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Abstract: A critical assessment has been performed to determine the stacking fault energy (SFE) of
the austenite phase in high manganese steels using X-ray diffraction (XRD). It was found that the SFE
varies substantially with the chosen elastic constants. This strong dependence induces substantial
errors in the estimated values of the SFE of the austenite and, thus, the mechanical behavior of
Fe-Mn-Al-C steels. The SFE of three different Fe-Mn-Al-C alloys with varying aluminum (Al) content
was determined in order to establish the main plastic deformation mechanism. The aim of this work
is to establish a more straightforward and reliable methodology to calculate the SFE by XRD. In this
effort, it was determined that uncertainty in the elastic constants can generate errors in up to 37%
of the SFE. Moreover, in the studied case, for average of elastic constant values, the predominant
deformation mechanism is defined, but when considering one set of constants, these can present
uncertainty of 2.7 mJ/m2 and 4.4 mJ/m2 for alloys of 0% Al and 3% Al, respectively. This would lead
them to be within the following plastic deformation mechanism, while for 8% Al the uncertainty is
negligible.

Keywords: austenitic steel; X-ray diffraction; stacking fault energy; elastic constants

1. Introduction

Manganese steel alloys containing aluminum simultaneously exhibit high mechan-
ical resistance and ductility, or high wear resistance [1,2], as well as a high rate of work
hardening. This is mainly due to plasticity mechanisms in addition to conventional slip dis-
locations, such as transformation induced plasticity (TRIP) [3], twinning induced plasticity
(TWIP) [4], and microband induced plasticity (MBIP)) [5]. The presence of these plasticity
mechanisms in this alloy is largely related to the SFE of austenite [6] which in turn dic-
tates the final mechanical properties and dynamically recrystallized microstructures [7–10].
Different methods have been presented in the literature to estimate the SFE of a given
alloy. The use of thermodynamic models has been widely reported [11–13]. However, this
method has the same limitations that are inherent in any mathematical model. For example,
interfacial energy values between austenite and martensite phases are assumed since these
values are difficult to determine experimentally. In the same way, linearity assumptions are
used for binary, ternary, or quaternary alloys to combine different Gibbs free energies, as
well as the effect of their interactions or use of different thermodynamic functions available
for the same chemical element. This has led to variations in the SFE values for the same
alloy depending on the author (e.g., the reported SFE differs by 52.4% between authors for
a Fe-18Mn-0.5C alloy) [14,15].

Transmission electron microscopy (TEM) [16–18] is a direct method with high reso-
lution and accuracy for estimation of the SFE. Certain aspects limit its use compared to
other indirect methods, such as the following: (i) exhaustive preparation of the sample
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(~100 µm3) is required to obtain electron diffractions and the sample does not represent
the generalities of the microstructure or of the bulk [19], (ii) dislocations can only be ob-
served as thin lines at the nanoscale [20] and special attention is required to not confuse
them with contrast phenomena, (iii) deviations in measurements may exceed the average
value [20], (iv) the probability of finding dislocations with the required geometries is low,
(v) the precision depends largely on the models with which the data are interpreted and
the skill of the person who performs and interprets the studies, and (vi) this technique is
generally limited to steels with low values of SFE and no previous deformation since these
two conditions are required in order to observe and measure the radius of the dislocation
node [21] or clearly distinguish dissociated dislocations.

The SFE can also be estimated from first principles (ab-initio) [22], but this method
requires a large computing capacity and is limited in terms of spatial resolution (only
applicable for short-range systems measuring a few nanometers). Moreover, the first
principle is restricted to binary systems and a few ternary cases, which further prohibits
its extended application. Molecular dynamics is an additional method demanding great
computational resources, but there are inherent limitations in the atomic models used at
nanoscopic scales where only the equations that define the interaction between atoms for
binary systems, some ternary systems, and few quaternary systems [23] can be utilized to
determine properties, such as elastic constants [24].

An alternative procedure for determining the SFE is XRD [25–29]. This technique has
a low cost, offers greater ease of use, and a larger volume of the sample can be analyzed.
However, calculating the SFE using XRD currently presents different challenges. There are
characteristic errors in the selection of elastic constants. While some authors recommend
using steel elastic constants with properties like the alloy under study, in most cases there
is little or no information on elastic constants for certain alloys. Likewise, the length at
which the microstrain must be determined must be on average 50 Å in the direction normal
to the diffraction plane (111) [29] to avoid the Hooke effect (non-linearity). Variation exists
in the calculated quantity because the microstrain is computed as the slope in the graph of
ln{A(L)} vs L [27] where A(L) is real coefficient of the Fourier series and L is the measure
of the column of the unit cell. For simplicity, other authors determine the microstrain
with techniques, such as the Williamson-Hall plot [28]. An important consideration for
this method lies in the fact that it assumes contributions related to the size of the grain
and deformation in the crystal lattice in the diffraction profile as approximations of a
Lorentzian function for both contributions (size and microstrain). However, this fact is
highly unlikely to occur in practice, leading to the Williamson-Hall plot currently being
used only to provide qualitative information on the microstructure of the analyzed material.
Some of the assumptions raised above have produced overestimates of up to 15% [15],
which may be one of the reasons why this technique has not been adopted as widely as the
other methods. Although computational methods, such as thermodynamic models and the
ab-initio method to determine SFE, have become more widespread, reliable experimental
methods are still needed to verify the results [25]. Taking into account the points mentioned
above, the present work seeks to stimulate research in this field by providing a clear and
simple methodology to calculate the SFE in austenitic manganese steels using the XRD
technique through the work proposed by Reed and Schramm [26]. Furthermore, while
the effect of elastic constants in the calculation of SFE is well-known, very few papers
have considered the variations on the SFE due to their selection. In other words, many
authors have overlooked this fact and have assumed that the elastic constants’ variations
can be easily considered to be equal or similar to other alloys with similar chemical
compositions [30]. Therefore, this work aims to determine the sensitivity in the selection of
the elastic constants, in addition to presenting a detailed methodology for their calculation
and the necessary considerations to be made.
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2. About the Stacking Fault and Stacking Fault Energy

From the crystallographic point of view, the difference between a structure free of
deformations and one that has undergone plastic deformation must be clear in order to
understand how these factors affect and are reflected in the diffraction peaks. Stacking
defects can be introduced in a crystal through plastic deformation or during solidification.
An ideal f.c.c structure can be considered as a sequence of stacking planes ABC ABC ABC
(Figure 1a) packed in the direction of the <111> plane. Stacking fault can be visualized
as existing when the stacking changes to ABC ACA BCA. That is, there is a plane that
does not follow the previous order in the sixth plane. Crystallographically, this area is
configured as a sequence of planes characteristic of the hexagonal close packed (h.c.p.)
structure (Figure 1b). Another possibility is the generation of an ABCACBCAB fault type,
where A is the plane of symmetry, which is defined as a twinning fault (Figure 1c) [31].

Figure 1. Representation of the stacking fault sequence in a f.c.c. structure. (a) represent the sequence
for a f.c.c. structure, (b) h.c.p. structure, and (c) f.c.c. to h.c.p. and twin.

From the phase transformation standpoint, in austenitic manganese steels the stack-
ing fault begins as a perfect dislocation in the f.c.c. structure, called austenite (γ). When
subjected to plastic deformation, there is sliding of the lowest dense planes that separate in
Shockey partial dislocations along each intercalated plane in the <111> direction forming
local h.c.p. (martensite-ε) structures or twins (crystallographic mirror image) [32]. In sum-
mary, there is susceptibility to prompting either a transformation from γ→ ε -martensite
or twinning and to change the way that the dislocations behave to form microbands de-
pending on the SFE of the austenite. Figure 2 was constructed to schematically show the
change in the main plastic deformation mechanism of austenite as a function of increasing
SFE; this was the result of a literature review and the author’s knowledge [6,33]. As the
deformation progresses, the martensite-ε tends to transform into martensite-α’ (b.c.c. or
b.c.t.). For industrial applications, transformation to α’-martensite contributes to the strain
hardening and ductility of TRIP steels [34].
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Figure 2. Schematic representation of the plastic deformation mechanisms in austenitic manganese
steels.

SFE has achieved great importance as a design parameter in austenitic steels containing
manganese because their mechanical strength, ductility, and strain hardening rate depend
on the stability of austenite (martensitic transformation induced by deformation in ε-
martensite, α’-martensite, mechanical twins, or slip dislocations), which is determined by
the SFE. The general ranges in which these mechanisms are predominant as a function
of SFE are reported by various authors and are presented in Figure 3. The SFE for steels
based on the deformation mechanism is listed as follows: TRIP (SFE < 20 mJ/m2), TWIP
(SFE between 20 mJ/m2 and 40 mJ/m2), and MBIP (SFE > 40 mJ/m2). These mechanisms
dynamically reduce the movement of dislocations within the grains, which reflects the
variation in the mechanical properties.

1 

 

 

Figure 3. Deformation mechanisms of Fe-Mn-Al-C austenitic steel as a function of SFE where the
vertical lines represent the deformation mechanism threshold. I [12], II [35], III [36], IV [37], V [22],
VI [38], VII [5], VIII [39].



Metals 2021, 11, 1701 5 of 20

3. About the X-ray Diffraction Technique for Determining the SFE

In the 1950s, the first investigations to determine the SFE in austenitic steels based
on XRD methods were published. These studies were mainly based on the work carried
out by Paterson [31], who showed that the stacking faults in the <111> planes in f.c.c.
structures resulted in the widening and shifting of the diffraction peaks. Smallman and
Westmacott [40] later revealed that the probability of the stacking faults (α) or sum of the
probabilities is related to the crystallite size and the magnitude of the microstrain. In the
1960s, the works of Otte and Welch [41], Adler and Otte [42], and Otte [43], were questioned
for their accuracy compared with direct electron microscopy methods [44]. Subsequently,
in 1974 Reed and Schramm [26] presented the relationship between SFE, microstrain,
and the stacking fault probability for the first time, allowing for the application of this
method for wide ranging SFE alloys with easily reproducible results. This method is widely
used due to its relative ease of use and interpretation. The crystallographic study using
XRD was called line profile analysis, which provides information on larger sample sizes
than other techniques, such as TEM. The shape and width of an XRD profile is basically
determined by the mean size of the crystallites and by the microstrains present in the
crystal lattice of the material under study [45] in addition to the instrumental contribution.
If the deformation is not homogeneous, which occurs in most cases, and is produced in the
material by mechanical deformation processes [46], there will be a widening of the peak,
while peak shifts will be apparent due to the presence of stacking faults, changes in the
lattice parameter, and/or residual stress [47]. The XRD method has been widely used to
establish the mean square microstrain (MSM), and stacking fault probability (SFP); these are
the parameters required for the calculation of the SFE in austenitic alloys [48–50]. The mean
square microstrain is defined as the average square of the deformation associated with
changes in the internal structure, shape, and volume on a microscopic scale involving planar
discontinuities and/or displacements of atoms in the crystal lattice [51]. Furthermore, the
SFP is associated with the probability of stacking fault occurring between two adjacent
<111> planes [52]. This method allows for the determination of structural parameters
statistically averaged for a volume of 109µm3, which is equivalent to approximately 107

times the required volume in TEM analyses. Additionally, the calculation is simpler and
more reliable for the characterization of the microstructure by refining the line profile
without limitations in the measurement range [53]. The method proposed by Schramm
and Reed [29] for the estimation of SFE has been the basis of numerous studies. However,
the SFE values for some pure materials in this study tend to be overestimated by up to 36%
if the SFE values determined by TEM are considered true; particularly those values which
are determined using techniques, such as weak-beam, dark field technique on extended
nodes, among others [54].

The following information is intended to clarify the parameters required to determine
the SFE by XRD in a critical, structured, and orderly manner, with the aim of obtaining
more reliable values from a simpler and more didactic methodology, starting from the shift
of the peaks and profile lines.

The traditional methodology for calculating the SFE by XRD uses Equation (1).

SFE =
K111ω0G111a0 A−0.37

√
3π

ε2
50111

α
(1)

where:

SFE = stacking fault energy (mJ/m2)
K111ω0 = 6.6 (constant value)
A = 2C44/(C11 − C12), A is the Zener elastic anisotropy and Cij are elastic stiffness coeffi-
cients
G111 = 1/3(C44 + C11 − C12) is the shear modulus in <111> direction (GPa.)
a0 = lattice constant (Å)
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ε2
50111 = root mean square microstrain in the <111> direction averaged over the distance of

50 Å
α = stacking fault probability

The flow chart for calculating the SFE using the Equation (1) from XRD is presented in
Figure 4, which includes material constants that can be obtained by experimental methods
or values from the literature for alloys with similar composition. In this flow diagram, the
first step is to adjust the background of the profile to a curve or, in general, to a straight
line; taking special care with the tails of the profiles and avoiding underestimating or
overestimating the intensity. The instrumental broadening must then be calculated from
a standard sample and subtracted from the profile of the sample in order to calculate the
microstrain. Next, the SPF is computed, since it only depends on the position of the peaks.
The SFE can be calculated by considering the variables that depend on the elastic constants
of the material, such as the Zener elastic anisotropy (A) and shear modulus (G) in the <111>
direction.

Figure 4. Chart to calculate the SFE from XRD and material elastic constants.

In polycrystalline metals, the broadening and shift of the diffraction profiles are the
product of plastic deformation. The broadening of the diffraction profiles is due to micro-
deformations, stacking faults and change in the size of the lattice parameter. Peak shift is
the result of stacking faults, residual stresses, and variations in crystallite size due to the
interstitial or substitutional atoms. Through mathematical models, it is possible to separate
the contribution from the factors that cause the shifting and broadening of the peak, as we
will see in the following sections.
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3.1. XRD Background Setting

The number of counts should be enough to obtain high reflection intensity, which is
reflected in the shape of the peaks. The intensity of the radiation recorded for the different
Bragg angles is due to factors that, in principle, do not depend on the diffraction angle.
Therefore, they must remain constant and the intensity fluctuation must be related in
some way to the standard deviation of the count. For the correction of the background, a
linear regression of the tails on both sides of the peaks is enough to later be subtracted and
bring the baseline to zero. Another important consideration is to select the appropriate
anode to perform the XRD measurements, since this determines the quality of the profile,
which allows for the reduction in the amount of noise in the diffractogram data. The
determination of the background to bring the baseline to zero can be accomplished using
software, such as OriginPro®, (Origin lab corporation, Northampton, MA, USA) X’Pert
HighScore®, (Malvern Panalytical, Marlvern, UK) and FullProf®, (ILL, Genobre, France)
among others.

3.2. XRD Determination of the Mean Square Microstrain
〈
ε2(L)

〉
To determine the microstrain present in the sample from the line profile breadth, it is

necessary to use appropriate experimental techniques and mathematical treatments that
consider factors, such as the peak profile width and shift. The broadening caused by the
crystallite size and the stacking faults is independent of the reflection order. However,
broadening due to the plastic deformation is dependent on the reflection order. The
broadening caused by the crystallite size and stacking faults is independent of the order
of reflection, while the peak shift caused by plastic deformation produced by faults and
residual stresses varies with the crystallographic orientation of the diffraction planes. The
instrumental broadening can be determined using a calibration sample, under the same
experimental conditions that are planned for the sample of interest.

Refining the XRD profiles is a process involving the adjustment of one or more
functions to facilitate the analysis. The diffraction peaks of a sample are given by the
convolution of two functions: one that refers to the experimental contribution (E) and
the other that refers only to the reference, whose profile is free of instrumental factors (I).
Therefore, to correct the experimental contribution in a diffraction profile, a deconvolu-
tion must be performed that involves the function related to the sample profile and the
profile of a reference material free of any deformation. A rapid and easy method to apply
deconvolution by function fitting is proposed by Langford [55] who uses two functions, the
Gaussian and Cauchy function (or Lorentzian), considering that instrumental correction
can be easily performed by subtraction as shown in Equations (2) and (3):

βc = βE
c − βI

c (2)

(βG)
2 =

(
βE

G

)2
−
(

βI
G

)2
(3)

Therefore, the deconvolution of the instrumental profile can be performed through the
integral breadth (β), where βc and βG are the integral breadth of the profiles of the Cauchy
and Gauss functions, respectively. The integral breadth is defined as the relation between
the area and the maximum peak intensity.

A strain-free sample with a homogeneous crystallite size greater than 100 nm is con-
sidered as calibration standard quality, such as LaB6, diffracted under the same conditions
where the instrumental width is βi (Equation (4)) using the Caglioti Equation [56].

βi =
√

u tan2θ + v tanθ + w (4)

The values u, v, and w are obtained from a complete profile adjustment using refine-
ment programs for XRD, where u is the contribution of the microstrain breadth, v and
w are the contribution of the instrumental breadth, and θ is the diffracted angle (e.g., for
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the GSAS (General Structure Analysis System is a set of programs for the processing and
analysis of both single crystal and powder diffraction data obtained with XRD, which
can be downloaded for free) program [57] those values correspond to Gu, Gv and Gw,
respectively.

The contribution of the instrumental breadth as a function of θ, βi, and the contribution
of the integral breadth (2w) or full width at half maximum (FWHM) based on the work of
Langford [58] is computed. We consider the following approximation corresponding to the
Lorenzian and Gauss contribution from the instrumental breadth (Equations (5) and (6)):

βc

βi
= a0 + a1

(
2w
βi

)
+ a2

(
2w
βi

)2
(5)

βG
βi

= b0 + b1

(
2w
βi
− π

2

)1/2
+ b2

(
2w
βi

)
+ b3

(
2w
βi

)2
(6)

where a0 = 2.0207, a1 = −0.4803, a2 = −1.7756, b0 = 0.6420, b1 = 1.4187, b2 = −2.2043
and b3 = 1.8706 [58]. Compared to the exact solution, the value approximations do not
exceed 1% error [58].

Once the instrumental contribution of the sample profile has been considered, the
microstrain is calculated. To this end, the literature presents different methods, such as
the Williamson–Hall plot method [28] and the Warren–Averbach method [59]. Ungár [60]
used the Williamson–Hall plot to demonstrate that the high dispersion of points in the
graph may signify the presence of high anisotropy in the microstrain. Moreover, although
it is not possible to estimate the average size of the crystallites and the microstrain with
precision, the high anisotropy in the microstrain can be verified qualitatively with this
graph. On the other hand, the Warren–Averbach method for the analysis of the broadening
of diffraction profiles allows for the determination of the crystallite size and the microstrain
by considering the XRD profiles as a Fourier series expansion in reciprocal space. The real
coefficient of the Fourier series is represented as the convolution of two terms described
from the symmetric functions of Cauchy and Gaussian functions or the Voigt function.
The latter function is the most used, due to its versatility and practicality, in addition to
being a convolution of the Cauchy and Gaussian function [45]. For the real coefficient,
one term is dependent on the column of the unit cell measured in the direction perpendic-
ular to the reflection planes (L). Therefore, the crystallite size and the other information
related to the deformation of the crystal is dependent on the reciprocal of the interplanar
distance corresponding to the evaluated peak (d). Consequently, it can be expressed by
Equation (7) [59].

I(L, 1/d) = Is(L)ID(L, 1/d) (7)

where I represents the cosine Fourier coefficient, and Is is related to size, while ID represent
deformation (εL). The last term is dependent on the reflection order and can be expressed
as the average 〈cos(2πεLL/d)〉, which can be expanded as 1− 2π2L2〈ε2(L)

〉
/d2 [59]. Ap-

plying the logarithm to both sides of Equation (7), we can rewrite the expression as show
in Equation (8) for small values of L as a Gaussian function.

LnI(L, 1/d) = LnIs(L)− 2π2L2
〈

ε2(L)
〉

/d2 (8)

〈
ε2(L)

〉
is the MSM over the mean L assessed, where angle brackets indicate spatial averag-

ing. ε(L) is not deformation as it is generally defined, but corresponds to the changes along
the planes normal to the diffraction planes of the vectors of displacement in positions at a
distance L [61]. Additionally, for different higher-order reflections diffracted on the same
family of lattice planes, Is and

〈
ε2(L)

〉
are equal and thus the size and microstrain for each L

value can be obtained for at least two reflection peaks from the same crystallographic-plane
family [62]. In general, the size and microstrain occur simultaneously, but the presence of
the Hook effect (loss of linearity when L approaches zero) generates substitutions. For this
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reason, the MSM value for an arbitrary value of 50 Å has been considered as a reference [63]
due to the fact that at this distance the Hook effect is not present.

From Equations (2), (3) and (7), considering only the effect of the microstrain, the
following can be written [62].

〈
ε2(L)

〉
=

1
s2

(
β2

DG
2π

+
βDC
π2

(
1
L

))
(9)

where
L =

nλ

2(sinθ2 − sinθ1)
(10)

s =
2sinθ

λ
=

1
d

(11)

βDC is the Cauchy size integral breadth, βDG is the Lorentzian size integral breadth and λ
is the wavelength of the Kα radiation coming from anode. To set the diffraction profile and
determine the MSM, one can use software, such as Howard and Snyder [64], which allows
the user to choose the fit function and provide refined positions of the maximum peaks,
intensities, and parameters depending on the function and considering the instrumental
profile. Another option is the program Breadth [65], which computes the MSM from the
integral breadth or input FWHM at least two diffraction peaks. The program also allows
one to choose different fit functions and obtain output files that allow plotting <ε2(L)> as a
function of 1/L. It should be noted that the Breadth program is found within the Shadow
package.

3.3. Determination of Peak Positions

Precise determination of the position of’ the diffraction peak at each reflection angle, 2θ,
begins with selecting the intensity data at several points on the peaks. Before determining
the peak positions, the background must be corrected by subtracting it as mentioned above
in Section 3.1. There are several methods, graphical and analytical, to determine the angular
position of a diffraction peak. The simplest method is to locate two points over 2θ axis on
either side of the peak at which the intensity is equal and to suppose the peak position to
be at the midpoint [66]. Other authors recommend calculating the vertex of the parabola
defined by points whose intensities are greater than 85% of the maximum intensity, with
an approach to 0.01◦ resolution and fitting a parabola by least squares regression and then
calculate the peak vertex [67]. If the intensity has many points, the peak position can be
calculated as the centroid of the area above the background, but extreme care must be
taken with the tail truncation of the diffraction peak [66]. Fitting the diffraction data for
each peak to Voigt function is another method that is widely used.

3.4. Stacking Fault Probability

The stacking fault probability is obtained from the relative shift of the diffraction
peaks. To determine this shifting, it is necessary to accurately determine the position of the
diffraction peaks as discussed in the Section 3.3.

The SFP can be determined directly from the diffractogram considering the change in
the position of the diffraction lines of the deformed sample with respect to the stress-free
or annealed sample. Therefore, the accuracy of the SFP depends on the position where the
diffraction peak can be located. Warren [47] analyzed the displacement of the diffraction
peaks at 2θ due to the stacking fault, which allows for the derivation of Equation (12) to
calculate the SFP (α):

∆(2θhkl) = +
90
√

3 αtan(θhkl)

π2 h2
o (u + b) ∑b( ± )L0 (12)

where:
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∆(2θhkl) = change in the position of the diffraction lines
θhkl = the diffraction angle for each peak
◦ ∑b( ± )L0/h2

0(u + b) = constant specific to each h k l reflection (Table 1)

Table 1. Constants for calculating the SFE in f.c.c. structures [59].

Indices of Reflection
[H K L] ∑b( ± )L0/h2

0(u+b)

1 1 0 1/4
2 0 0 −1/2
2 2 0 1/4
3 1 1 −1/11
2 2 2 −1/8
4 0 0 1/4

Warren [59] presented a simple method for measuring the SFP from the shift of the
peaks by proposing the comparison of two samples, one free of deformations and the other
deformed, considering only the reflection peaks corresponding to (111) and (200) in order
to increase sensitivity. In this way they derived Equation (13):

∆
(

2θ0
200 − 2θ0

111

)
= −45

√
3α

π2

(
tanθ200 +

1
2

tanθ111

)
(13)

The requirement to have strain-free alloys for the same composition was overcome by
Talonen and Hänninen [68] who developed a method to determine the SFP assuming that
(i) the sample is free of long-range residual stresses and (ii) peak positions are affected only
by lattice spacing according to Bragg’s law and due to stacking faults. Thus, they suggested
using the five reflection peaks of the γ to generate five equations with two unknown
parameters (interplanar spacing dhkl and α), and thereby allowing for the computation of
the variables shown in the Equation (14) using less squares. This method has been used by
multiple authors to calculate the SFP in austenitic steels, with results that are close to 3.2%
variation, compared to the other models [68–71].

2θhkl = 2 arcsin
(

λ

2 dhkl

)
+

90
√

3 α tan(θhkl)

π2 h2
0 (u + b) ∑b( ± )L0 (14)

dhkl =
a0√

h2 + k2 + l2
(15)

3.5. Elastic Constants

The elastic constants reflect the nature of the interatomic bonds and the stability of the
solid. The following inequalities are related to a solid’s resistance to small deformations and
they must hold true for cubic structures: C11 − C12 > 0, C44 > 0 and C11 + 2C12 > 0 [72].
These criteria will be used in Section 5 to determine the range of variation of the SFE as
a function of the elastic constants for a specific alloy. It is important to mention that the
quality of the SFE values obtained are related to the values used for the elastic constants
(C11, C12, C44), which define the material properties and depend on the alloy and quantity.
Therefore, variations in these constants will have an important impact on parameters, such
as the Zener constant (A) (see Equation (1)) and the shear modulus (G111) (see Equation (1)).

This variation is due to the use of different methodologies (see Table 3) and the effect of
certain alloys. Gebhardt, et al. [73] used ab initio calculations to demonstrate that increasing
the concentration of Al from 0% to 8% decreases the value of the elastic constants C11, C12
and C44 by up to 22%. Moreover, increasing the Mn content for rates of Fe/Mn of 4.00 and
2.33, resulted in the reduction of the C11 and C12 constants by 6%, but the value of C44 is
independent of the Mn content. For the case of Fe-Cr ferromagnetic alloys (b.c.c. structures),
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Zhang, et al. [74] found that the elastic parameters exhibit an anomalous composition
dependence around 5% of Cr attributable to volume expansion at low concentrations. This
is represented to a greater extent by the constant C11, which represents approximately 50%
of the value reported for Fe-Mn-based alloys. The use of these constants would result in
the overestimation of the SFE value.

Experimental investigations carried out by different authors [75,76] have shown
the effect of elements, such as Al, on the Néel temperature for Fe-Mn-C alloys. These
alloys present a magnetically disordered state quantified in the relation (C11 − C22)/2 [77].
Similarly, variations in the Mn content results in the variation of C44 without affecting the
magnetic state [24]. This effect in the magnetic states causes variations in the values of
the elastic constants [24]. Additionally, it is important to note that among the referenced
studies, only some report uncertainty in the elastic constant measurements, which directly
affects the uncertainty of the SFE and its final range.

4. Experimental Procedure
4.1. Specimen Preparation

Three Fe-Mn-Al-C alloys were utilized, and their chemical composition is shown in
Table 2. These chemical compositions were chosen to obtain a totally austenitic microstruc-
ture and in order to achieve different SFE values (various plasticity mechanisms) to validate
the method under study. High purity iron, manganese, Fe-4C, and aluminum were used
as alloys. The alloys were melted in an induction furnace and then air cooled. The cast
iron was cut into 70 mm cubes and covered with zirconia to protect them from oxidation
during thermo-mechanical treatment. The molten ingots were heated to 1200 ◦C, rolled
in approximately 80 steps to obtain approximately 6 mm thick sheets, and subsequently
air cooled. To guarantee isotropic properties and reduce the effect of micro-stresses pro-
duced by inhomogeneous plastic deformation in the rolled material, the specimens were
solubilized at 900 ◦C for one hour and cooled in the furnace. The oxide layers that formed
during the thermal and thermo-mechanical treatments were removed by machining and
flat specimens were obtained in the rolling direction of 5 × 25 × 10 mm3. To carry out
the XRD tests, the surfaces of the specimens were brought to a mirror-like finish, starting
with # 400 sandpaper and working up to # 1200. Afterwards, the specimens were passed
through a polishing cloth using 1 and 0.3 µm alumina suspension.

Table 2. Fe-Mn-Al-C alloy chemical compositions.

Alloy Fe
(% wt)

Mn
(% wt)

Al
(% wt)

C
(% wt)

Fe-22Mn-0.9C-0Al Balance 20.5 0 0.87
Fe-22Mn-0.9C-3Al Balance 22.2 3.5 0.84
Fe-22Mn-0.9C-8Al Balance 22.1 8.3 0.89

4.2. X-ray Diffraction

Measurements were made using a PANalytical X’Pert PRO MRD diffractometer
equipped with a copper tube anode with a wavelength of the Kα1 radiation of 1.5405981
Å. A current of 40 mA and a voltage of 45 kV were used as settings for the tube. The oper-
ating parameters were selected in order to obtain profiles with enough quality resulting
in narrow peaks and the detection of peaks in minor phases. The data was obtained in a
period of 1.5 h for a range of 2θ, between 40 and 100 degrees with steps of 0.02◦. The XRD
analysis was carried out along the cross-section.

The phase refinement was implemented using the Rietveld method [78] through the
free GSAS software [57], as shown in the Figure 5. This included the crystallite size, peak
broadening, peak position, and detection of microstrain. To validate the proposed method-
ology, a commercial alloy, Hadfield steel was also used for the analysis (for details on this
steel and its characterization see [79]). This steel (Fe-Mn-C) has a nominal composition
of 10 to 14 % Mn and between 1.0 to 1.2 % C [79,80]. The SFE of this type of alloy has
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previously been determined by indirect (“Subregular Solution Model”) [79,81] and direct
methods [82], with SFE values of 23 ± 2 mJ/m2.

1 
 

 
Figure 5. XRD for Hadfield commercial alloy. 2θc is the diffraction angle with maximum intensity.
wL and wG are the Lorentzian and Gaussian breadth with respective errors. XRD extract from [79].

The refined profile of the XRD pattern and the parameters wL and wG (the physical
Gaussian and Lorentzian broadening components respectively) are obtained from the
convolution of the line profile shown in Figure 5. The SFP was then calculated with a value
of 7.7 × 10−4 and a lattice parameter of 3.614 Å. The program BREADTH outputted an
MSM of 50 Å with a value of 10.07 × 10−6.

4.3. Determination of the SFE

Based on the diagram presented in Figure 4, the following procedure is used to
determine the SFE: (i) obtain the diffractograms by means of XRD using a cobalt anode, (ii)
LaB6 is used as a calibration sample under the same experimental conditions to retrieve the
instrumental contribution of the profile and the profile of the material, (iii) obtain the βc and
βG parameters with their respective errors, (iv) using the position of the reflection peaks,
the SFP and the lattice parameter are calculated where the latter was used as a verification
parameter, since it must closely match the value obtained using the Rietveld method, (v)
using the program BREATH and the deconvolution parameters with their respective errors
for the five peaks, the MSM list was obtained at different lengths, which was interpolated
for 50 Å, (vi) select the values of the elastic constants to be used, either experimentally or
from the literature, and (vii) evaluate the SFE with the previously obtained values and
multiply the result by 103 depending on the units of the established variables.

Additionally, the SFE was calculated for Fe-Mn-Al-C alloys using a thermodynamic
model [13] at room temperature (300), an infinite grain size, and a surface interfacial energy
between the γ and ε of 10 (J/mol).

5. Results and Discussions

Given that A and G111 in Equation (1) proportionally affect the calculation of the
SFE and their values are a function of the elastic constants; these in turn were obtained
from other alloy systems that do not necessarily contain the same alloys or in the same
proportions. In the absence of experimental data, theoretical values have been used to
calculate the SFE in manganese steels by XRD. Based on the considerations above, an
analysis was performed with the values reported in the literature for Fe-Mn base alloys.
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The analysis consisted of using the different elastic constants reported in the literature
for other alloy systems in order to calculate the SFE of the austenitic Hadfield steel in the
present work (control or reference sample). The aim was to compute the percentage error
in the determination of the SFE when taking values of the elastic constants of different
alloy systems, as displayed in Table 3. The MSM was calculated by the program BREATH
using the Voigt convolution model, which outputted the SFE value in the expected range.
The mean SFE value was 24.32 mJ/m2, which was taken as a basis for the different studies
of the SFE and was within the range established in the literature of 23 ± 2, as stated above.

Table 3. SFE of the Hadfield steel (reference sample) for different elastic constant values.

Reference Composition of
Alloys (wt. pc) Methodology C11 [GPa] C12 [GPa] C44 [GPa]

Determined SFE of
the Hadfield Using

These Elastic
Constants (mJ/m2)

Music, et al. [83] Fe-10Mn ab initio 210 153 135 20.53
Bampton, et al. [84] Fe-18Cr-12N-3Mo Crystal Grown 235 138.5 117 29.2

Endoh, et al. [85] Fe-30Mn Atomic Force 200 ± 9 127 ± 6 130 ± 3 24.1 ± 0.9
Gebhardt, Music,

Kossmann, Ekholm,
Abrikosov, Vitos and

Schneider [73]

Fe-25Mn-2Al ab initio 153.6 105 135.5 18.5

Pierce, Nowag,
Montagne, Jiménez,

Wittig and Ghisleni [24]

Fe-18Mn-1.5Al-
0.6C Nanoindentation 169 ± 6 82 ± 3 96 ± 4 26.9 ± 1

Lenkkeri [86] Fe-38.5Mn Ultrasound 169.2 97.7 140.1 25.9
Cankurtaran, Saunders,

Ray, Wang, Kawald,
Pelzl and Bach [77]

Fe-40Mn Ultrasound 170 98 141 24.27

Stinville, et al. [87] 316L Nanoindentation 196 129 116 21.9
Pierce, Nowag,

Montagne, Jiménez,
Wittig and Ghisleni [24]

Fe-22Mn-3Al-3Si Nanoindentation 175 ± 7 83 ± 3 97 ± 4 27.3 ± 1.1

To establish the effect of elastic constant variation on the SFE and the predominant
deformation mechanisms in alloys based on Fe-Mn (particularly Hadfield steel), an analysis
was carried out based on the restrictions of the elastic constants raised in Section 3.5. The
values of the elastic constants reported in the investigations related to Table 3 for Fe-Mn
base alloys with alloys, such as Al, Si, and C, which were further expanded upon while
considering the range of variation. Moreover, the range of reduced elastic constants was
limited by C12/C11 and C44/C11, which was studied by Blackman [88] to evaluate the
response surface for ranges of C12/C11 between 0.66 and 0.5 and extreme values of C44 of
96 GPa and 141 GPa as shown in Figure 6. By expanding the range of constants used to
obtain the SFE, a greater response area is presented in the range of 20 to 40 mJ/m2. This
corresponds to the TWIP deformation mechanism, with a small part of the surface in the
TRIP range where the SFE is below 20 mJ/m2.

Figure 7 displays XRD patterns of the three Fe-22Mn-xAl-0.9C alloys. XRD analysis
shows that the alloys are austenitic (γ), as shown in the Table 4. The peaks shift due to the
addition of aluminum and its effect, according to Bragg’s law, generates an increase in the
lattice parameter and the crystallite size. Since aluminum enters in the crystalline lattice
and has a larger atomic radius, the lattice parameter increases.
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Figure 6. Effect of the variation in the elastic constants C11 and C12 for limit values of C44 on the SFE
for Hadfield steel.

Figure 7. The XRD patterns of various Fe-22Mn-xAl-0.9C with x equal to 0, 3, 8 wt%.

Table 4. Values of the Rietveld refinement parameters where a is the lattice parameter, Vol is
the crystal volume, X2 is the chi square, and F2(R) is the difference between the theoretical and
experimental intensities.

Alloy Phase a [Å] ± 0.005 Vol [Å
3
] ± 0.6 X2 F2(R)

Fe-22Mn-0.9C-0Al γ 3.627 47.713 5.8 0.0431
Fe-22Mn-0.9C-3Al γ 3.634 47.990 3.9 0.0383
Fe-22Mn-0.9C-8Al γ 3.671 49.471 5.2 0.0523

The values obtained for the three alloys are presented in Table 5 in addition to other
variables, such as the lattice parameter, SFP, and MSM, that are required for the calculation.
The average value of the SFE is obtained using the elastic constants presented in Table 3.



Metals 2021, 11, 1701 15 of 20

Considering that the literature does not report exact values for the compositions presented
and the calculated values of the SFE do not agree between the two methods used; it is
observed that the probable deformation mechanisms for the alloys are TRIP, TWIP and
MBIP, for 0% Al, 3% Al, and 8% Al, respectively. This deformation mechanism trend for
the three alloys agrees with the model planned by Chaudhary, Abu-Odeh, Karaman and
Arróyave [30]. A detailed description about the effect of the Al increase on the SFE can be
found in Chen, et al. [89] and Tian, Li and Zhang [53].

Table 5. List of parameters from diffraction peaks for each alloy used to calculate the SFE.

Alloy SFPx104 ε2(L)
SFE *

(mJ/m2)
SFE **

(mJ/m2)

Fe-22Mn-0.9C-0Al 9.62 ± 2.68 8.92 17.53 ± 2.47 10.99
Fe-22Mn-0.9C-3Al 6.52 ± 2.96 13.56 35.61 ± 4.76 33.42
Fe-22Mn-0.9C-8Al 7.48 ± 3.24 21.86 50.76 ± 6.73 53.35

* current XDR model, ** Subregular Solution Model [13].

The effect of elastic constant variation on the SFE as well as the average of C11 and C12
for the value calculated with the current XRD model for the three alloys is presented in
Figure 8. The horizontal planes represent the SFE values in which the literature reports a
change in the deformation mechanism; the SFE values less than 20 mJ/m2 correspond to
TRIP, SFE values between 20 mJ/m2 and 40 mJ/m2 represent TWIP, and quantities over
40 mJ/m2 are associated with MBIP. The limit surfaces for the three alloys considered the
same group of elastic constants that were used for Hadfield steel, with the SFP and MSM
as the only varying values. For the case of Fe-22Mn-0.9C-0Al, the average of the elastic
constants defines this alloy as TRIP but increasing C11 and C12 within the range of possible
values places this alloy in the TWIP category (Figure 8a). Similar behavior occurs with the
Fe-22Mn-0.9C-3Al alloy for the TWIP and MBIP mechanisms (Figure 8b). In contrast, the
most likely mechanism is MBIP for the 22Mn-0.9C-8Al alloy (Figure 8c). Therefore, the
selection of the elastic constants plays a very important role in determining the SFE and
the predominant mechanism of the alloy.

In the Reed and Schramm [26] method, the critical parameters are the stacking fault
probability and the degree of deformation represented by MSM. Nevertheless, if the varia-
tions of the constants C11, C12 and C44 reported in the literature for different austenitic steels
are considered, the variations in the SFE values can go to 36.6% for the Fe-22Mn-0Al-0.9C
alloy, while that for the Fe-22Mn-3Al-0.9C and Fe-22Mn-8Al-0.9C alloys the variation is
28% and 28.4% respectively. The decrease in error is due to the addition of aluminum, as
shown by Jung, Lee and De Cooman [75] caused by fluctuation in polycrystalline shear
modulus. Due to SFE variations, the Fe-22Mn-0Al-0.9C alloy can be TRIP or TWIP as
deformation mechanism, while the Fe-22Mn-3Al-0.9C alloy can be TWIP or MBIP and the
probable deformation mechanism is MBIP for Fe-22Mn-8Al-0.9C alloy.
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Figure 8. Variation in the elastic constants C11 and C12 for limit values of C44 and the effect on the
SFE for (a) Fe-22Mn-0.9C-0Al, (b) Fe-22Mn-0.9C-3Al and (c) Fe-22Mn-0.9C-8Al.
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6. Conclusions

This research compiled and organized a clear methodology to calculate the SFE using
the XRD technique. The results support the following conclusions:

• The flow diagram presents the calculation of the SFE using data obtained by XRD in
addition to values of the elastic constants. The procedure was verified with a widely
used commercial Hadfield-type alloy, where the values obtained were within the
range established by previous investigations.

• Average SFE reference values can be obtained using elastic constants of alloys with
similar compositions, which serve an alternative when it is not possible to retrieve the
values from experimental tests or computational calculations. However, for Hadfield
steel, the variation of the elastic constants in the range in which they have been
reported generates a variation in the calculated SFE of 30%.

• C11 and C12 are within the ranges reported for austenitic steels generates variations
of 36.6%, 28%, and 28.4% in the value of the SFE for the Fe-22Mn-XAl-0.9C alloys
studied with 0%, 3%, and 8% Al, respectively; representing the possibility that these
alloys present TRIP or TWIP deformation mechanisms for the case of 0% and TWIP or
MBIP for 3% Al content. In the case of the alloy with 8% Al, the probable deformation
mechanism is MBIP even with the variation in SFE.

• The SFE variation is 11.6%, 12.3%, and 11.5% for alloys with 0%, 3%, and 8% Al,
respectively. When changing C44 between the extreme values reported for this constant
reflected in a smaller effect concerning the variations of C11 and C12.
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