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Abstract: The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets
during 135◦ warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that
relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained
from WCR, since more potential slip systems could be activated. Electron backscatter diffraction
(EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations
mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the
proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries
or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density
based on the strain gradient model supports this result. The analysis of relative Schmid factor
combined with the strain contouring map indicated that inhomogeneous orientation-dependent
grain subdivision could be effectively weakened, and relatively uniform strain distribution could be
formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented
grains were obtained in the WCR sample after the completion of recrystallization because of relatively
uniform grain subdivision and stored energy distribution.

Keywords: 135◦ warm cross rolling; dislocation movement; geometrically necessary dislocation;
schmid factor; recrystallization

1. Introduction

High-purity Ta with a body-centered cubic (bcc) structure has attracted more and
more attention in the field of sputtering targets owing to its high conductivity, thermal
stability, high melting point and excellent corrosion resistance [1]. With the prosperity
of the chip market and chip manufacturing industry, higher requirements have emerged
for the sputtering targets used in semiconductor-metal interconnects. The distribution of
grain size and crystal orientation within high-purity Ta target directly affects the sputtering
performance and the service life of the target. In other words, homogeneous microstructure,
i.e., fine uniform grain size and random crystal orientation, of a high-purity Ta target can
significantly improve the uniformity of sputtering film [2–4].

Electron beam melting (EBM) is the preferred method for manufacturing high-purity
Ta ingots because of excellent density and purification advantages compared to powder
metallurgy [5,6]. Unfortunately, Ta ingots prepared by EBM have significant weaknesses
including coarse grain size and extremely strong texture [6–8]. After subsequent processing,
such as traditional rolling and annealing, texture bands, residual deformation bands and
uneven grain size distribution are typical features in Ta plates [9–11].

Recent studies by our team [9–12] revealed that a change in strain path during rolling,
i.e., 135◦ cross rolling, can efficiently refine grain size, weaken texture intensity and even
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eliminate residual deformation bands in high-purity Ta plates. On the other hand, nu-
merous studies [13–15] have shown that warm rolling also has an important effect on
regulating and controlling the evolution of microstructure and texture. Jiao et al. [13] found
that the nucleation of cubic grains ({100}<001>) was weakened, and the Gaussian plane
({110}<001>) was enhanced in silicon steel after warm rolling, which helped in refining
grains and obtaining the required texture distribution. Li et al. [14] reported that warm
cross rolling combined with annealing could improve the conductivity of AA7075 alloy and
reduce the anisotropy of tensile strength because of effective weakening of deformation
texture intensity in brass, Dillamore and Gaussian. Hao et al. [15] adopted combined
processing technology, i.e., warm forging and warm rolling, to refine grains in a titanium
alloy. Their results showed that uniform microstructure could be obtained by a warm
rolling process, including the precipitation of phases with grain sizes less than 200 nm and
even nano-sized.

It should also be mentioned that Ta is a metal with high stacking fault energy, and
dislocations are prone to climbing and cross-slip [16,17]. Therefore, most of the stored
energy, up to 70%, is released in the recovery stage [18]. Clearly, recovery plays a great
influence in the recrystallization behavior of Ta. The DSC experiment [18] showed that
the recovery temperature of Ta is approximately 800 ◦C. Note that recrystallization is not
initiated, and recovery only occurs during warm rolling rather than hot rolling. Thus, by
combining 135◦ cross rolling and warm rolling, we expect to improve the uniformity of
stored energy distribution in the deformed matrix, and to obtain a better combination of
microstructure and texture in Ta sheets.

In the present work, a new rolling technique for Ta-foils, i.e., warm rolling combined
with 135◦ cross rolling, is designed. The purpose of this paper is to investigate the effect of
warm cross rolling on the homogeneity of the texture and microstructure.

2. Experimental Method
2.1. Materials and Rolling Procedure

A Ta ingot prepared via EBM was processed with multi-directional forging to break
coarse columnar crystals, and the chemical composition was as displayed in Ref. [10]. Two
round Ta plates with a thickness of 12 mm were cut from the Ta ingot and then annealed at
1050 ◦C for 3 h in vacuum to obtain a fully recrystallized microstructure. Before rolling,
the sample was reheated to 800 ◦C and isothermally held for 30 min. The first group of
samples was processed by 135◦ warm cross rolling (WCR). During the WCR process, the
rolling direction (RD) was rotated 135◦ counterclockwise in the horizontal plane relative
to each previous pass. More details on 135◦ cross rolling are described in Ref. [11]. After
rolling for eight passes, the plate was re-heated in the furnace for 10 min and then rolled for
another four passes, so that the total rolling strain was ultimately maintained at 70%. The
detailed rolling parameters are summarized in Table 1. The other group of samples was
rolled unidirectionally at 800 ◦C. During the warm unidirectional rolling (WUR) process,
the rolling direction remained unchanged, and the other parameters were kept the same
as the first group. The schematic diagram of the metal working process can be found in
Figure 1.

The rolled Ta sheets were annealed at 1100 ◦C for 5 and 30 min to observe the evo-
lution of the microstructure during recrystallization. Argon gas was used as a protective
atmosphere during annealing, and the samples were water-quenched rapidly after the
completion of the annealing.
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Table 1. The rolling parameters for 135◦ warm cross and unidirectional rolling.

Rolling Pass Entrance
Thickness/mm

Exit
Thickness/mm

Rolling Gap
Geometry (l/h)

Total Rolling
Reduction/%

1 12 10.5 2.43 12.5
2 10.5 9.2 2.58 23.3
3 9.2 8.2 2.57 31.6
4 8.2 7.4 2.56 38.3
5 7.4 6.7 2.65 44.1
6 6.7 6 2.94 50
7 6.0 5.4 3.03 55
8 5.4 4.8 3.39 60
9 4.8 4.3 3.47 64.2
10 4.3 4.0 2.95 66.6
11 4.0 3.8 2.56 68.3
12 3.8 3.6 2.70 70

Note: l/h = 2
√

r(d0 − d)/(d0 + d) , where r is the radius of rolling mill, l is the length of contact between the
rolls and the specimen, and h is the average thickness of the sample for each rolling pass.
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Figure 1. Schematic diagram of the metal working process.

2.2. Characterization Methods

The macrotexture of the rolled sample was determined using an X-ray diffractometer
(XRD, Rigaku D/max 2500PC, Tokyo, Japan). Cu Kα radiation was used in the test, and
the accelerating voltage and current were 40 kV and 150 mA, respectively. Four incomplete
pole Figures {110}, {200}, {211} and {222} were recorded using the Schulz reflection method,
and the orientation distribution function (ODF) was calculated using arbitrarily defined
cells (ACD) method [19]. The detection regions were near-surface, quarter-thickness, and
center layers on the ND plane of all specimens tested. To minimize the effect of mechanical
grinding during specimen preparation on measurements, samples were electropolished
in a solution of 10 vol% hydrofluoric acid and 90 vol% sulfuric acid. The XRD data was
processed and analyzed using Labo Tex 3.0 software.

The microstructure of the deformed and recrystallized samples was characterized with
a Tescan Mira 3 field-emission scanning electron microscope equipped with an electron
backscatter diffraction (EBSD) detector (TESCAN, Oxford, UK). EBSD studies were carried
out at an accelerating voltage of 20 kV and a working distance of 14 mm. The specimen
preparation procedure was the same as that for XRD, and the analysis region was kept near
the center layer in the transverse direction (TD) plane of the specimen. The experimental
data from EBSD was processed and analyzed using HKL Channel 5 software (5.0.9.0,
Oxford Instrument, Oxford, UK).
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3. Results
3.1. Initial Texture and Grain Size Distribution

The texture of the as-received Ta plate along the thickness processed by multi-directional
forging and annealing is presented according to ODFs in Figure 2. It can be found from
Figure 2a–c that the distribution and intensity of the texture along the plate thickness
was extremely uneven. The maximum texture density, Fmax, of the surface and center
layers was 11.8 and 12.1, respectively, while the maximum texture intensity of the center
layer reached 25.7. Note that the initial Ta ingot used in this experiment was prepared
using EBM technology, which usually contains coarse columnar grains that can reach
centimeter-scale level because of the gradient distribution of heat along the ingot height
during smelting [6–8]. Although multi-directional forging was used to break the initial
as-cast columnar structure of the Ta ingot, the texture distribution was still relatively con-
centrated. Orientation clusters easily occurred in the different thickness layers of the Ta
plate, which suggests a relatively small number of grains within the X-ray beam during
scanning.
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Figure 3 shows the distribution of grain sizes in the as-received Ta plate. The grain
structure in the Ta plate treated by forging followed by annealing was also relatively
uneven, which is consistent with the observations from X-ray texture measurements. The
average grain size was 91.5 µm, and the maximum grain size reached 455.9 µm. The coarse
grain and inhomogeneous size distribution could significantly destroy the sputtering
performance of a Ta target [2].
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3.2. Deformation Texture

The deformation texture of Ta sheets along the thickness as processed by warm unidi-
rectional rolling i.e., WUR and 135◦ warm cross rolling i.e., WCR is presented according to
ODFs in Figure 4. The typical rolling texture of BCC metals can be summarized as follows:
α-fiber texture, i.e., <110> parallel to RD, θ-fiber texture, i.e., <100> parallel to ND, γ-fiber
texture, i.e., <111> parallel to ND and ζ-fiber texture, i.e., <110> parallel to ND [20]. It
can be observed that a strong ζ-fiber texture, focused around {011}<100> Goss orientation,
formed in the surface layers of both WUR and WCR samples, while Fmax reached the
intensities of 16.0 and 13.6, respectively. These indicate strong shear strain in the surface of
warm-rolled samples, which can be associated with contact friction. The shear strain in the
center of rolled sample was relatively weak, i.e., grains in the center layer were more likely
to be subjected to plane-strain compression [21,22]. The number of active slip systems in
WUR sample could be less than that in WCR sample, and a typical γ-fiber and α-fiber
texture was gradually formed with the increase of strain level [10]. Due to the continuous
change in the strain path in WCR, more potential slip systems can be activated [23,24]. The
crystal orientation of grains with different orientation constantly changed owing to the
rotation of the sample, and relatively stable γ-fiber and θ-fiber textures could be developed.
In the quarter-thickness layer of rolled Ta sheet, the shear strain was greater than that in
the center, and the grains were not in a strict plane-strain state. A random texture could be
easily formed in the rolling process, and Fmax was low. Overall, a relatively uniform and
ideal deformation texture was formed in the WCR sample along its thickness.
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3.3. Deformation Microstructure

Figure 5 shows the ND inverse pole Figure (IPF) maps of WUR and WCR samples.
Maps shown in Figure 5a,b are dominated by crystal orientations {111} and {100}. However,
volume fractions and spatial distributions of {111} and {100} oriented grains were very
different in WUR and WCR samples. The deformed {111} and {100} grains were distributed
alternately in the WCR sample, while the WUR sample was dominated by {111} grains.
These observations are very consistent with the XRD results. Further analysis suggests
that in the WUR sample the grain boundaries were relatively straight and parallel to RD,
while the spacing between them in ND was rather coarse at the scale of several tens of
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micrometers. The deformed grains in the WCR sample were much more slender, and the
grain boundaries were relatively curved. Numerous high angle grain boundaries occurred
in deformed {111} grains in the WUR sample (see black lines in Figure 5a) indicating very
heterogeneous grain fragmentation. By contrast, grains deformed relatively evenly with no
particularly severe subdivision and a more homogeneous orientation color in the interiors
of deformed grains in the WCR sample; see ND IPF map in Figure 5.

Figure 6 displays the statistical grouped distribution of the misorientation angle in
the WUR and WCR samples. The proportion of low-angle grain boundaries (1.5–5◦) in the
WUR sample was higher than that in the WCR. This can be explained by the type of slip
system changing significantly between sequential rolling paths during the WCR process.
This processing route introduces partial reversal of strain, which can increase the probability
of dislocation re-arrangement and annihilation [25–29]. Note that in warm rolling, the
Peierls stress to be overcome by dislocation movement is reduced due to the increase in
rolling temperature and the enhancement in thermal activation contributing to an increase
in dislocation movement rate [30]. The synergistic action of these two factors, i.e., the
change in strain path and the increase in rolling temperature, could further accelerate
the movement of dislocations, improve the probability of dislocations rearrangement and
annihilation, and thus significantly reduce the proportion of low-angle grain boundaries
in the WCR sample. The decrease in low-angle grain boundary fraction suggests more
sub-grain boundaries (5–10◦) or sub-grains were formed in the WCR sample. It should
also be mentioned that a strong {111} deformation texture was formed at the center of the
WUR sample, and deformed grains were relatively coarse. Previous experiments [10,31,32]
revealed that the degree of grain subdivision within the deformed {111} grains in Ta sheets
after unidirectional cold-rolling was high. Heterogeneous plastic deformation in deformed
{111} grains can result in a large number of low-angle boundaries and high dislocation
density in the WUR sample.
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3.4. Recrystallization Microstructure

Figure 7 displays the microstructures of WUR and WCR samples after annealing at
1100 ◦C for 30 min. It can be clearly seen that both samples were in a fully recrystallized
state. The average size of grains in the WCR sample was relatively uniform and virtually
independent on orientation; see Figure 7c. In the WUR sample, the average size of grains
significantly depended on orientation with the highest variation found between {111} and
{100}. The volume fraction of randomly oriented grains was higher in the WCR sample,
while the difference between the fractions of {111} and {100} texture components is relatively
low. By contrast, a strong {111} texture component formed in the WUR sample after the
completion of recrystallization.
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fractions of {111}, {110}, {100} and otherwise oriented grains in WUR and WCR samples.

4. Discussion
4.1. GNDs Distribution

To quantitatively analyze deformation behavior and subdivision within {111} and {100}
grains in the deformed samples, local orientation differences obtained from EBSD data were
used. The densities of geometrically necessary dislocations (GNDs, ρGND) were computed
in this paper. The quantitative analysis of GNDs mainly depends on the calculation of the
dislocation density tensor proposed by Nye. The estimate of GNDs density is based on the
misorientation angle between measured points with known distance x [33,34]. Kröner [35]
showed that GNDs are intimately related to the elastic strain field and lattice curvature.
Wilkinson and Randman [36] demonstrated that the contribution from the elastic strain part
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is substantially smaller than from the lattice rotation. Based on the strain gradient model,
the method proposed by Kubin and Mortensen was introduced to relate the misorientation
angle θ to the density of GNDs according to the following equation [37]:

ρGND =
αθ

bx
(1)

where α is a constant equal to 2, i.e., the pure tilt boundary in this study; θ is the value
of the misorientation angle; b is the Burgers vector, i.e., 0.286 nm for Ta; x is the unit
length (100 nm). Figure 7 displays estimated distribution of GNDs density within de-
formed {111} and {100} grains according to local misorientation from the EBSD data.
Note that the calculation of GNDs density was performed using MATLAB software. As
shown in Figure 8, the average GNDs densities in deformed {111} and {100} grains were
16.1 × 1014 m−2 and 5.7 × 1014 m−2, respectively, in the WUR sample, and 13.0 × 1014 m−2

and 5.4 × 1014 m−2 in the WCR one. Clearly, the density of GNDs in the deformed grains
of the WCR sample was effectively reduced compared to the WUR sample, especially
in deformed {111} grains. Note that dynamic recovery (DRV) can occur in warm rolling.
DRV of dislocations mainly refers to the gradual evolution of cell structures generated in
deformation into sub-grains by dislocation rearrangement and annihilation. The change
in strain path in warm rolling seems to increase the rate of dislocations movement and
to improve the probability of dislocations rearrangement and annihilation. This could
effectively reduce the fraction of GNDs density in the WCR samples. In other words, the
increase in dislocation rearrangement and annihilation probability is beneficial for the
formation of sub-grains.
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4.2. Analysis of Schmid Factor and Strain Distribution

The Schmid factor can be used to qualitatively determine the activation of a slip
system during the analysis of micro-plastic deformation mechanism in metallic materials.
The stress state in the deformation of Ta sheet during rolling can be simplified to bi-axial
load, i.e., compressive stress along ND direction and tensile along RD. In our calculations,
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the Schmid factor was used to analyze the number of operating {110}<111> and {112}<111>
slip systems (24 possible slip systems in bcc metals) in the WUR and WCR samples. In
general, the calculation of the Schmid factor under complex stress states obtained by the
combination of the two stresses is as follows [38]:

SFrolling = (cosφ × cosγ − cosϕ × cosλ)/2 (2)

where φ or γ are the angles between the direction of friction force and the normal direction
or slip direction in the slip plane; and ϕ or λ are the angles between the direction of
compression force and the normal direction or slip direction in the slip plane. Note
that a relative Schmid factor, i.e., (Sm − Ss) × Ss

−1 × 100, namely the relative variation
between the maximum Schmid factor (Sm) and the secondary Schmid factor (Ss), was
introduced to further evaluate the activation of different slip systems [10,11,31]. A higher
relative Schmid factor indicates that only a few slip systems can be activated in rolling
deformation, while multiple slip systems can operate if the relative Schmid factor is low.
In the WUR sample (Figure 9a,b) the relative Schmid factor was higher in the deformed
{111} grains (could even reach 26), but was mainly distributed between 2 and 4 in {100}
grains. By contrast, the difference in the relative Schmid factor between the deformed
{111} and {100} grains was significantly lower in the WCR sample. Specifically, the relative
Schmid factor was mainly between 6 and 18 in {111} grains, and in the range of 2 to 14 in
{100} ones. The larger difference in relative Schmid factor between {111} and {100} grains
suggests more heterogeneous orientation-dependent subdivision of grains in the WUR
sample. Since multiple slip systems can operate in grains simultaneously, the alteration
of plastic deformation directions (e.g., WCR route in this study) makes the generation of
dislocations more discrete and uniform. Such considerations agree well with the intensity
and uniformity of texture in this study. Gurao et al. [39] also reported that the average
number of activated slip systems in cross rolling is higher than that in unidirectional rolling,
which intensifies the interaction of different slip systems. Since critical resolved shear stress
(CRSS) is temperature dependent, its variation between different slip systems can also be
reduced in warm rolling. Therefore, a large number of possible slip systems can operate
during WCR due to the changes in load direction with the change in strain path.
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Macroscopic deformation of metallic materials is typically assumed to be homoge-
neous, but inhomogeneity of microstructure usually makes local strains in the material
significantly heterogeneous. As can be seen in Figure 10, in the WUR sample local strains
concentrated mainly in {111} grains, while strain contouring in {100} grains was negligibly
small, which indicates uneven strain distribution. This was most likely caused by just a
few slip systems operating in {111} grains, which resulted in strong strain concentration,
while many slip systems were active in {100} grains leading to uniform deformation. Ulti-
mately, this resulted in orientation-dependent uneven strain distribution. However, the
effect of orientation-dependent inhomogeneity in the microstructure can be reduced by
multi-directional strain, which can be obtained in WCR processing. Namely, local strains
can be efficiently homogenized by activating a relatively uniform number of slip systems in
{111} and {100} grains. In WCR processing, the strain field can be homogenized by changing
the direction of applied load in the Ta sheet with each rolling pass, which is reflected in
reduced heterogeneity of micro-strain distribution.
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4.3. Homogeneity of the Recrystallization Microstructure

To reveal the onset of recrystallization, both WUR and WCR samples were annealed at
1100 ◦C for 5 min. The respective microstructures are shown in Figure 11. It can be seen that
partial recrystallization occurred in both samples. However, the degree of recrystallization
in the WCR sample was lower, and the size of recrystallized grains was finer, as can be
found from comparing the EBSD maps in Figure 11a,b. Further observations suggest that
in the WCR sample the recrystallized grains had relatively random orientations and more
even spatial distribution in the deformed matrix. By contrast, recrystallized {111} grains
in the WUR sample formed significant clusters, as indicated by yellow elliptic regions in
Figure 11a.

As mentioned above, in warm rolling sub-grains can be formed in a deformed matrix
through the thermal activation of vacancy diffusion, dislocation motion (slip, climb) and
rearrangement accompanied by the release of stored energy. Grains deformed unevenly in
WUR with {111} grains subdividing significantly faster than their {100} counterparts. The
inhomogeneous orientation-dependent subdivision of grains can also be reflected in the
uneven distribution of stored energy. In the WUR process, dynamic recovery appeared
preferentially in deformed {111} grains, ultimately leading to heterogeneous grain size
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distribution and clusters of {111} orientations. However, the inhomogeneity of orientation-
dependent subdivision of grains could be efficiently reduced to obtain a relatively uniform
strain distribution in WCR processing. As a result of rather uniform fragmentation of
microstructure and distribution of stored energy, recrystallized sub-grains also distributed
more evenly in the deformed matrix without segregation or orientation clustering. More
randomly oriented grains formed and the difference in grain sizes depending on orientation
was minimized in WCR after recrystallization.
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5. Conclusions

The purpose in this work was to investigate the effect of warm cross rolling on the
homogeneity of texture and microstructure after deformation and recrystallization. The
main conclusions can be summarized as follows:

1) A strong texture gradient existed across different thickness layers in the initial Ta
plates prepared by forging and annealing. After 135o warm cross rolling, relatively
uniform and ideal deformation texture distribution along sheet thickness could be
obtained.

2) The change in strain path combined with warm rolling could accelerate the rate of
dislocation movement, increase the probability of dislocations rearrangement and an-
nihilation, and thus significantly reduce the fraction of low-angle grain boundaries in
WCR processing. Corresponding distribution of geometrically necessary dislocations
(GNDs) further confirmed this result.

3) Analysis of the Schmid factor and comparison with strain contouring maps suggested
that the localization of strains could be efficiently reduced by the operation of a
relatively uniform number of slip systems within deformed {111} and {100} grains in
WCR.

4) Grains with more uniform in size and more randomly oriented were formed dur-
ing recrystallization after WCR due to reasonably uniform fragmentation in the
microstructure and distribution of stored energy.
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