus (ܩଵଵଵ) 
(see Equation (1)). 

This variation is due to the use of different methodologies (see Table 3) and the effect 
of certain alloys. Gebhardt, et al. [73] used ab initio calculations to demonstrate that in-
creasing the concentration of Al from 0% to 8% decreases the value of the elastic constants 
C11, C12 and C44 by up to 22%. Moreover, increasing the Mn content for rates of Fe/Mn of 
4.00 and 2.33, resulted in the reduction of the C11 and C12 constants by 6%, but the value 
of C44 is independent of the Mn content. For the case of Fe-Cr ferromagnetic alloys (b.c.c. 
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structures), Zhang, et al. [74] found that the elastic parameters exhibit an anomalous com-
position dependence around 5% of Cr attributable to volume expansion at low concentra-
tions. This is represented to a greater extent by the constant ܥଵଵ, which represents approx-
imately 50% of the value reported for Fe-Mn-based alloys. The use of these constants 
would result in the overestimation of the SFE value. 

Experimental investigations carried out by different authors [75,76] have shown the 
effect of elements, such as Al, on the Néel temperature for Fe-Mn-C alloys. These alloys 
present a magnetically disordered state quantified in the relation (ܥଵଵ − (ଶଶܥ 2⁄  [77]. Sim-
ilarly, variations in the Mn content results in the variation of ܥସସ without affecting the 
magnetic state [24]. This effect in the magnetic states causes variations in the values of the 
elastic constants [24]. Additionally, it is important to note that among the referenced stud-
ies, only some report uncertainty in the elastic constant measurements, which directly af-
fects the uncertainty of the SFE and its final range. 

4. Experimental Procedure 
4.1. Specimen Preparation 

Three Fe-Mn-Al-C alloys were utilized, and their chemical composition is shown in 
Table 2. These chemical compositions were chosen to obtain a totally austenitic micro-
structure and in order to achieve different SFE values (various plasticity mechanisms) to 
validate the method under study. High purity iron, manganese, Fe-4C, and aluminum 
were used as alloys. The alloys were melted in an induction furnace and then air cooled. 
The cast iron was cut into 70 mm cubes and covered with zirconia to protect them from 
oxidation during thermo-mechanical treatment. The molten ingots were heated to 1200 
°C, rolled in approximately 80 steps to obtain approximately 6 mm thick sheets, and sub-
sequently air cooled. To guarantee isotropic properties and reduce the effect of micro-
stresses produced by inhomogeneous plastic deformation in the rolled material, the spec-
imens were solubilized at 900 °C for one hour and cooled in the furnace. The oxide layers 
that formed during the thermal and thermo-mechanical treatments were removed by ma-
chining and flat specimens were obtained in the rolling direction of 5 × 25 × 10 mm3. To 
carry out the XRD tests, the surfaces of the specimens were brought to a mirror-like finish, 
starting with # 400 sandpaper and working up to # 1200. Afterwards, the specimens were 
passed through a polishing cloth using 1 and 0. 3 μm alumina suspension. 

Table 2. Fe-Mn-Al-C alloy chemical compositions. 

Alloy 
Fe  

(% wt) 
Mn  

(% wt) 
Al  

(% wt) 
C  

(% wt) 
Fe-22Mn-0.9C-0Al Balance 20.5 0 0.87 
Fe-22Mn-0.9C-3Al Balance 22.2 3.5 0.84 
Fe-22Mn-0.9C-8Al Balance 22.1 8.3 0.89 

4.2. X-ray Diffraction 
Measurements were made using a PANalytical X’Pert PRO MRD diffractometer 

equipped with a copper tube anode with a wavelength of the ߙܭଵ  radiation of 1.5405981 
Å. A current of 40 mA and a voltage of 45 kV were used as settings for the tube. The 
operating parameters were selected in order to obtain profiles with enough quality result-
ing in narrow peaks and the detection of peaks in minor phases. The data was obtained in 
a period of 1.5 h for a range of 2θ, between 40 and 100 degrees with steps of 0.02°. The 
XRD analysis was carried out along the cross-section. 

The phase refinement was implemented using the Rietveld method [78] through the 
free GSAS software [57], as shown in the Figure 5. This included the crystallite size, peak 
broadening, peak position, and detection of microstrain. To validate the proposed meth-
odology, a commercial alloy, Hadfield steel was also used for the analysis (for details on 
this steel and its characterization see [79]). This steel (Fe-Mn-C) has a nominal composition 
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of 10 to 14 % Mn and between 1.0 to 1.2 % C [79,80]. The SFE of this type of alloy has 
previously been determined by indirect (“Subregular Solution Model”) [79,81] and direct 
methods [82], with SFE values of 23 ± 2 mJ/m2. 

 
Figure 5. XRD for Hadfield commercial alloy. 2θc is the diffraction angle with maximum intensity. 
wL and wG are the Lorentzian and Gaussian breadth with respective errors. XRD extract from [79]. 

The refined profile of the XRD pattern and the parameters wL and wG (the physical 
Gaussian and Lorentzian broadening components respectively) are obtained from the 
convolution of the line profile shown in Figure 5. The SFP was then calculated with a value 
of 7.7 × 10−4 and a lattice parameter of 3.614 Å. The program BREADTH outputted an MSM 
of 50 Å with a value of 10.07 × 10−6.  

4.3. Determination of the SFE 
Based on the diagram presented in Figure 4, the following procedure is used to de-

termine the SFE: (i) obtain the diffractograms by means of XRD using a cobalt anode, (ii) 
 ଺ is used as a calibration sample under the same experimental conditions to retrieveܤܽܮ
the instrumental contribution of the profile and the profile of the material, (iii) obtain the 
 parameters with their respective errors, (iv) using the position of the reflection ீߚ ௖ andߚ
peaks, the SFP and the lattice parameter are calculated where the latter was used as a 
verification parameter, since it must closely match the value obtained using the Rietveld 
method, (v) using the program BREATH and the deconvolution parameters with their 
respective errors for the five peaks, the MSM list was obtained at different lengths, which 
was interpolated for 50 Å, (vi) select the values of the elastic constants to be used, either 
experimentally or from the literature, and (vii) evaluate the SFE with the previously ob-
tained values and multiply the result by 103 depending on the units of the established 
variables. 

Additionally, the SFE was calculated for Fe-Mn-Al-C alloys using a thermodynamic 
model [13] at room temperature (300), an infinite grain size, and a surface interfacial en-
ergy between the γ and ε of 10 (J/mol). 

5. Results and Discussions 
Given that A and G111 in Equation (1) proportionally affect the calculation of the SFE 

and their values are a function of the elastic constants; these in turn were obtained from 
other alloy systems that do not necessarily contain the same alloys or in the same propor-
tions. In the absence of experimental data, theoretical values have been used to calculate 
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the SFE in manganese steels by XRD. Based on the considerations above, an analysis was 
performed with the values reported in the literature for Fe-Mn base alloys. The analysis 
consisted of using the different elastic constants reported in the literature for other alloy 
systems in order to calculate the SFE of the austenitic Hadfield steel in the present work 
(control or reference sample). The aim was to compute the percentage error in the deter-
mination of the SFE when taking values of the elastic constants of different alloy systems, 
as displayed in Table 3. The MSM was calculated by the program BREATH using the Voigt 
convolution model, which outputted the SFE value in the expected range. The mean SFE 
value was 24.32 mJ/m2, which was taken as a basis for the different studies of the SFE and 
was within the range established in the literature of 23 ± 2, as stated above. 

Table 3. SFE of the Hadfield steel (reference sample) for different elastic constant values. 

Reference 
Composition of 
Alloys (wt. pc) 

Methodology 
C11 

[GPa] 
C12 

[GPa] 
C44 

[GPa] 

Determined SFE of 
the Hadfield Using 

These Elastic 
Constants (mJ/m2) 

Music, et al. [83] Fe-10Mn  ab initio 210 153 135 20.53 

Bampton, et al. [84] Fe-18Cr-12N-3Mo 
Crystal 
Grown 

235 138.5 117 29.2 

Endoh, et al. [85] Fe-30Mn  Atomic Force 200 ± 9 127 ± 6 130 ± 3 24.1 ± 0.9 
Gebhardt, Music, 

Kossmann, Ekholm, 
Abrikosov, Vitos 

and Schneider [73] 

Fe-25Mn-2Al ab initio 153.6 105 135.5 18.5 

Pierce, Nowag, 
Montagne, Jiménez, 
Wittig and Ghisleni 

[24] 

Fe-18Mn-1.5Al-
0.6C 

Nanoindentat
ion 

169 ± 6 82 ± 3 96 ± 4 26.9 ± 1 

Lenkkeri [86] Fe-38.5Mn Ultrasound 169.2 97.7 140.1 25.9 
Cankurtaran, 

Saunders, Ray, 
Wang, Kawald, 

Pelzl and Bach [77] 

Fe-40Mn  Ultrasound 170 98 141 24.27 

Stinville, et al. [87] 316L  
Nanoindentat

ion 
196 129 116 21.9 

Pierce, Nowag, 
Montagne, Jiménez, 
Wittig and Ghisleni 

[24] 

Fe-22Mn-3Al-3Si Nanoindentat
ion 

175 ± 7 83 ± 3 97 ± 4 27.3 ± 1.1 

To establish the effect of elastic constant variation on the SFE and the predominant 
deformation mechanisms in alloys based on Fe-Mn (particularly Hadfield steel), an anal-
ysis was carried out based on the restrictions of the elastic constants raised in Section 3.5. 
The values of the elastic constants reported in the investigations related to Table 3 for Fe-
Mn base alloys with alloys, such as Al, Si, and C, which were further expanded upon while 
considering the range of variation. Moreover, the range of reduced elastic constants was 
limited by ܥଵଶ ⁄ଵଵܥ  and ܥସସ ⁄ଵଵܥ , which was studied by Blackman [88] to evaluate the re-
sponse surface for ranges of ܥଵଶ ⁄ଵଵܥ  between 0.66 and 0.5 and extreme values of ܥସସ of 
96 GPa and 141 GPa as shown in Figure 6. By expanding the range of constants used to 
obtain the SFE, a greater response area is presented in the range of 20 to 40 mJ/m2. This 
corresponds to the TWIP deformation mechanism, with a small part of the surface in the 
TRIP range where the SFE is below 20 mJ/m2. 
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Figure 6. Effect of the variation in the elastic constants ܥଵଵ and ܥଵଶ for limit values of ܥସସ on the 
SFE for Hadfield steel. 

Figure 7 displays XRD patterns of the three Fe-22Mn-xAl-0.9C alloys. XRD analysis 
shows that the alloys are austenitic (γ), as shown in the Table 4. The peaks shift due to the 
addition of aluminum and its effect, according to Bragg’s law, generates an increase in the 
lattice parameter and the crystallite size. Since aluminum enters in the crystalline lattice 
and has a larger atomic radius, the lattice parameter increases. 

 
Figure 7. The XRD patterns of various Fe-22Mn-xAl-0.9C with x equal to 0, 3, 8 wt%. 

Table 4. Values of the Rietveld refinement parameters where a is the lattice parameter, Vol is the 
crystal volume, X2 is the chi square, and F2(R) is the difference between the theoretical and experi-
mental intensities. 

Alloy Phase 
a [Å] ± 
0.005 

Vol [Å૜] ± 
0.6 

X2  F2(R) 

Fe-22Mn-0.9C-0Al 0.0431 5.8 47.713 3.627 ߛ 
Fe-22Mn-0.9C-3Al 0.0383 3.9 47.990 3.634 ߛ 
Fe-22Mn-0.9C-8Al 0.0523 5.2 49.471 3.671 ߛ 
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The values obtained for the three alloys are presented in Table 5 in addition to other 
variables, such as the lattice parameter, SFP, and MSM, that are required for the calcula-
tion. The average value of the SFE is obtained using the elastic constants presented in 
Table 3. Considering that the literature does not report exact values for the compositions 
presented and the calculated values of the SFE do not agree between the two methods 
used; it is observed that the probable deformation mechanisms for the alloys are TRIP, 
TWIP and MBIP, for 0% Al, 3% Al, and 8% Al, respectively. This deformation mechanism 
trend for the three alloys agrees with the model planned by Chaudhary, Abu-Odeh, 
Karaman and Arróyave [30]. A detailed description about the effect of the Al increase on 
the SFE can be found in Chen, et al. [89] and Tian, Li and Zhang [53]. 

Table 5. List of parameters from diffraction peaks for each alloy used to calculate the SFE. 

Alloy SFPx104 〈ࢿ૛(ࡸ)〉 
SFE * 

(mJ/m2) 
SFE ** 

(mJ/m2) 
Fe-22Mn-0.9C-0Al 9.62 ± 2.68 8.92 17.53 ± 2.47  10.99 
Fe-22Mn-0.9C-3Al 6.52 ± 2.96 13.56 35.61 ± 4.76 33.42 
Fe-22Mn-0.9C-8Al 7.48 ± 3.24 21.86 50.76 ± 6.73 53.35 

* current XDR model, ** Subregular Solution Model [13]. 

The effect of elastic constant variation on the SFE as well as the average of ܥଵଵ and 
 ଵଶ for the value calculated with the current XRD model for the three alloys is presentedܥ
in Figure 8. The horizontal planes represent the SFE values in which the literature reports 
a change in the deformation mechanism; the SFE values less than 20 mJ mଶ⁄  correspond 
to TRIP, SFE values between 20 mJ mଶ⁄  and 40 mJ mଶ⁄  represent TWIP, and quantities 
over 40 mJ mଶ⁄  are associated with MBIP. The limit surfaces for the three alloys consid-
ered the same group of elastic constants that were used for Hadfield steel, with the SFP 
and MSM as the only varying values. For the case of Fe-22Mn-0.9C-0Al, the average of the 
elastic constants defines this alloy as TRIP but increasing C11 and C12 within the range of 
possible values places this alloy in the TWIP category (Figure 8a). Similar behavior occurs 
with the Fe-22Mn-0.9C-3Al alloy for the TWIP and MBIP mechanisms (Figure 8b). In con-
trast, the most likely mechanism is MBIP for the 22Mn-0.9C-8Al alloy (Figure 8c). There-
fore, the selection of the elastic constants plays a very important role in determining the 
SFE and the predominant mechanism of the alloy. 

 
(a) 
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(b) 

 
(c) 

Figure 8. Variation in the elastic constants ܥଵଵ and ܥଵଶ for limit values of ܥସସ and the effect on the 
SFE for (a) Fe-22Mn-0.9C-0Al, (b) Fe-22Mn-0.9C-3Al and (c) Fe-22Mn-0.9C-8Al. 

In the Reed and Schramm [26] method, the critical parameters are the stacking fault 
probability and the degree of deformation represented by MSM. Nevertheless, if the var-
iations of the constants ܥଵଵ, ܥଵଶ and ܥସସ reported in the literature for different austenitic 
steels are considered, the variations in the SFE values can go to 36.6% for the Fe-22Mn-
0Al-0.9C alloy, while that for the Fe-22Mn-3Al-0.9C and Fe-22Mn-8Al-0.9C alloys the var-
iation is 28% and 28.4% respectively. The decrease in error is due to the addition of alu-
minum, as shown by Jung, Lee and De Cooman [75] caused by fluctuation in polycrystal-
line shear modulus. Due to SFE variations, the Fe-22Mn-0Al-0.9C alloy can be TRIP or 
TWIP as deformation mechanism, while the Fe-22Mn-3Al-0.9C alloy can be TWIP or MBIP 
and the probable deformation mechanism is MBIP for Fe-22Mn-8Al-0.9C alloy. 

6. Conclusions 
This research compiled and organized a clear methodology to calculate the SFE using 

the XRD technique. The results support the following conclusions: 
 The flow diagram presents the calculation of the SFE using data obtained by XRD in 

addition to values of the elastic constants. The procedure was verified with a widely 
used commercial Hadfield-type alloy, where the values obtained were within the 
range established by previous investigations. 
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 Average SFE reference values can be obtained using elastic constants of alloys with 
similar compositions, which serve an alternative when it is not possible to retrieve 
the values from experimental tests or computational calculations. However, for Had-
field steel, the variation of the elastic constants in the range in which they have been 
reported generates a variation in the calculated SFE of 30%. 

 ܥଵଵ and ܥଵଶ are within the ranges reported for austenitic steels generates variations 
of 36.6%, 28%, and 28.4% in the value of the SFE for the Fe-22Mn-XAl-0.9C alloys 
studied with 0%, 3%, and 8% Al, respectively; representing the possibility that these 
alloys present TRIP or TWIP deformation mechanisms for the case of 0% and TWIP 
or MBIP for 3% Al content. In the case of the alloy with 8% Al, the probable defor-
mation mechanism is MBIP even with the variation in SFE. 

 The SFE variation is 11.6%, 12.3%, and 11.5% for alloys with 0%, 3%, and 8% Al, re-
spectively. When changing ܥସସ between the extreme values reported for this con-
stant reflected in a smaller effect concerning the variations of ܥଵଵ and ܥଵଶ. 
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