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Abstract: An effective strategy to strengthen a superalloy processed by selective laser melting (SLM)
is proposed. The aim is to increase the yield strength of Inconel 718 fabricated by SLM to beyond
1400 MPa, which has never been achieved before. In this study, various NbC additions (0.0%, 0.5%,
1.0%, and 5.0% by weight) were added in the powder bed of Inconel 718, and two types of post-SLM
heat treatments were investigated, i.e., solution heat treated plus aging (STA) and direct aging (DA).
With NbC addition, smaller depth of melt pool and finer dendritic cells were obtained. Both STA and
DA promoted the precipitations of γ′ and γ′′. STA eliminated the cellular dendrites and induced
grain growth while DA retained the as-built cellular dendrites, grain size, and nano-carbide from
NbC addition, rendering a significant 326.2 MPa increase in yield strength. In this work, 0.5% NbC
addition exhibited a record-high yield strength of 1461 MPa and ultimate tensile strength of 1575 MPa
for Inconel 718 processed by laser manufacturing process according to literature data to-date.

Keywords: selective laser melting; superalloy; cellular structure; tensile properties

1. Introduction

Inconel 718 superalloy is a high strength structural material widely used in oil-gas
industry [1,2]. It is primarily precipitation strengthened by coherent L12 structured γ′ (Ni3
(Al, Ti)) phase and DO22 structured γ′′ (Ni3Nb) phase [3]. Engineering components used in
oil-gas industries such as drills for deep-water operation are made of Inconel 718 and it is
required to possess a yield strength beyond 1400 MPa at ambient temperature [2,4], but the
standard heat treated Inconel 718 could possess only a yield strength of 900~1200 MPa [5,6];
to meet such ultra-high strength demand, additional strengthening contributions from grain
refinement [7] and strain hardening [8,9] have been applied in addition to precipitation
strengthening [8]. However, conventional wrought processes for Inconel 718 could limit
the design complexity of the component and lead to waste of material during machining
processes, recently the fused-based additive manufacturing (AM) for Inconel 718 has been
a subject of interest [5,6,10–24]. During the AM process, powder feedstocks are fused layer
by layer to build components with complex geometry without modules. Among various
fused-based AM technologies, powder bed selective laser melting (SLM) possesses the
ability to make intricate parts with high cost-efficiency [25–27]; it permits part design with
more complex geometries and better quality of surface finish compared to those made by
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powder jetted laser engineered net shaping (LENS) [25,26]. On the other hand, the SLM
process does not require a working chamber under vacuum, which is required by powder
bed Electron Beam Melting process [24]. Hence, SLM is considered as one of the main AM
processes for Inconel 718 [5,6,10–19], and it is of interest to the oil-gas industries to explore
the possibility to fabricate ultra high strength Inconel 718 by SLM process [28]. It has been
reported that residual strain induced by thermal contraction during the SLM fusion process
could provide an extra strength of about 268 MPa on average [29–31]. For SLM Inconel 718,
Kuo et al. [18] reported that residual strain from SLM process could be retained by direct
aging process, and dislocation and sub-grains strengthening could render a yield strength
of 1380 MPa; a similar result was reported by Deng et al. [11]: tensile yield strength of
1350 MPa was achieved by direct aging after SLM. To date, the highest reported tensile
strength for Inconel 718 processed by SLM was 1365 MPa on average, which was still lower
than that demanded by the oil-gas industry.

In principle, a further increase in thermally induced strain by SLM for strengthening
could be achieved through adjusting scanning parameters [32–34]. However, this approach
could also result in distortion or cracking of the built [32–34]. Alternatively, the introduction
of inclusions could provide further strengthening for SLM metal alloys [16,29–31,35]. In the
work of Kim et al. [29], Mn-based oxide formed in CoCrFeMnNi during SLM process could
strengthen the material and result in yield strength of 778.4 MPa. A similar observation
was reported by Lin et al. [30]; Al/Ti-based oxide formed in SLM Al0.2Co1.5CrFeNi1.5Ti0.3
alloy could further increase the strength by 170 MPa. Moreover, in our previous work [16],
0.2 wt% CoAl2O4 was added to fabricate Inconel 718 by SLM process followed by solution
and aging treatment; this approach resulted in the formation of Al-rich oxide and rendered
a yield strength of 1161 MPa. Almangour et al. [31] reported that TiB2 addition not only
provided an Orowan strengthening of 268 MPa in average to SLM 316L stainless steel,
cellular structure with composition segregation was also refined and contributed an extra
61 MPa in average to yield stress; Han et al. [35] also reported an increase of 100 MPa in
tensile strength for SLM Hatstelloy X with TiC addition.

According to literature to-date for laser manufactured Inconel 718, none has achieved
a tensile yield strength greater than 1400 MPa. However, two separate approaches have
shown great potentials to provide further strengthening contributions: one is by post-SLM
direct aging [11,18] and the other is by adding inclusions prior to SLM [16,29–31,35]. To
the best of the authors’ knowledge, no one has attempted to combine both approaches
to enhance the strength of SLM Inconel 718. In this study, the objective is to fabricate
high-strength Inconel 718 by SLM, with the aim to achieve yield strength greater than
1400 MPa. NbC was chosen as the inclusion since the elementary constituents of NbC are
that of Inconel 718. The influence of NbC on the microstructure of SLM Inconel 718 has
been examined; strengthening contributions with direct aging have been elucidated and
discussed. This work presents an effective strategy to fabricate Inconel 718 by SLM with
yield strength greater than 1400 MPa.

2. Materials and Methods
2.1. Powder Materials Preparation

Gas atomize powder of Inconel 718 was supplied by Chung Yo materials Co., Ltd.
Kaohsiung City, Taiwan. The composition of the powder was analyzed by ICP-OES/carbon
analyzer, and is presented in Table 1. The d50 of the powder was 32.84 µm, which was
determined by a laser diffraction particle size analyzer (Coulter LS230, Beckman Coulter
Inc., Brea, CA, USA). The inclusion was NbC flakes provided by Ultimate material technol-
ogy Co., Ltd., Taiwan; d50 of NbC powder was 2.239 µm. In this work, various amounts
of NbC flakes (0.5%, 1.0%, and 5.0% in weight) were blended with Inconel 718 powder
by 2D powder mixing process for 1 h to ensure homogeneity. Figures 1 and 2 shows the
morphology and the size distribution of the Inconel 718 powders and NbC flakes used in
this study.
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Table 1. Inconel 718 powder composition in this work.

Element Ni Cr Fe Nb Mo Al Ti C

at% 51.00 19.63 21.51 3.39 1.85 1.23 1.26 0.1334
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2.2. Selective Laser Melting Process

An in-house SLM machine equipped with a ytterbium fiber laser (λ: 1070 nm, YLR-
500-SM-AC, IPG Photonics Co, Oxford, MA, USA.) was used. The chamber was protected
with purity 99.99% argon gas, and the oxygen content of the chamber was kept at less
than 100 ppm. The baseplate was S45C steel, and the pre-heating temperature was at
200 ◦C. During the SLM process, zig-zag lines scanning pattern was used, the hatch
distance between each scanning track was 100 µm, and the layer thickness was 50 µm.
During the scanning process, each layer was rotated by 67◦. SLM scanning parameters
were determined in order to achieve the least fractions of porosity (0.06 vol%, which
was determined by image analysis) based on sets of experiments of laser power (110 W to
280 W) and scanning speed (400 mm/s to 1200 mm/s). In this study, a laser power of 220 W
and a scanning speed of 800 mm/s were employed to fabricate samples for the following
experiment. For microstructure observation and heat treatment study, the specimen size
was 8 mm in length and width and 6 mm in height (120 layers). For tensile specimens, the
samples were 15 mm in width, 90 mm in length, and 8 mm in height (160 layers).

2.3. Post-SLM Heat Treatment

The as-built parts were removed from the baseplate by electrical discharge machining.
Two types of post-heat treatments were performed. The first type consisted of a solution
heat treatment (SHT) at 1100 ◦C for 2 h followed by air cooling; the SHT temperature was
chosen at above the δ solvus [36] in order to homogenize the chemistry [10]. After SHT, the
aging process was performed to precipitate γ′ and γ′′, the aging heat treatment consisted
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of 720 ◦C for 8 h, then samples were furnace cooled to 620 ◦C and soaked for 8 h followed
by air cooling to room temperature; for the post-SLM, heat treatment consisted of SHT and
aging, a designation of STA is given. The second type of post-SLM heat treatment was a
direct aging process (DA), without the SHT step, DA samples were subjected to the same
aging treatment as that of STA. The microstructures and properties of the STA and DA
samples with varying NbC contents were compared in this work systematically.

2.4. Tensile Test

Specimens for tensile tests were sectioned perpendicularly to the building direction
and the gage section dimension followed the ASTM standard E8/E8M [37]. All surfaces
of specimens were ground with 2000 grit SiC sandpaper prior to tensile tests. All tests
were conducted at ambient temperature by a tensile test machine (INSTRON 4468, Instron,
Norwood, MA, US) equipped with an extensometer; strain rate of the test was 10−3 per
second. At least two specimens for each condition were tested and the averaged values of
tensile properties are presented.

2.5. Microstructure Analysis

Specimens were ground by SiC sandpaper and then polished by 0.05 µm Al2O3 sus-
pension; sample surfaces were electrolytically etched in 20 vol% phosphoric acid aqua
solution. An optical microscope and a scanning electron microscope (SEM, Hitachi SU-
8010, Tokyo, Japan) were used to observe microstructures; particle size, phase fraction,
and inter-particle spacing were estimated by using Image J software (version 1.52a, Wayne
Rasband, USA) [38]. For high-resolution analysis, transmission electron microscopy (TEM,
JEOL JEM-F200, Tokyo, Japan) was employed, specimens were ground with 2000 grit SiC
paper to a thickness of 50 µm and then punched into round discs with a diameter of 3 mm,
discs were then polished by a twin-jet polisher in 10 vol% HClO4 + 90 vol% C2H5OH
solution under 25 volt at −30 ◦C. For grain texture analysis, specimens for electron back
scattering diffraction (EBSD) analysis were prepared by surface polishing with Al2O3
suspension followed by 0.02 µm colloidal silica suspension. EBSD analysis was performed
with a JEOL JSM-7610F SEM equipped with an AZtec EBSD system (Oxford Instruments,
Abingdon, Oxfordshire, UK). Grain analysis was conducted with a 100× magnification
image and the step size was 4 µm, misorientation analysis for plastic deformation was
performed with a 250× magnification image and a step size of 1 µm. More than 200 grains
were counted in each specimen; for misorientation and dislocation density analysis, the
Kernel Average Misorientation (KAM) analysis was used, and original EBSD data was
post-processed with the Oxford Channel 5 software (Oxford Instruments, Abingdon, Ox-
fordshire, UK). The averaged KAM values with different kernel radius were then used
to calculate overall geometrically-necessary dislocation (GND) density according to the
methodology described by Moussa et al. [39]. It has been reported that GND density is
related to lattice curvature, which is corresponding to plastic deformation and crystal
misorientation [40–42]; Nye’s dislocation tensor can provide a relationship of GND density
based on local average misorientation [41]. The GND density ρ could be estimated by
Equation (1) below:

ρ ∼=
a θ

b x
(1)

where θ is the average misorientation in radius, b is Burgers vector, x is the distance along
which misorientation is measured, and a is 3 based on the previous literature [39,41]. The
approximation was later modified by Kamaya [43] and Moussa et al. [39], where θ/x is
replaced by dθ/dx to remove the background noise of the EBSD detector. Assuming that the
misorientation gradient is constant around the near pixels and there is no misorientation
when kernel size is 0, then misorientation θ would be proportional to the distance x. In this
study, the averaged misorientation data from KAM analysis with different kernel radius
were recorded. The misorientation degree to define a high angel grain boundary was
chosen as 15◦, and misorientation degree below 15◦ would be considered in KAM analysis
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to separate the lattice of different grains [39,42,44]. Then the slope of the data points was
calculated as dθ/dx. Eventually, overall GND density could be determined based on the
modified tensor in this work.

3. Results and Discussion
3.1. As-SLM Microstructures

The cross-sectional optical micrographs of as-built samples are shown in Figure 3, and
the melt-pools structures are clearly visible. Melting pool depths were measured based on
the final layer of the as-built sample, at least 10 melting pool depths of different sides of
the as-SLM samples were observed. With NbC additions, the average depth of melt-pools
decreased notably from 223.4 µm of 0% NbC to 139.4 µm with 5.0% NbC (164.9 µm for
0.5% NbC, and 159.3 µm for 1.0% NbC), Figure 3a–d. A similar observation was reported
by AlMangour et al. [31]. Gu et al. [45] suggested that inclusion particles could inhibit
the convection inside the melting pool, which could cause a smaller melting pool due to
heat accumulation at the melting pool surface [46]. A few un-dissolved and agglomerated
NbC inclusions around 15 µm were also observed; the amounts appeared to increase with
higher NbC contents. High magnification micrographs of as-built samples are shown in
Figure 4; sub-micron cellular dendritic structure could be observed and inter-dendritic
regions could be identified as a bright cellular wall. The increase in NbC addition also
appeared to decrease the average cellular size; without NbC, the average cell size was
397 nm, and it decreased to average values of 357.6 nm, 334.6 nm, and 283.8 nm for 0.5%,
1.0%, and 5.0% NbC contents, respectively, Figure 4a–d. The decreases in the depth of
melt-pools and the cell size were associated with an increase in the NbC addition. The
as-SLM microstructures with and without NbC all exhibited cellular dendrites instead of
equiaxed dendrite, Figure 4; this kind of microstructures was a result of a high ratio of tem-
perature gradient to solidification velocity, and could induce small degree of constitutional
supercooling and the growth of cellular structure along the solidification direction [47]. It
is known that the cellular wall could contain high density of dislocations because of cyclic
thermal stress during the fusion process of SLM; these dislocations have been reported to
contribute to strengthening [48–50]. An equation for the influence of thermal gradient and
solidification velocity on dendrite arm spacing L can be described as following [51]:

L =
a

GbVc (2)

where G is the thermal gradient, V is the solidification velocity (velocity of liquid-solid
interface), a, b and c are constants [51]. Since SLM process was performed with a small
laser beam size (~58 µm), the melt-pools had high thermal gradient and fast solidification
velocity, resulting in the formation of fine cellular dendrites shown in Figure 4.

TEM analysis indicated that particles presented along the cell walls in samples without
NbC addition were hexagonal C14 Laves phase (lattice parameter a: 4.9 Å and c: 7.8 Å [52]),
Figure 4e; by contrast, FCC_B1 Nb-rich cubic carbides (lattice parameter a: 4.4~4.5 Å [53])
were identified along cell walls for all samples with NbC additions, Figure 4f. These
particles were incoherent with the FCC matrix (a: 3.58 Å based on TEM analysis). It
appeared that the formation of both Laves phase and cubic carbides along cell walls were
associated with Nb segregation to the interdendritic regions, as shown by the TEM-EDS
analysis presented in Table 2. Furthermore, grain sizes were decreased with NbC additions,
from 18.94 µm of no NbC addition to 10.51 µm of 5.0% NbC addition. Previous work
indicated that small amount un-dissolved inoculants could affect the texture of grains and
also decrease the grain size of as-built Inconel 718 [17], so it was possible that un-dissolved
NbC in this work provided heterogeneous grain nucleation sites. Furthermore, dissolution
of some NbC could also increase the amount of constitutional supercooling and provide
more nucleation sites during solidification [47].
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Figure 4. As-built cellular structure observed under SEI (a) without NbC, (b) with 0.5% NbC, (c) with
1.0% NbC, and (d) with 5.0% NbC in weight. TEM bright field images and diffraction patterns,
(e) Laves phase was identified in the sample without NbC, and (f) cubic carbide was identified with
NbC additions.
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Table 2. TEM-EDS composition analysis of cellular structure and particles of as-built condition (at%).

Condition Position Ni Cr Fe Nb Mo Al Ti

Without NbC
Cellular core 51.53 ± 0.91 21.60 ± 1.29 19.05 ± 0.26 2.81 ± 0.25 2.15 ± 0.24 1.45 ± 1.03 1.18 ± 0.1
Cellular wall 45.42 ± 0.62 18.96 ± 1.92 15.73 ± 1.97 13.43 ± 2.07 2.97 ± 1.73 1.40 ± 0.40 2.10 ± 0.70

Laves 40.40 ± 2.01 16.40 ± 0.91 17.83 ± 1.85 15.95 ± 2.60 6.40 ± 1.74 1.45 ± 0.24 1.33 ± 0.43

With NbC
(0.5%)

Cellular core 50.33 ± 0.57 22.53 ± 1.40 19.37 ± 0.90 3.43 ± 0.47 1.70 ± 0.30 1.60 ± 0.10 1.03 ± 0.27
Cellular wall 46.25 ± 0.35 19.05 ± 1.35 15.40 ± 0.31 12.85 ± 3.05 3.15 ± 0.35 1.63 ± 0.43 1.68 ± 0.42

Carbide 17.57 ± 6.22 12.50 ± 0.83 5.87 ± 2.00 47.22 ± 5.11 7.20 ± 2.30 1.00 ± 0.08 8.63 ± 4.20

3.2. Microstructures after Post-SLM Heat Treatments

Microstructures of the samples subjected to STA heat treatment are shown in Figure 5,
and it shows that cellular walls were all eliminated; with more NbC additions, more
bright particles could be observed in the microstructures, Figure 5a–d. According to the
TEM diffraction pattern in Figure 5e,f and TEM-EDS analysis shown in Table 3, these
particles were Nb-rich FCC_B1 cubic carbides, some large ones (430 nm~628 nm) were
found along grain boundaries, while smaller particles (46~57 nm) were seen within the
grain. Figure 6 shows the microstructures of samples subjected to DA heat treatment,
and bright particles were observed along cellular wall; Figure 6e,f are TEM micrographs
of these particles along the cellular wall, and their compositions are shown in Table 3 to
compare with that in the STA specimen. TEM analysis indicated that for the specimen
without NbC addition, these particles were C14 Laves phase, while with NbC addition,
particles along the cellular wall were found to be Nb-rich FCC_B1 cubic carbide. The
positions, volume fractions, and diameter of these particles after STA and DA treatments
are shown in Table 4. Particles of STA specimens were categorized into “intragranular
carbide” and “carbide along grain boundary” based on the observation in Figure 5; for
DA specimens, particles along cellular wall were considered and they were identical to
particles along grain boundaries. It is shown that NbC addition led to carbide formation
and increased particles fraction to all specimens. For DA specimens, the volume fraction
of particles increased from 1.28% to 7.6% with 5.0% NbC addition. A similar result was
observed in STA specimens, volume fractions of both types of carbide increased with NbC
addition, from 0.11% (intragranular carbide) and 0.09% (carbide along grain boundary) of
no NbC content to 3.23% (intragranular carbide) and 4.36% (carbide along grain boundary)
of 5.0% NbC. It should be noted that overall volume fractions of particles in STA specimens
were less than those of DA specimen, which could be associated with more homogeneous
composition profile due to STA heat treatment.

Figure 7 illustrates TEM images of precipitate in STA and DA specimens; these
particles were mainly γ′′ with disc-shaped morphology. Image analysis indicates that the
average length along the long axis of γ′′ particles was 12.8 nm for STA specimen without
NbC and 12.9 nm for STA specimen with NbC additions. For DA specimen, the average
length along the long axis of these particles was about 13.3 nm for DA specimen without
NbC and 13.0 nm for DA specimen with NbC. It has been reported that the growth of
primary strengtheners, i.e., γ′ and γ′ ′ in Inconel 718 could follow Lifshitz-Slyozovi-Wagner
theory, which suggests coarsening rate can be determined by diffusivity, temperature, and
solute concentration [54]. Based on the as-built chemical profile of sample without NbC
addition (Table 2), although there was an obvious Nb segregation toward cell wall regions,
the overall chemical compositions were not affected much by the addition of NbC. With the
same aging treatment, it is expected that DA samples and STA samples possessed virtually
identical sizes and fractions of primary strengtheners.
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Table 3. TEM-EDS analysis of particles along cellular wall after post-SLM heat treatments (at%).

Treatment Condition Ni Cr Fe Nb Mo Al Ti

STA
Without NbC 5.45 ± 0.44 3.25 ± 0.15 2.67 ± 0.21 67.26 ± 1.55 - 0.75 ± 0.45 20.71 ± 1.41

With NbC (0.5%) 6.60 ± 0.50 3.43 ± 0.26 2.67 ± 0.21 68.83 ± 0.17 1.17 ± 0.17 0.3 ± 0.08 17.00 ± 0.96

DA
Without NbC 29.76 ± 0.78 19.93 ± 1.50 18.83 ± 0.66 15.00 ± 3.14 15.57 ± 2.09 - 0.87 ± 0.12

With NbC (1.0%) 8.53 ± 0.50 11.97 ± 1.96 3.47 ± 0.09 58.9 ± 2.81 5.03 ± 0.29 1 ± 0.08 8.63 ± 4.20
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Figure 6. Microstructure of specimens after DA. (a) Without NbC, (b) 0.5% NbC, (c) 1.0% NbC,
and (d) 5.0% NbC. (e) TEM bright field image of the specimen without NbC. diffraction pattern
of hexagonal Laves phase. (f) TEM bright field image of particle in the specimen with 1% NbC;
diffraction pattern of carbide particle.

Table 4. Volume fractions and average diameters of Laves/carbide after different heat treatments.

Condition Treatment Site Volume
Fraction

Average
Diameter

Without NbC
STA

Intragranular carbide 0.11% 47.4 nm
Grain boundary carbide 0.09% 544.3 nm

DA Cellular wall Laves 1.28% 35.3 nm

0.5% NbC
STA

Intragranular carbide 0.53% 46.0 nm
Grain boundary carbide 0.71% 458.8 nm

DA Cellular wall carbide 2.54% 32.6 nm

1.0% NbC
STA

Intragranular carbide 0.80% 57.0 nm
Grain boundary carbide 0.93% 519.3 nm

DA Cellular wall carbide 3.61% 32.3 nm

5.0% NbC
STA

Intragranular carbide 3.23% 51.1 nm
Grain boundary carbide 4.36% 628 nm

DA Cellular wall carbide 7.60% 42.5 nm
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as-built Inconel 718 with NbC addition, and columnar grains were observed. However, 

Figure 7. TEM analysis of γ′/γ′′ precipiate after post-treatment. (a) Bright field image and diffraction
pattern of STA without NbC, and (b) Dark field image of STA without NbC. (c) Bright field image and
diffraction pattern of STA with 0.5% NbC, and (d) dark field image of STA with 0.5% NbC. (e) Bright
field image and diffraction pattern of DA without NbC, and (f) Dark field image of DA without NbC.
(g) Bright field image and diffraction pattern of DA with 1% NbC, and (h) Dark field image of DA
with 1% NbC.

EBSD grain analysis are shown in Figure 8. Epitaxial grains growth was present in
as-built Inconel 718 with NbC addition, and columnar grains were observed. However,
with NbC addition, more small grains were detected. Table 5 shows the average grain
diameter after different heat treatments. The average grain diameter of the as-built SLM
samples decreased from 18.94 µm to 17.97 µm, 17.11 µm, and 10.51 µm for 0%, 0.5%, 1.0%,
and 5.0% NbC addition, respectively. For specimens subjected to post-SLM heat treatments,
it is found that STA could eliminate the columnar grains of as-built specimens and led to
obvious grain growth. The average grain diameter of the sample without NbC addition
was 44.53 µm after STA. It is found that grain growth during STA was inhibited with more
NbC addition. Average grain size of STA specimens decreased to 30.85 µm with 0.5% NbC,
21.53 µm with 1.0% NbC, and 13.45 µm with 5.0% NbC addition. On the other hand, DA
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had less influence on grain size and grain morphology; grain structures of DA specimens
were similar to those of as-built conditions.
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Table 5. Average grain diameter of different specimens. 

Condition As-Built STA DA 
Without NbC 18.94 μm 44.53 μm 19.90 μm 
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1.0% NbC 17.11 μm 21.53 μm 18.26 μm 
5.0% NbC 10.51 μm 13.45 μm 11.11 μm 

Figure 8. Overall EBSD inverse pole figures of different specimens. (a) as-built without NbC, (b) STA
without NbC, (c) DA without NbC, (d) as-built with 0.5% NbC, (e) STA of 0.5% NbC, (f) DA of 0.5%
NbC, (g) as-built of 1.0% NbC, (h) STA of 1.0% NbC, (i) DA of 1.0% NbC, (j) as-built of 5.0% NbC,
(k) STA of 5.0% NbC, and (l) DA of 5.0% NbC.

Table 5. Average grain diameter of different specimens.

Condition As-Built STA DA

Without NbC 18.94 µm 44.53 µm 19.90 µm
0.5% NbC 17.97 µm 30.85 µm 18.57 µm
1.0% NbC 17.11 µm 21.53 µm 18.26 µm
5.0% NbC 10.51 µm 13.45 µm 11.11 µm

The overall GND densities of different specimens have been estimated by the method
described in Section 2.5 and results are presented in Table 6. The corresponding KAM
maps are shown in Figure 9. All the as-built specimens had similar GND density around
4.04 × 1013/m2~4.54 × 1013/m2 and the values were independent of the contents of NbC
addition. After STA heat treatment, GND density decreased from 4.18 × 1013/m2 to
1.31 × 1012/m2 for samples without NbC addition. GND density of STA specimens with
NbC additions also decreased significantly due to stress relief by SHT. By contrast, DA
processes did not appear to decrease the GND density dramatically for all specimens with
and without NbC additions.



Metals 2021, 11, 1691 12 of 22

Table 6. Overall GND density of different specimens.

Condition As-Built STA DA

Without NbC 4.18 × 1013 /m2 1.31 × 1012 /m2 4.32 × 1013 /m2

0.5% NbC 4.06 × 1013 /m2 2.84 × 1012 /m2 4.05 × 1013 /m2

1.0% NbC 4.54 × 1013 /m2 1.74 × 1013 /m2 4.35 × 1013 /m2

5.0% NbC 4.04 × 1013 /m2 3.62 × 1013 /m2 3.87 × 1013 /m2
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Figure 9. KAM map of different specimens. (a) as-built without NbC, (b) STA without NbC, (c) DA
without NbC, (d) as-built with 0.5% NbC, (e) STA of 0.5% NbC, (f) DA of 0.5% NbC, (g) as-built of
1.0% NbC, (h) STA of 1.0% NbC, (i) DA of 1.0% NbC, (j) as-built of 5.0% NbC, (k) STA of 5.0% NbC,
and (l) DA of 5.0% NbC.

3.3. Tensile Properties

Tensile stress and strain curves are presented in Figure 10, and the corresponding
tensile properties are listed in Table 7. For STA specimens, yield strength (YS) and ultimate
tensile strength (UTS) increased gradually with NbC additions, from 1134.8 MPa and
1359.9 MPa of no NbC addition, to 1325.5 MPa and 1498.4 MPa of 5.0% NbC, respectively.
After DA process, tensile strengths of samples increased significantly and the influence of
NbC addition was more pronounced. Without NbC addition, YS was 1357.5 MPa and UTS
was 1490.4 MPa; with 0.5% NbC addition, YS was 1461.0 MPa and UTS was 1575.2 MPa.
However, for DA specimens with NbC addition of more than 1.0%, both YS and UTS
were decreased compared to that of 0.5% NbC. DA specimen with 5.0% NbC addition
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broke without reaching the yield point. For samples without NbC addition, the elongation
decreased from 23.96% to 14.59%. The elongation further decreased to 9.95% and less for
samples with NbC additions greater than 1.0%. Tensile properties of as-built and as-SHT
specimens without NbC addition, and as-built specimen with 0.5% NbC, are also listed in
Table 7. As-built specimen without NbC had a YS of 771.6 MPa, and 0.5% NbC addition
could increase the YS to 841.4 MPa in as-built condition, while as-SHT specimen with no
NbC exhibited a YS of 379.5 MPa and large elongation.
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Figure 10. Room temperature tensile stress-strain curves (a) STA specimens and (b) DA specimens.

Table 7. Tensile properties of specimens in this study.

Condition Treatment YS (MPa) UTS (MPa) E (GPa) Elongation%
Strain

Hardening
Exponent n

Without NbC

As-built 771.6 ± 3.2 1031.5 ± 5.2 200.04 ± 13.7 25.94 ± 0.14 0.1230 ± 0.0048
SHT 379.5 ± 6.4 876.2 ± 9.7 205.3 ± 7.7 61.02 ± 0.67 0.2162± 0.0091
STA 1134.8 ± 4.8 1312.5 ± 3.3 200.0 ± 7.0 23.86 ± 1.19 0.1001 ± 0.0032
DA 1357.5 ± 2.5 1490.4 ± 3.4 223.0 ± 3.0 14.59 ± 4.45 0.0796 ± 0.0041

0.5% NbC
As-built 841.4 ± 0.35 1105.9 ± 1.1 212.8 ± 3.2 20.62 ± 0.77 0.1199 ± 0.0035

STA 1175.7 ± 20.4 1395.3 ± 3.3 205.2 ± 17.9 20.40 ± 0.50 0.0968 ± 0.0004
DA 1461.0 ± 2.5 1575.2 ± 0.2 219.2 ± 10.0 10.45 ± 0.19 0.0679 ± 0.0011

1.0% NbC
STA 1221.6 ± 5.4 1423.8 ± 2.2 214.2 ± 20.8 9.95 ± 1.45 0.0850 ± 0.0006
DA 1439.5 ± 16.5 1545.3 ± 4.4 212.5 ± 1.3 6.80 ± 1.43 0.0541 ± 0.0027

5.0% NbC
STA 1325.5 ± 35.5 1498.4 ± 5.4 235.0 ± 1.0 3.33 ± 0.03 0.0654 ± 0.0002
DA Broke before YS 1412.8 ± 85.2 213.8 ± 1.3 - -

Stress-strain curves were used to calculated strain hardening exponents (n) based on
the Hollomon equation below [55], n values are listed in Table 7.

σt = kεn
t (3)

where σt is the true stress, εt is the true strain, k is the strength coefficient, and n is
strain hardening exponent. n is the gradient by plotting σt vs. εt in logarithmic scale.
It is found that strain hardening exponents decreased with NbC additions, and STA
samples possessed higher n values than that of DA samples. Fracture surfaces of tensile
specimens are shown in Figures 11 and 12. Dimples were observed in the matrix at most
of the regions of fracture surfaces, and this suggests that the fracture of FCC matrix was
ductile. However, some brittle fracture features were observed in the specimens with
NbC additions. It was clear that cracks were formed associated with carbide particles;
most of these cracked carbide particles with irregular morphology were the residual NbC
flakes shown in Figure 3. The fracture surfaces of DA specimens were similar to the STA
specimens without NbC addition.
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Figure 12. Fracture surfaces of DA specimens. (a,b) without NbC, (c,d) 0.5% NbC, (e,f) 1.0% NbC,
and (g,h) 5.0% NbC.

Results of tensile tests indicated that DA samples could exhibit higher strength than
those of STA samples, as shown in Figure 10, and NbC addition further increased the
strength of specimens. However, degradations of strength and ductility were observed
in DA specimens when NbC addition was more than 1.0%; brittle fracture occurred on
large NbC particles shown in Figures 11 and 12 were responsible for this observation. It
should be noted that fracture particles larger than 10µm had multiple boundaries inside,
which could also indicate that these were agglomeration of small flakes. These large
NbC particles or agglomerations became stress concentration sites for brittle fracture; they
broke during the tensile test, decreased the load-bearing volume. According to fracture
toughness mechanism [56], DA specimens were less ductile than STA specimens because
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they possessed high GND density, and stress in tension could trigger the propagation of
crack along un-dissolved NbC particles without significant yielding. Because fractions
of un-dissolved NbC increased with more NbC addition as shown in Figure 3, this could
lead to the degradation of mechanical properties for specimens with higher NbC contents.
Analysis showed that strain hardening exponent decreased with both NbC additions and
DA process, Table 7. DA specimens had higher GND density prior to tensile test, and this
implied DA specimens had been strain-hardened; hence, it could result in lower strain
hardening rates and elongations. However, UTS of these DA specimens were still higher
than those of STA specimens. Hence the significant strengthening in tension achieved in this
work could be mainly attributed to the increase in yield strength. In the following section,
0.5% NbC specimen has been chosen for further discussion about each strengthening
contributions in order to avoid the influence of un-dissolved NbC particles.

There are several factors that could affect the yield strength of alloy, and they can be
expressed as the following equation [23,30,57]:

σy = σ0 +
(

σk
G.B + σk

strain + σk
r′ + σk

r′′ . . .
)1/k

(4)

where σy is the YS of material. σ0 is the strengthening contribution of matrix, and this term
includes solid solution strengthening, stacking fault strengthening, friction stress [29–31].
Other strengthening contributions include grain boundary σG.B, precipitation σγ′ /σγ”, and
strain hardening σstrain. The exponent k is a constant depending on the interaction between
each factor [57]. As shown in Figure 8 and Table 5, grain size changed with NbC content
and heat treatment. Variation of grain size could influence tensile strength according to
Hall-Petch relation; grain boundary could inhibit the movement of dislocation and hence
smaller grains could provide higher strength to material [56]. The relationship is expressed
as the equation below:

σG.B. =
K√

d
, (5)

where d is grain diameter of matrix and K is Hall-Petch coefficient related to material
properties. Here, K is chosen as 750 MPa µm1/2 for superalloy [58]. The average grain
size in Table 5 was used. Calculated strengthening contribution of grain boundary to STA
specimens was 112.4 MPa for specimen without NbC, and the value increased to 135 MPa
with 0.5% NbC addition. NbC addition also increased the strengthening contribution of
grain boundary to DA specimen slightly, from 168 MPa to 174 MPa of 0.5% NbC addition. It
is known that GND density could dominate the plastic deformation and working hardening
of SLM FCC materials [48], and it has also been reported that working hardening could
increase proportionally with GND density [42]. Assuming that residual strain of SLM
components would not cause large distortion, then GND density data from Table 6 could
be used to estimate strengthening contribution by Taylor equation, which was used in
previous studies [30,59,60]. Taylor relation describes necessary shear stress to overcome
stress field between each dislocation. The equation is described below [56]:

σStrain = α M G b
√

ρ (6)

where M is Taylor factor (3 is assumed in this study), G is the shear modulus of the matrix
(76 GPa based on previous work [58]), b is Burgers vector, and α is a value depending on
the dislocation distribution. For heterogeneous distribution such as cellular structure, in
which dislocations are accumulated along the cellular wall, α value of 0.3 was used in this
study [59].

Estimated strengthening contribution of dislocation to STA specimens was 19.9 MPa
for specimen without NbC and the value increased with 0.5% NbC addition to 29.3 MPa
because that Zener drag could preserve some dislocation during heat treatment. On the
other hand, NbC addition had less influence on strengthening contribution of dislocation
to DA specimens. The strengthening contribution of dislocation to DA specimens was
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110.5~117.7 MPa and was independent of NbC addition based on GND density data in
Table 6. Strengthening contribution of dislocation from thermal strain in this study was
lower than previous literatures of other fused based AM processes [29–31,48], in which
strengthening contribution of dislocation about 160~400 MPa was reported. It might be
because a relatively low energy density and pre-heating baseplate were used in this study,
and both could decrease the thermally induced stress during the SLM process [61].

To estimate the strengthening contribution of primary strengtheners, i.e., γ′ and γ′ ′

precipitates, the following equation was used to describe the stress needed to cut through
the particles [62]:

σγ′/γ′′ = M
γAPB

2b

[√
3 γAPB f d

π T
− f

]
(7)

where γAPB is the anti-phase boundary energy (~175 mj/m2 for γ′ and ~296 mj/m2 for
γ′′ [63]), b is Burgers vector, f is the volume fraction of the particle, d is the particle diameter,
T is a tension equal to Gb2/2, and G is the shear modulus of the matrix. In this study,
long axis diameter of particles shown in Figure 7 is chosen as diameter to simplify the
calculation (~13 nm).

It is hard to determine the volume fractions of γ′ and γ′′ even with TEM images.
Previous work used phase compositions to estimate the fraction of each phase in Inconel
718 [23]. For DA specimen, γ′′ fraction was about 13.9 vol% and γ′ fraction was 5.13 vol%;
for STA specimens, γ′′ fraction was about 16.9 vol% and γ′ fraction was 5.37 vol%. NbC
addition did not influence the fractions and sizes of γ′ and γ′′ particles; the strengthen-
ing contributions of γ′′ and γ′ to STA specimen were about ~596 MPa and ~173 MPa,
respectively. Moreover, for DA process, the values slightly decreased to ~565 MPa and
~170 MPa, respectively.

An extra factor termed “cellular structure strengthening” (σcell) has been introduced
in this work in order to describe the extra strength of DA specimen. This factor is a
combination of sub-grain boundary associated with cell structure and hard particles (Laves
and carbide) along cellular wall. The exponent k in Equation (4) was adjusted based on the
assumptions below: (1) DA specimens and corresponding as-built specimens had similar
σcell and (2) the estimated YS was close to the experimental data. The deduction gave an
exponent k ~1.11, which is close to that of previous work (1.14~1.17) [23]. Hence, each
strengthening contributors of STA and DA specimens can be presented in Figure 13. Based
on the deduction, it is shown that for DA specimens, in addition to primary strengtheners,
grain refinement and residual strain, cellular structure could provide further strengthening
to Inconel 718. Without NbC addition, DA process could increase the yield strength by
222.7 MPa compared to that of STA without NbC content; with 0.5% NbC, an increase of
326.2 MPa was achieved. Based on the deduction, it is shown that for DA specimens, in
addition to primary strengtheners, grain refinement and residual strain, cellular structure
could provide further strengthening to Inconel 718. Since the STA process removed the
cells while DA process preserved the cellular structure, NbC addition could further refine
cell size and strengthen the cell walls; hence, a significant increase in yield strength beyond
1400 MPa could be achieved.
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3.4. Comparison with Current State of the Art

Figure 14 summaries the yield strengths of Inconel 718 processed by different laser
fused-based AM processes (SLM & LENS) reported in literatures. Data of cast & wrought
(C&W) Inconel 718 (AMS standard 5663) is also included in the figure [64]. The wide
variation in yield strengths was attributed to not only different AM processes but also
different post-heat treatments. SLM process can induce higher strength than that of LENS
due to faster cooling rate, and this could induce higher GND density for strain hardening
and finer grain size for grain boundary strengthening. With DA process, the yield strengths
of both SLM and LENS processed Inconel 718 could be enhanced. Although SHT is usually
applied on traditional wrought ingots of Inconel 718, and this could relieve the internal
strain and chemical segregation, direct aging could preserve the plastic strain and have
less influence on the grain structure and cellular dendrites, which was responsible for
significant strengthening contribution in this study. Furthermore, with NbC addition, the
cell size was refined and further strengthened by nano carbides along the cell walls. It was
reported by Chen et al. [8] that a tensile yield strength beyond 1400 MPa could only be
achieved by traditional wrought processes with 20% plastic reduction and DA treatment,
but such process would be difficult to be applied to fabricate component with complex
geometry. Thus, by blending only 0.5% NbC, and with direct aging treatment, this work
presents a simple but effective method to achieve high strength for Inconel 718 processed by
SLM; a record-high yield strength of 1461 MPa and ultimate tensile strength of 1575.2 MPa
have been achieved according to literature data to-date.
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4. Conclusions

An effective method to strengthen a superalloy processed by SLM has been presented;
a minor amount of NbC was blended with Inconel 718 superalloy for SLM process. The
post-SLM direct aging heat treatment could render up to 326.2 MPa increase in yield
strength. Both grain size and cellular dendrite became finer with more NbC additions in
as-SLM condition. Two types of post-SLM heat treatments were investigated, i.e., solution
heat treated plus aging and direct aging. Experimental results indicate that STA treatment
could eliminate the cellular dendrites, reduce residual strain, and also induce grain growth;
while DA treatment could retain the as-built cellular dendrites and grain size. Both STA
and DA could promote the precipitations of primary strengtheners; furthermore, with NbC
additions, nano carbides precipitations were observed along the retained cellular dendritic
walls in DA samples. This could provide additional Zener dragging at the refined cellular
walls, which were absent in STA samples. Furthermore, it was found that additions of 1.0%
and 5.0% NbC could render a significant drop in ductility due to insufficient fusion of some
large NbC flakes, and 0.5% NbC addition was found to provide the highest tensile strength
with moderate tensile ductility around 10%. A record yield strength of 1461 MPa and
ultimate tensile strength of 1575.2 MPa for Inconel 718 processed by laser manufacturing
process have been achieved in this work according to literature data to-date.
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