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Abstract: Texture memory is a phenomenon in which retention of initial textures occurs after a
complete cycle of forward and backward transformations, and it occurs in various phase-transforming
materials including cubic and hexagonal metals such as steels and Ti and Zr alloys. Texture memory
is known to be caused by the phenomena called variant selection, in which some of the allowed child
orientations in an orientation relationship between the parent and child phases are preferentially
selected. Without such variant selection, the phase transformations would randomize preferred
orientations. In this article, the methods of prediction of texture memory and mechanisms of variant
selections in hexagonal metals are explored. The prediction method using harmonic expansion
of orientation distribution functions with the variant selection in which the Burgers orientation
relationship, {110}β//{0001}α-hex <111>β//

〈
2110

〉
α-hex, is held with two or more adjacent parent

grains at the same time, called “double Burgers orientation relation (DBOR)”, is introduced. This
method is shown to be a powerful tool by which to analyze texture memory and ultimately provide
predictive capabilities for texture changes during phase transformations. Variation in nucleation and
growth rates on special boundaries and an extensive growth of selected variants are also described.
Analysis of textures of commercially pure Ti observed in situ by pulsed neutron diffraction reveals
that the texture memory in CP-Ti is indeed quite well predicted by consideration of the mechanism
of DBOR. The analysis also suggests that the nucleation and growth rates on the special boundary
of 90◦ rotation about

〈
2110

〉
α-hex should be about three times larger than those of the other special

boundaries, and the selected variants should grow extensively into not only one parent grain but
also other grains in α-hex(hexagonal)→β(bcc) transformation. The model calculations of texture
development during two consecutive cycles of α-hex→β→α-hex transformation in CP-Ti and Zr are
also shown.

Keywords: texture memory; transformation texture; cubic; hexagonal; steel; titanium; zirconium

1. Introduction

When materials transform from one phase to another and transform back to the
initial phase, crystallographic textures in the initial phase are often retained to a great
extent [1–7], and, in some cases, not only the textures but also the grain structures are
reconstructed [8–10] despite diffusive transformation. These phenomena are called ‘texture
memory’, and the latter are known as ‘austenite memory’ for fcc austenite (γ)→martensite
(or bainite)→γ transformation in steel [8–10]. Since the texture memory occurs in various
industrial heating processes such as austenization in steel [1–3] as well as bcc β-phase
heat treatment in Ti and Zr alloys [4–7] and influences many properties of the materials,
studies on texture memory have been a central subject for decades in industry as well as
academic fields.

For phase transformation in cubic and hexagonal metals, there are two well-known ori-
entation relationships: the Kurdjumov–Sachs (K-S) orientation relationship in steel between
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bcc α–ferrite (α-f ) and γ, {111}γ//{110}α-f, <110>γ//<111>α-f, [11] and the Burgers orienta-
tion relationship (BOR) in e.g. Ti and Zr and their alloys between the low temperature hexag-
onal (α-hex) and high temperature β phases, {110}β//{0001}α-hex, <111>β//

〈
2110

〉
α-hex, [12].

During phase transformation, orientations of parent phase grains are inherited to those
of child phase grains by these orientation relationships. However, since multiple possible
child orientations are allowed, of which the numbers are 24 for the K-S relation and 6 and
12 for BOR in α-hex→β and β→α-hex, respectively, the texture in the initial phase would
be largely smeared if all the variants were chosen at an equal rate. Nevertheless, texture
memory occurs. Therefore, there must be some mechanisms that favor some orientation
variants over others, i.e., variant selection, which has been thought to be responsible for
the texture memory.

However, the mechanisms of variant selection are not thoroughly understood thus
far [1–7], partly because of the difficulty of in situ observation of texture change during
heat treatment at high temperatures, where oxidization of metal surfaces, grain growth
and chemistry changes due to evaporation of elements take place easily. Recently, neutron
and high-energy synchrotron X-ray diffractions by which bulk samples rather than only
the sample surface can be characterized have become available for in situ high temperature
texture measurements [4,5,7,13]. Additionally, electron back scattering diffraction (EBSD)
analysis using scanning electron microscope (SEM) has enabled 2D [14,15] or even 3D
micro-texture analysis [16–18], and thereby details of the texture changes during phase
transformation have been revealed and the mechanisms behind them have gradually been
clarified. The purpose of this articles is to explore the mechanisms of the texture memory
in hexagonal metals, especially in pure Ti for which neutron diffraction data exist, and
explain the observed texture evolution by the variant selection mechanism, which we call
the double Burgers orientation relation (DBOR) where variants that hold BOR or near-BOR
with two or more adjacent parent grains are selected.

2. Texture Memory in Ti and Zr Alloys

The texture memory in hexagonal metals such as commercially pure Ti (CP-Ti), Ti-
6%Al-4%V and Zr-3%Nb is strong and often even strengthens their textures [4–7], which
is one of the critical factors controlling various properties of the materials widely used
in aerospace, chemical, biomedical, healthcare, and power generation industries [19–21].
Crystallographic textures that develop during thermomechanical processes in production
cause large elastic, plastic, and thermal anisotropies [22] and are known to influence tensile
strengths [22], fracture toughness [22–24], corrosion resistance, and biocompatibility [25,26]
in the various industrial products.

The variant selection in hexagonal metals has been studied mostly for β→α-hex trans-
formation using β stabilized alloys, in which both product and parent phases of α-hex
and β can be observed at room temperature. Furuhara and his coworkers [27] reported
by transmission electron microscopy that α-hex particles nucleated on β grain boundaries
satisfied DBOR, which reduced interphase boundary energy. DBOR has been observed by
several other investigations using EBSD [4,28]. Related to this mechanism, it is also well
known that when two adjacent β grains nearly share a common {110} plane (about 10◦

deviation allowed), α-hex variants often nucleate on the β grain boundary having the basal
plane parallel to the common {110} [28]. Inclination from grain boundary planes is also
known to influence the variant selection such that the low energy facets of α-hex such as
{112}β//

〈
1100

〉
α-hex [29] or the common close-packed direction <111>β//

〈
2110

〉
α-hex [27]

tend to be parallel to β grain boundary planes. Shi et al. proposed that DBOR was the
first rule to be obeyed, and the second and the third were those related to the low energy
facets [30]. However, it is not yet clear whether these mechanisms observed for individual
grains can explain the bulk texture evolution during β→α-hex transformation, partly be-
cause the mathematical basis to compute transformation textures based on the proposed
mechanisms has not been established.
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Another variant selection mechanism proposed for β→α-hex transformation in Zrcallloy-
4 was based on an anisotropic elastic energy stored in neighbor parent grains. Transforma-
tion strain of martensite (α′-hex) can cause elastic strain not only in a single parent grain but
also in multiple parent grains, and the elastic anisotropy of the neighbor grains can cause
differences in the elastic energy for different variants, i.e., variant selection. The texture of
α′-hex was calculated based on the mechanism, and the reconstructed β texture from the
observed α′-hex texture by EBSD agreed well with the observed α′-hex texture [6].

In situ texture measurements are best suited to investigating the high-temperature β
textures. Lonardelli et al. [4] and Wenk et al. [5] have observed in situ the texture variations
in CP-Ti and Zr (Zrcalloy-4), respectively, during α-hex→β→α-hex transformation cycles
using a pulsed neutron diffractometer HIPPO in Los Alamos Neutron Science Center
(LANSCE) [31,32]. They reported that the texture of α-hex that consists of components
near

{
1215

}〈
1010

〉
and

{
0113

}〈
2110

〉
(transverse direction (TD)-split c-axis components)

transformed to the β texture with a maximum around {112}<111> (or components having
<111> along the rolling direction (RD)) with varying strengths of the cubic component
{001}<100>. The cubic component in CP-Ti was as intense as the {112}<111> component,
whereas that in Zr was vanishingly small. These β textures were then observed to transform
to α-hex textures with stronger near-

{
0113

}〈
2110

〉
components than the initial texture,

exhibiting the texture memory effect (see later sections for more details).
For the mechanism of the texture formation during α-hex→β transformation, it has

been proposed that the near-
{

0113
}〈

2110
〉

components selectively transform in accordance
with BOR and grow into the other components for both CP-Ti [4] and Zr [5]. A strong vari-
ant selection by an unknown mechanism was also required to explain the transformation
textures [4]. Daymond et al. proposed a variant selection mechanism caused by stresses
due to the anisotropy of thermal expansion in Zr-2.5%Nb, and qualitative agreement be-
tween observed and predicted β textures was reported [7]. Interestingly, DBOR has to the
best of our knowledge never been proposed in α-hex→β transformation, although DBOR
has been suggested as a variant selection mechanism in β→α-hex by many investigators.
Therefore, open questions remain in the texture memory in hexagonal metals.

In the following sections, the mathematical basis to predict the α-hexβ→ and β→α-
hex transformation textures in hcp metals with variant selection, especially DBOR, is
introduced. Then, we analyze the texture memory in α-hex→β→α-hex transformation in
CP-Ti measured in situ via HIPPO in LANSCE [4,31,32], based on the mathematical basis
described below.

3. Mathematical Basis of Transformation Texture Prediction for HCP Metals
3.1. Harmonic Equations for Transformation Texture Computation

Let us start with a very simple case, α-hex→β transformation with only one variant.
Given the rotation matrix for the orientation relationship, ∆g, and the orientation distri-
bution functions (ODF) of α-hex and β phases, f α-hex (g) and f β(g), respectively, f β(g) is
given by

fβ(g) = fα−hex

(
∆g−1·g

)
. (1)

When the orientation relation has a distribution of w(∆g) as well as variants and a
variant selection, ρ(g), it follows that

fβ(g) =
∮

w(∆g)·ρ
(

∆g−1·g
)
· fα−hex

(
∆g−1·g

)
d∆g. (2)

with an appropriate symmetry operation, this equation gives transformation textures
in which transformed components due to different variants are mixed as they naturally
occur. The ODFs should have crystal and sample symmetries, w(∆g) has the crystal
symmetry of β phase, and ρ(g) has sample symmetry [33].
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We expand the above functions by generalized (symmetric) harmonics defined by
Bunge [34] as follows:

fα−hex(g) =
∞

∑
λ=0

M(λ)

∑
µ=1

N(λ)

∑
ν=1

α−hexCµν
λ ·

:.
Tλ

µv(g), (3)

fβ(g) =
∞

∑
λ=0

R(λ)

∑
µ=1

N(λ)

∑
ν=1

βCµν
λ ·

....
Tλ

µv(g), (4)

w(g) =
∞

∑
λ=0

R(λ)

∑
µ=1

λ

∑
n=−λ

wµn
λ ·

...
Tλ

µn(g), (5)

ρ(g) =
∞

∑
λ=0

λ

∑
m=−λ

N(λ)

∑
ν=1

ρmν
λ ·

.
T

mν

λ (g), (6)

where Ts are the generalized harmonic functions in which dots above indicate that symme-
tries of crystals and samples are included in the functions (three dots: β crystal symmetry,
two dots: α-hex crystal symmetry, one dot: sample symmetry).

Then it follows that

βCµν
λ =

1
2·λ + 1

∞

∑
λ1=0

λ1

∑
m=−λ1

N(λ1)

∑
ν1=1

∞

∑
λ2=0

N(λ2)

∑
ν2=1

M(λ1)

∑
µ1=1

λ

∑
s=−λ

wµs
λ ·ρ

rν2
λ2
·α−hexCµ1ν1

λ1
·

:
A

mµ1

λ1
·(λ1λ2mr|λs){λ1λ2ν1ν2|λν}. (7)

Here, s = m + r, s ≤ λ and
:

A
mµ

λ , (λ1λ2mr|λs), and {λ1λ2ν1ν2|λν} are the symmetry
coefficients, the Clebsh–Goldan coefficients, and the generalized Clebsh–Goldan coeffi-
cients, respectively [34]. It is also held that |λ1 − λ2| ≤ λ ≤ |λ1 + λ2|. When there is no
distribution in the orientation relation, Equation (7) can be written as

βCµν
λ =

∞

∑
λ1=0

λ1

∑
m=−λ1

N(λ1)

∑
ν1=1

∞

∑
λ2=0

N(λ2)

∑
ν2=1

M(λ1)

∑
µ1=1

λ

∑
s=−λ

...
Tλ

µs∗(∆g)·ρrν2
λ2
·α−hexCµ1ν1

λ1
·

:
A

mµ1

λ1
·(λ1λ2mr|λs){λ1λ2ν1ν2|λν}. (8)

In the analysis in the later sections, Equation (8) was used with BOR and the truncation
at the order of 28th for λ and λ1 and the 20th for λ2. The transformation texture for the
reverse transformation from β to α-hex can be calculated in the same fashion.

3.2. DBOR

When a child phase nucleates on a grain boundary of a parent phase, the nucleus may
hold an orientation relationship with not only one parent grain into which it grows but
also one or more adjacent parent grains allowing a certain deviation from the orientation
relation (up to around 10◦) to further reduce interphase boundary energy. This hypoth-
esis has been made for the transformation between α-f and γ in steel, called the double
K-S relation (DKS) [3,35,36], and the texture prediction based on DKS has quantitatively
explained various transformation textures such as those in hot-rolled steels [35,37] and tex-
ture memory effects in hot-rolled [3,14,36], cold-rolled [3], extruded [36], and ECAP(equal
channel angular pressing)-processed [38] steels. DKS has been experimentally observed
by 2D- [14,15] and 3D-EBSD [16,17] as well as 3D synchrotron X-ray measurement re-
cently [39]. This concept is an extension of the mechanism proposed by Hutchinson and
Kestens [2] and Yoshinaga et. al. [40], which have been published in the same narrow
period. The mechanism called DKS is extended to include not only the rare case of grain
boundaries in which the variants of the original orientations exactly satisfy the rule but also
other boundaries for which many variants can hold the DKS relation with the deviation
up to about 10◦. Then DKS can be applied to both for α-f→γ and γ→α-f transformations
explaining the observed texture memory as well as the transformation textures in hot-rolled
steel, and, more importantly, this generalized mechanism allows us to accurately predict
the transformation textures in steels of this kind.
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Here, we adapt the mathematical scheme of DKS for fcc/bcc transformations [3,36] to
DBOR for hexagonal metals exhibiting hcp/bcc transformations. Let us assume α-hex→β
transformation for the mathematical formulation. A growing β nucleus satisfies DBOR
when two neighboring parent grains satisfy g2 ≈ ∆gk

−1·∆gi·g1, as shown in Figure 1a. In
this equation, g1 and g2 are the orientations of the two adjacent parent grains, α 1 and α

2, and ∆gi and ∆gk are possible BOR variants (rotation matrices) for α 1 and α 2. Note
that if ∆gi is crystallographically equivalent to ∆gk, α 1 and α 2 have the same orientation;
therefore, the grain boundary is absent, in which case it should be omitted.

Figure 1. Schematic representations of (a) nucleation of DBOR variants and (b) growth by coherent
interfaces and (c) semi-coherent or incoherent interfaces of selected variants by DBOR in α-hex→β

transformation. EDBOR growth can occur by mobile semi-coherent and incoherent interfaces.

It is also important to note that the grain boundaries on which nuclei can hold DBOR
are always specific (or special) types of boundaries, as listed in Table 1, or close to them.
We may consider different nucleation rates, ζ, for different types of special boundaries
including ζ = 0 for the above “boundary-less” case.

Table 1. Special boundaries for DBOR and δrm/δζ and optimum ζ for predictions by EDBOR n = 1 scheme.

Phase Trans-
formation

Type
Rotation Between Adjacent Grains

Number Ratio δrm/δζ (10−2) Optimum ζ
Angle Axis Deviation from <2

¯
1

¯
10>

α-hex→β

I 10.5◦ c-axis 90◦ 1 −0.4 1

II 60◦ <2110> 0◦ 2 2.9 1

III 60.8◦ <7431> 10.4◦ 4 4.9 1

IV 63.3◦ <4221> 17.6◦ 2 3.4 1

V 90◦ <7430> 5.3◦ 2 −7.2 3

β→α-hex

I 10.5◦ <110>

−

1 2.7 0

II 49.5◦ <110> 1 −7.1 3

III 60◦ <111> 1 −3.4 1

IV 60◦ <110> 2 −7.9 1

The probability for the i-th variant to be chosen, ρi(g), may be proportional to the
orientation density of the parent phase around ∆gk

−1·∆gi·g, since the i-th variant needs
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a parent grain of the orientation around ∆gk
−1·∆gi·g on the opposite side of the grain

boundary to satisfy DBOR,

ρi(g) ∝ ∑
k

fα−hex

(
∆g−1

k ·∆gi·g
)

. (9)

Introducing the variableω that determines the intensity of variant selection and the
material conservation law, the probability function shown below can be derived:

ρ(g) =
ω

Nk·ζ
·

Nk

∑
k=1

ζk· fα−hex

(
∆g−1·gc

k·∆g·g
)
+ ρC(g), (10)

ρC(g) = 1− ω

Ni·Nk·ζ
·

Ni

∑
i=1

Nk

∑
k=1

ζk· fα−hex

(
∆g−1·gc

k·∆g·gh
i ·g
)

. (11)

Here, gh
i , gc

k, Ni, and Nk are the rotational operators for the hexagonal and cubic crystal
symmetries and the numbers of operators (12 and 24 for hexagonal and cubic symmetries),
respectively. Note that the ∆g·gh

i ·g represents the i-th BOR variant for α-hex→β with the
only orientation relation for BOR, ∆g. Although the number of the symmetry operations
in hexagonal crystals is 12, the number of variants in α-hex→β in BOR is 6 because of
the symmetry of BOR; this redundancy is two for both α-hex→β and β→α-hex. There-
fore, the variant selection function ρ(g) has different values for the crystallographically
equivalent 12 orientations in the parent α-hex phase and holds the symmetry of samples.
In Equations (10) and (11), the nucleation rates ζk for the special boundaries, the type of
which is determined by gc

k, are included.
The first term of Equation (10) is the term for the selection by the DBOR mechanism,

while the second term is for the case where the selection by DBOR does not occur, since
when ω→0, the second term only determines the variant selection. The second term
in Equation (11) means “no variant selection”. Therefore, roughly speaking, ω is the
fraction of the parent phase which obeys DBOR during transformation, and for the rest,
1-ω transforms without variant selection.

Equations (10) and (11) can be expanded by the generalized spherical harmonics with
the coefficients:

ρmν
λ =

ω

Ni·Nk·ζ

M(λ)

∑
µ=1

α−hexCλ
µν·

Ni

∑
i=1

Nk

∑
k=1

ζk·
[

:
Tλ

µm
(

∆g−1·gc
k·∆g

)
−

:
Tλ

µm
(

∆g−1·gc
k·∆g·gh

i

)]
(12)

and
ρ0,1

0 = 1. (13)

3.3. Extended Concept of Double BOR (EDBOR)

The above equations, Equations (10)–(13), for DBOR satisfy local as well as global
material conservation during transformation. The local material conservation means that
the volume of a parent crystal is conserved during the transformation and equal to the
total volume of the related child grains by BOR, which occurs when nuclei grow by the
migration of coherent interfaces, as shown Figure 1b, like martensite transformation. This
is because Equation (11) ensures that the average of ρ(g) for all the 6 variants (12 equivalent
parent orientations) is always unity,

1
Ni

Ni

∑
i=1

ρ
(

gh
i ·g
)
= 1, (14)

and the global or whole material volume is also conserved during the transformation.
Therefore,

βC1,1
0 = 1 in Equations (7) and (8) (15)
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The local volume conservation, which strictly occurs for martensite transformation,
is a reasonably good approximation for diffusional transformation, and it has been suc-
cessfully used in the predictions of various transformation textures in steels as mentioned
above [3,35–38].

However, the growth of nuclei during diffusional or reconstructive transformation
may not occur by the migration of coherent interfaces, rather it can occur towards neighbor
grains to which growth fronts are incoherent or semi-coherent, as shown in Figure 1c, and
the growth may not be confined within one parent grain [36]. This can be caused by higher
mobility of the incoherent interphase boundaries [17]. In an oxide dispersed steel (ODS)
steel, this type of growth explained the observed strong texture memory effect well [13,36].

To model this type of growth, the second term of Equations (10) and (11) should be
modified. Since the second term is for the case where variant selection does not obey DBOR
with no variant selection rule, Equation (10) may be rewritten with a “constant δ" as the
second term as follows:

ρ(g) =
ω

Nk·ζ
·

Nk

∑
k=1

ζk· fα−hex

(
∆g−1·gc

k·∆g·g
)
+ δ. (16)

By using the constant δ, the growth is no longer limited within one parent grain. To
further extend this idea for the case where a very strong variant selection occurs, non-linear
probability proportional to the n-th power of f

(
∆g−1·gc

k·∆g·g
)

can be introduced as

ρ(g) = ω·
{

1
Nk·ζ

·
Nk

∑
k=1

ζk· fα

(
∆g−1·gc

k·∆g·g
)}n

+ δ. (17)

For n = 1, its expansion coefficients by harmonics are expressed as

ρmν
λ =

ω

Nk·ζ

M(λ)

∑
µ=1

α−hexCλ
µν

Nk

∑
k=1

ζk·
:
Tλ

µm
(

∆g−1·gc
k·∆g

)
, (18)

ρ0,1
0 = ω + δ. (19)

Now, the coefficients βCλ
µν obtained from Equations (7) or (8) are functions ofω and

δ. Since the global volume conservation must also be fulfilled in this case, δ should be a
function ofω determined by Equation (15). Since δ is constant, it follows that

βCλ
µν(ω, δ) = βCλ

µν(ω, 0) + δ βCλ
µν(0, 1). (20)

Then, to satisfy Equation (15),

βC0
1,1(ω, δ) = βC0

1,1(ω, 0) + δ·βC0
1,1(0, 1) = 1. (21)

Therefore, since βC0
1,1(0, 1) = 1, the value of δ is determined as

δ = 1 − βC0
1,1(ω, 0). (22)

Hence, from Equations (20) and (22), it follows that

βCλ
µν(ω) = βCλ

µν(ω, 0) + βCλ
µν(0, 1) · (1 − βC0

1,1(ω, 0)). (23)

Therefore, by computing βCλ
µν in two cases, a given value ofω and δ = 0 andω = 0

and δ = 1 (no variant selection) using Equations (8) or (7), (18) and (19), the transformation
texture that satisfies EDBOR (n = 1) as well as the global volume conservation can be
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obtained. For EDBOR of n > 1, a theorem for the product of two harmonics [33], shown
below, can be used to calculate the expansion coefficients of the ρ(g):

.
T

mν1
λ1

(g)
.
T

rν2
λ2

(g) =
|λ2+λ1|

∑
λ=|λ2−λ1|

N(λ)

∑
ν=1

(λ1λ2mr|λs){λ1λ2ν1ν2|λν}
.
T

sν

λ (g), (24)

where s = m + r.
For example, when n = 2, using the expansion coefficients of 1

Nk·ζ
∑k ζk· f

(
∆g−1·gc

k·∆g·g
)
,

Σ f mν
λ =

1
Nk·ζ

M(λ)

∑
µ=1

a−hexCλ
µν

Nk

∑
k=1

ζk·
:
Tλ

µm
(

∆g−1·gc
k·∆g

)
, (25)

it follows that

ρsν
λ = ω·

∞

∑
λ1=0

∞

∑
λ2=0

λ1

∑
m=−λ1

N(λ1)

∑
ν1=1

N(λ2)

∑
ν2=1

(λ1λ2mr|λs){λ1λ2ν1ν2|λν}·Σ f mν1
λ1
·Σ f rν2

λ2
(26)

here, s = m + r, and |λ1 − λ2| ≤ λ ≤ |λ1 + λ2|.
Then, the rest is the same as Equations (20)–(23). In this study, Equations (12), (13),

(18), (19) and (26) were used with the truncation at the 20th order to roughly simulate the
allowed deviation of ∆g−1 around 10◦. DBOR and EDBOR for the reversed transformation
from β to α-hex were formulated in the same fashion.

It should be emphasized that for DBOR and EDBOR, the variant selection is deter-
mined by the texture of parent phases, and the stronger the texture of parent phases, the
stronger the variant selection occurs for the transformation. For simple DBOR in Section 3.2,
an ideal case explained above is attained withω = 1. However, for EDBOR, this physical
meaning ofωwould be lost, especially for n = 2 or higher. For DKS in steel, the value of
ω has been reported to vary from 0.5 to even greater than unity [3,35–38]. Therefore, the
value of ω is dependent on grain structures, on which the probability by which DBOR
variants can exist is dependent, and, of course, the order of n in EDBOR.

4. Experimental Procedure

Texture change of cold-rolled CP-Ti (ASTM grade 2) was observed in situ during an
α-hex→β→α-hex heating cycle by a time-of-flight pulsed neutron diffractometer HIPPO
in LANSCE [4,31,32]. Details are given in [4] and only a summary of the experiment is
provided here. A 5 × 5 × 5 mm3 cube sample cut from the 5 mm thick cold-rolled sheet
was slowly heated up to β transformation temperature of 950 ◦C in vacuum step-wise,
as shown in Figure 2, and textures were measured at each heat step. In this study, the
data taken at 800 ◦C before phase transformation, at 950 ◦C for high temperature β, and
at 400 ◦C for final α after the heating cycle, were used. No diffraction of α-hex phase was
observed at 950 ◦C. The grain structure before transformation was relatively fine around
20 µm in grain size. However, grains were coarsened to about 1 mm during the heating.

The neutron diffraction spectra were analyzed by the Rietveld method [41] imple-
mented in the software package MAUD [42]. During the Rietveld analysis, textures were
analyzed based on a discrete E-WIMV method [43] implemented in MAUD. These ob-
tained data have been already published, and thus the readers may refer to the literature
for further details [4]. The recalculated pole figures from the E-WIMV representation of
ODFs were used to obtain harmonic-expanded ODFs [34] to utilize the above method
for transformation texture prediction. A method described in [34] and the Standard ODF
software [44] were used for the harmonic expansion for α-hex and β phases using 10 and
4 complete pole figures, respectively. During the harmonic expansion, the orthorhombic
sample symmetry was applied. The expansion was truncated at the 28th and 22nd orders
for α-hex and β, respectively, which was determined considering sharpness of the observed
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textures. The crystal coordinates and Euler angles used in this study were those defined by
Bunge et. al., i.e., x-axis//

[
1010

]
and y-axis//

[
1210

]
for α-hex [34].

Figure 2. Heating pattern of in situ observation of textures in CP-Ti by HIPPO [4]. The data used in
this study are those at 800 ◦C before transformation, at 950 ◦C after α-hex→β transformation, and at
400 ◦C after the heating cycle.

5. Experimental Results and Prediction by DBOR
5.1. Experimental Results

Figures 3 and 4 show the ODF sections and recalculated pole figures of α-hex and β
phases observed at 800, 950, and 400 ◦C. It is seen that the initial texture before transforma-
tion at 800 ◦C is composed of TD-split c-axis components, of which the inclination angle
of the c-axis from ND is about 35◦. As seen in Figure 3a, these TD-split components form
a fiber lying from

{
1215

}〈
1010

〉
to
{

0113
}〈

2110
〉

as often observed for recrystallized Ti
after cold-rolling [22]. The intensity of the

{
1215

}〈
1010

〉
component, which is in general

dominant in cold-rolled states [4], was slightly weaker than the
{

0113
}〈

2110
〉

component.
The recrystallized α-hex then transformed to β, the texture of which consists of only two
components, the cubic {001}<100> and {112}<111> orientations. The cubic component was
the strongest in ODF density, while the {112}<111> component had a larger volume because
of multiplicity.

As seen in Figures 3c and 4g–i, the final α-hex texture had sharper and stronger TD-
split c-axis components than the initial α texture, for which the inclination angle was also
about 35◦. Thus, the texture memory effect was clearly observed. However, the TD split
components in the final α-hex were more dominated by

{
0113

}〈
2110

〉
than

{
1215

}〈
1010

〉
unlike the initial α-hex. In addition, there were “RD”-split c-axis components around{

1213
}〈

1212
〉
, for which the inclination angle from ND was about 45◦. Another sub-

component was also seen around
{

1210
}〈

1011
〉
, in which the c-axis lay in the sheet plane

along the direction of 45◦ to RD.

5.2. Prediction Results by DBOR
5.2.1. α-hex→β Transformation

β textures were computed using the observed α texture before transformation shown
in Figures 3a and 4a–c and the mathematical method explained above, and they were
compared to the observed β texture. As shown in Figure 5, root mean square (RMS)
minimization was performed between the observed and predicted ODFs changing the value
ofω as a parameter. For simple DBOR by Equations (10) and (11), the RMS deviation (rm)
showed a minimum aroundω = 0.7. However, the reduction in the deviation (difference in
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rm between arrows a and b in Figure 5) was not significant. In contrast, the deviation was
significantly reduced by EDBOR (see arrows c and d in Figure 5).

Figure 3. ODF sections of observed textures of CP-Ti, (a) initial α-hex at 800 ◦C, (b) β at 950 ◦C, (c) α-
hex after transformation cycle at 400 ◦C, and (d,e) important orientations in α-hex and β, respectively.
Contour levels are 2, 4, 6.

Figure 4. Pole figures of observed textures of CP-Ti, (a–c) initial α-hex at 800 ◦C, (d–f) β at 950 ◦C,
and (g–i) α-hex at 400 ◦C after transformation cycle. Contour levels are 1, 2, 3.
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Figure 5. Change in root mean square deviation between observed and predicted ODFs by changing
ω and ζ. See inset table for calculation conditions.

Following the determination ofω, via EDBOR n = 1, the influence of nucleation rates ζ
for special boundaries was investigated. As listed in Table 1, there are five kinds of special
grain boundaries of DBOR in α-hex→β transformation. For each type of grain boundary,
the change in the rm at the optimum ω was calculated by changing ζ independently from
one to two. This change δrm/δζ, which is the gradient of rm when increasing each weight
factor, is listed in Table 1. The δrm/δζ for 10.5◦ small-angle boundaries was small and
negative, those for 60, 60.8 and 63.3◦ boundaries were close to each other considering their
number ratios (1:2:1) and positive, and those for 90◦ boundaries were largely negative.
Therefore, when decreasing ζ for the small-angle boundaries, rm slightly increased, and
when increasing ζ for the 90◦ boundaries, rm significantly reduced, as shown in Figure 5.
Therefore, the determined optimum ratios of ζ for 10.5, 60, 60.8, 63.3, 90◦ boundaries are
1:1:1:1:3; note that only rough optimization of ζwas performed since a full optimization
would require many more observations.

In Figure 6a–d, the change in ϕ2 = 45◦ sections of ODF by the above optimization is
shown. Although the prediction without variant selection resulted in a significantly weaker
texture than the observed one, DBOR predicted the proper intensity of the texture. With
equal values of ζ for all the types of special boundary, the {001}<100> cubic component
was predicted to be somewhat weaker than the observation (see Figure 6b). However, by
increasing the value of ζ for the 90◦ special boundary, the intensity of the cubic compo-
nent increased, and the optimal prediction was obtained by EDBOR n = 2, as shown in
Figure 6d–h (see also arrow d in Figure 5). The predicted ODF and pole figures agreed
remarkably well with the observed ones as shown in Figures 3b and 4d–f.

Variant selection probabilities ρ(g) for typical parent orientations for the optimal pre-
dictions by EDBOR n = 1 and 2 are shown in Figure 7. Note that the value of ρ(g) is
unity without variant selection, and the averaged ρ for variants, ρ, is also unity when the
local volume is conserved. The child orientations of variants are listed in Table 2. It is
seen in Figure 7 that the ρ for the

{
0113

}〈
2110

〉
and

{
0112

}〈
2110

〉
parent orientations to
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transform to the child orientations gβ1s, which were around {112}<111> and {001}<100>,
respectively (see Table 2), was relatively large. Furthermore, the ρ for these parent ori-
entations was 1.5 to 1.7, meaning these orientations grow beyond the limit of the local
volume conservation. However, the values of ρ as well as ρ of the

{
1215

}〈
1010

〉
parent

orientation were all smaller than unity. Therefore, the variants from the
{

0113
}〈

2110
〉

and
{

0112
}〈

2110
〉

parent orientations, known as the growth components, preferentially
nucleated and grew over multiple parent grains, whereas the volume inherited from the{

1215
}〈

1010
〉

orientation shrank. The predicted total volume of the child orientations of{
0113

}〈
2110

〉
was 1.5 to 1.7 times of the volume of the parent orientation, whereas that of{

1215
}〈

1010
〉

was only 0.77 times of the volume of the parent orientation.

Figure 6. (a–d) ODF ϕ2 = 45◦ sections for predictions of β textures (a) without and (b–d) with
variant selection. The conditions of prediction in Figure 6a–d are indicated by arrows a-d in Figure 5,
respectively. (e) and (f–h) ODF sections and pole figures for the optimum prediction by EDBOR n =2
shown in Figure 6d. Contour levels are (a–d) and (f–h) 1, 2, 3. . . and (e) 2, 4, 6. . . , respectively.

Table 2. Orientations of major components in observed textures and their BOR and DBOR variants on the special boundaries.
Three angles separated by slashes are Euler angles, ϕ1/Φ/ϕ2. Bold letters indicate DBOR variants, and ** and * indicate
exact and near-DBOR variants on typical grain boundaries, respectively. Note that the number of BOR variants reduces to
three or 7 by symmetry of parent orientations.

Type α-hex→β β→α-hex

Parent O.R.

{
01

¯
13
}

<2
¯
1
¯
10>

0◦/31◦/30◦

{
01

¯
12
}

<2
¯
1
¯
10>

0◦/43◦/30◦

{
¯
12

¯
15
}

<10
¯
10>

0◦/33◦/0◦
{001}<100>

0◦/0◦/0◦ {112}<11
¯
1>

90◦/35◦/45◦

Typical special G.B.
2◦ from II

between TD-split
pair

4◦ from V
between TD-split

pair
None

16◦ from IV
between

{001}<100> &
{112}<111>

III between symmetry pair
& 16◦ from IV between

{001}<100> & {112}<111>

Child O.R.
of BOR

gβ1 {112}< 111> * {001} < 100> * {113}
〈
211
〉

gα-hex1
{

0112
}

<2110> *
{

0113
}

<2110> *,**

gβ2 {014}〈100〉 {853}<111> {111}<011> gα-hex2
{

1210
}

<1011> 0◦/30◦/19.5◦ *

gβ3 {447}<434> {376}<332> {114}<311> gα-hex3
{

0112
}

<0111>
{

0110
}

<2110> **

−

gα-hex4

−

{
1213

}
<1212>

gα-hex5 0◦/90◦/19.5◦

gα-hex6 59◦/83◦/0.5◦

gα-hex7 59◦/83◦/10◦

**: Exact DBOR variant, *: near-DBOR variant, bold letter: DBOR variants.
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Figure 7. Variant selection probability, ρ, for parent orientations
{

0113
}〈

2110
〉
,
{

0112
}〈

2110
〉

and
{

1215
}〈

1010
〉

in optimum predictions by (a) EDBOR n = 1 and (b) EDBOR n = 2, shown
in Figure 6c–h for α-hex→β transformation. The conditions for optimum predictions are indicated by
arrows c and d in Figure 5. See Table 2 for variant orientations.

5.2.2. β→α-hex Transformation

Textures of α-hex were computed using the observed β texture at 950 ◦C and the
mathematical method explained above, and they were compared to the observed α-hex
texture at 400 ◦C after the heating cycle. As shown in Figure 8, RMS minimization was
performed as explained above, and the δrm/δζ for four kinds of special grain boundaries
in α-hex transformation listed in Table 1 was also calculated using EDBOR n = 1. Agreement
between predicted and observed α-hex textures was greatly improved by DBOR as well
as EDBOR by choosing proper values ofω. The values of δrm/δζwere positive for 10.5◦

small-angle boundaries, negative for the other types of boundaries, and smallest for 49◦

boundaries considering the ratio of grain boundary numbers, 1:1:1:2 for 10.5◦, 49.5◦, ∑3,
and 60◦<110>. Therefore, the agreement was improved by decreasing ζ for the small-angle
boundaries and increasing ζ for the 49.5◦ boundaries. Hence, the optimum prediction was
obtained with the ratio of ζ, roughly 0:3:1:1 for 10.5◦, 49.5◦, ∑3, and 60◦<110> boundaries,
and, unlike the α-hex→β transformation, EDBOR did not greatly improve the prediction in
comparison to DBOR (see arrows b and c in Figure 8). It is noteworthy that with all the
ζs as unity (as well as even ω = 1), DBOR gave a good agreement to the observed α-hex
texture, as shown by open squares in Figure 8.

Figure 9a–d illustrate how DBOR and EDBOR improve the prediction. Without variant
selection, the predicted α-hex texture was significantly weaker than the observed texture,
indicating strong variant selection operating in β→α-hex transformation in CP-Ti. With
the variant selection by DBOR and EDBOR, the intensity of the texture greatly increased
and became closer to the observed one. It was also seen that the difference between the
predictions by DBOR and EDBOR was negligible, as mentioned above (see Figure 9b,c).
As seen in Figure 9c–h, the optimum prediction reproduced all the important features of
the observed texture of α-hex after the heating cycle. The same was true for the prediction
based on the “predicted β texture” in Figure 6d–h, as seen in Figure 9d.
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Figure 8. Change in root mean square deviation between observed and prediction ODFs by changing
ω and ζ for β→α-hex transformation. See inset table for calculation conditions.

Figure 9. (a–d) ODF ϕ2=30◦ sections for predictions of β textures (a) without and (b–d) with variant
selection. The conditions of prediction in Figure 9a–c are indicated by arrows a-c in Figure 8,
respectively. (e,f) ODF sections and pole figures for the optimum prediction by DBOR shown in
Figure 9c. (a–c) and (e–h) Predictions based on the observed β texture in Figures 3b and 4d–f and
(d) prediction based on the predicted β texture in Figure 6d–h. Contour levels are (a–e) 2, 4, 6. . . and
(f–h) 1, 2, 3. . .
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Variant selection probabilities ρ(g) for the optimal predictions by DBOR and EDBOR
n = 1 are shown in Figure 10; 12 variants in β→ α-hex reduced to 3 and 7 child orientations
for {001}<100> and {112}<111> because of their symmetries, respectively. Since the multi-
plicity of the child orientations was not the same for all the child orientations of {112}<111>,
the values of ρ for all of the 12 variants are shown for {112}<111> in Figure 10, whereas
the multiplicity was the same, 4, for all the child orientations of {001}<100>. The probabil-
ities of selecting variants gα-hex1 of {001}<100> and gα-hex1 and gα-hex2 of {112}<111>, the
orientations of which lie around

{
0113

}〈
2110

〉
and

{
0112

}〈
2110

〉
, were relatively large,

particularly for gα-hex1 for both parent orientations. EDBOR n = 1 predicted larger values
of ρ than unity for these parent orientations, suggesting selective growth beyond grain
boundaries surrounding the parent grains; the total volume of child grains was 1.2 to 1.6
times the volume of the parent grains (see ρ in Figure 10b). However, since the values of ρ
for the major components in α-hex (e.g., gα-hex1 and 2) were close to each other for DBOR
and EDBOR n = 1, both predictions resulted in very similar α-hex textures.

Figure 10. Variant selection probability, ρ, for parent orientations {001}<100> and {112}<111> in the
optimum prediction by (a) DBOR and (b) EDBOR n = 1 for β→α-hex transformation in Figure 9b,c,e–h.
The conditions for optimum prediction are indicated by (a) arrow b and (b) arrow c in Figure 8. See
Table 2 for variant orientations.

6. Discussion

The DBOR scheme excellently reproduced both of α-hex→β and β→α-hex transfor-
mation textures in CP-Ti observed in situ by pulsed neutron diffraction. Although the
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parameters of DBOR,ω and ζ, were determined by RMS fitting, relatively small numbers of
the parameters were required to be adjusted for the reproduction of all the areas of ODFs in
the observed textures. For β→α-hex, simple DBOR even with all the parameters being unity
could reproduce the observed texture well, which clearly suggests the applicability of the
DBOR scheme to texture memory in hexagonal metals. Here, we discuss how nucleation
that satisfies DBOR occurs in phase transformation in hexagonal metals and how these
nuclei grow.

6.1. Special Boundary for DBOR

DBOR nucleation occurs on the special boundaries listed in Table 1 as aforementioned.
For β→α-hex transformation, it has been previously observed that grain boundary α-hex
nucleates satisfying DBOR, and Widmanstätten α-hex of the same orientation grows on
both sides of the special boundaries [45,46], which is closely related to the slip transmission
across grain boundaries. It was also reported from EBSD observation that the allowed
misorientation from DBOR was less than about 15◦, and less misoriented variants tended
to be chosen first [46], which supports the DBOR concept of variant selection in this study
and our choice of a deviation around 10◦ from the exact DBOR.

For α-hex→β transformation, there are five types of special boundaries at which β
grains on either side rotate to one another by 10.5 to 90◦about the c-axis or the axes near〈
2110

〉
. For the 10.5◦ and 60◦ boundaries, the rotation axes are exactly the c-axis and〈

2110
〉
, respectively. For the other 60.8, 63.3, and 90◦ boundaries, the rotation axes are

inclined from
〈
2110

〉
by about 5 to 17◦. Therefore, they are mostly the rotations about the〈

2110
〉

axis. To the best of our knowledge, there seems to be no previous report on the
special boundaries in α-hex→β. For β→α-hex transformation, as reported by Shi et al. [46],
there are four types of special boundaries at which β grains on either side rotate to one
another by 10.5 to 60◦ about either <110> or <111>. One of the four types is of the rotation
about <111> by 60◦, i.e., the twin-related ∑3 boundary. On all the special boundaries, there
is one variant that exactly satisfies DBOR. In addition, when allowing about 10◦ deviation
from the exact DBOR, there is another variant nearly satisfying DBOR, since BOR has three
and six pairs of variants that rotate to each other by 10.5◦ for both α-hex→β and β→α-hex,
respectively.

6.2. Special Boundary in Texture-Free Structures

Then, the first question to ask is how frequently the potential nucleation sites for DBOR
exist in materials and whether this frequency is sufficient to influence the transformation
texture. The probability with which the nuclei fulfil DBOR on plane boundaries can be
calculated by evaluating how frequently parent grains of orientations around ∆g−1

k ·∆gi·g
exist in grain structures as introduced in Equation (9) (see also Figure 1a). Therefore, given
the orientations of parent grains g1 and g2 on either side of a grain boundary, the deviation
from DBOR ∆gBOR in α-hex→β can be evaluated by the rotation

∆gBOR = ∆g−1
k ·∆gi·g1·g−1

2 = ∆g−1·gc
k·∆g·gh

i ·g1·g−1
2 , (27)

which is basically the same expression as that reported in [46].
In grain structures without textures, the probability for a plane boundary to have at

least one DBOR variant is about 13 and 19% for α-hex→β and β→α-hex transformations,
respectively assuming ∆gBOR <10◦; we randomly generated 2 × 104 orientation pairs of
the parent grains, g1 and g2, and calculated ∆gBOR. If we allow a few degrees more for the
deviation, the probabilities increase somewhat. However, they are still small compared to
the probability for DKS in steel, which is about 60% calculated in a similar way.

On triple junctions, the probability increases twice for the growth by migration of
coherent interfaces such as martensite as shown in Figure 1b, and it increases three times
(3C2) when the nuclei can grow by coherent as well as incoherent (or semi-coherent)
interphase boundaries as shown Figure 1c. However, even for triple junctions, DBOR
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nucleation can occur only on about 50% of them, which contrasts with the fact that DKS
can occur almost always on triple junctions in steel as observed experimentally [16].

6.3. Influence on Special Boundary by Strong Texture

For strong textures in parent structures, the probability may change greatly. For ex-
ample, in the α-hex→β transformation shown in Figure 3, the TD-split c-axis components
inclined from ND by 30 or 45◦ with

〈
2110

〉
in RD (nearly

{
0113

}〈
2110

〉
and

{
0112

}〈
2110

〉
)

are composed of two symmetric components inclined in the opposite directions, between
which there are the 60 or 90◦ special boundaries (Type II or V), respectively (see Table 2).
The DBOR variants on these special boundaries form the {112}<111> and {001}<100> compo-
nents in β. Furthermore, in the β structure, the {112}<111> components are also composed
of two symmetry components, between which there are the 60◦ special boundaries (Type
III) in β→α-hex; the symmetry components are described in more detail in Section 6.7.
Moreover, between the {112}<111> and {001}<100> components, there are boundaries close
to type IV special boundaries (deviated by about 16◦). The DBOR variants on these special
boundaries form the

{
0113

}〈
2110

〉
and

{
0112

}〈
2110

〉
components as well as the other

major components observed in the final α-hex structure as listed in Table 2 (bold letters with
* or **). Therefore, the presence of strong textures can largely increase the density of the
special boundaries, and this is the case for the rolled and annealed CP-Ti sheets observed
in this study.

6.4. Influence of Special Boundary in α-hex→β on Heating

This influence on special boundaries by textures can be evaluated by defining a
probability ratio of these special grain boundaries relative to the texture-free material, TF
(texture factor), as

TF =
1

Nk
·

Nk

∑
k=1

fα−hex

(
∆g−1·gc

k·∆g·g
)

, (28)

for α-hex→β transformation as depicted in Figure 1a; for β→α-hex, TF is defined in a similar
way by changing f α-hex to f β and gc

k to gh
k . TF is the ratio of the probability of existence

of the special boundaries surrounding the parent gains of the orientation g to that for
texture-free materials, and, of course it is included in the formulation of ρ(g) in DBOR
and EDBOR (Equations (10) and (16)). Therefore, ρ(g) contains the information for this
influence by textures.

For instance, the ρ for α-hex→β transformation in Figure 7a is 1.7 and 0.77 for{
0113

}〈
2110

〉
and

{
1215

}〈
1010

〉
, respectively. From these values and the values ofω = 0.6

and δ = 0.39 for the prediction, TFs are obtained from Equation (16) to be 2.2 and 0.63 for
the above parent orientations, respectively, neglecting the influence of ζ. Therefore, the
probability of having DBOR variants on the grain boundaries around

{
0113

}〈
2110

〉
and{

1215
}〈

1010
〉

grains are about 29% (13%× 2.2) and 8.2% (13%× 0.63) on plain boundaries,
respectively, two to three times more on triple junctions and even more for grain corners.
Therefore, most of the recrystallized components around

{
0113

}〈
2110

〉
are surrounded

by grain boundaries with potential nucleation sites for DBOR, whereas the
{

1215
}〈

1010
〉

components are scarcely surrounded by such boundaries. This probability was evaluated
and reflected as volume change (the violation of local volume conservation) in the EDBOR
prediction so that a better prediction could be attained as explained above.

In [4], it has been suggested that only the growth components around
{

0113
}〈

2110
〉

should transform with an unknown variant selection in α-hex→β. This is exactly the
case that the above analysis by EDBOR suggests. As shown in Figure 7, all the variants
of the

{
0113

}〈
2110

〉
parent grains, which transform to {001}<100> and {112}<111>, are

preferentially chosen to nucleate and grow to ρ = 1.5–1.7 times of the volume of the{
0113

}〈
2110

〉
parent grains, while the variants from the

{
1215

}〈
1010

〉
grains are less

frequently chosen for their total volume to shrink to ρ = 0.77 times of the volume of the
parent grains. Therefore, it is very likely that upon heating to β temperature, the DBOR
variants are preferentially selected because of lower interphase boundary energy nucleating
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earlier on the special boundaries around the
{

0113
}〈

2110
〉

as well as
{

0112
}〈

2110
〉

grains
and preferentially growing into not only the parent grains but also other grains such as the{

1215
}〈

1010
〉

grains. This growth process is consistent with the metallographical analysis
of CP-Ti in that, whereas the grain size of α-hex before transformation is only about 20 µm,
that of β is very large at around 1 mm [4].

6.5. Influence of Special Boundary in β→α-hex on Cooling

For β→α-hex transformation, the ρ for the prediction by EDBOR n = 1 in Figure 10b is
1.2 and 1.6 for {100}〈001〉 and {112}<111>, respectively. From these values and the values
of ω = 0.7 and δ = 0.17 for the prediction, TFs are obtained as 1.5 and 2.0 for the above
orientations, respectively, neglecting the influence of ζ. Therefore, the probability of having
DBOR variants on the grain boundaries in the observed β is about 40 (~19 × 2) and close to
100% on plain boundaries and triple junctions, respectively, large enough values to apply
the DBOR mechanism to the texture prediction.

Since both {001}〈100〉 and {112}<111> parent grains are surrounded by many bound-
aries with potential nucleation sites for DBOR as explained above, and the parent grain
size is as large as 1 mm, an extensive growth of the child phase into multiple parent grains
(by migration of incoherent interfaces) would not occur as in the α-hex→β transformation.
Therefore, EDBOR does not predict more accurately than the simple DBOR as seen in
Figures 8 and 9, which is in good agreement with the observation that migrating interfaces
of β→α-hex transformation are coherent ones like martensite transformation [29,45]. Since
the value ofω for the optimum DBOR prediction is from 0.7 to 0.8 and close to unity, the
nucleation and growth should be dominated by DBOR variants as expected.

6.6. Coexistence of Differently Oriented Laths in β→α-hex

It is worth noting that when one variant exactly satisfies DBOR on a grain boundary,
there is one more variant that nearly satisfies DBOR with the deviation of 10.5◦, since 6 and
12 variants in BOR of β→α-hex and β→α-hex transformations are 3 and 6 pairs of closely
orientated variants of 10.5◦ rotation about <110> and the c-axis, respectively. Therefore,
the 10.5◦ rotated variant can coexist with the exact DBOR variant as reported in [29], which
have different lath orientations. An example is gα1

{
0113

}〈
2110

〉
(ϕ1 = 0◦, Φ = 30◦, and

ϕ2 = 30◦) and gα2 (ϕ1 = 0◦, Φ = 30◦, and ϕ2 = 19.5◦) nucleating on the type III boundary
between the sample–symmetry pair of {112}<111> (see Figure 11), which are rotated by
10.5◦ about the c-axis to each other (see Table 2). Moreover, more disoriented variants can
also coexist. On the same type III boundary, the gα1

{
0113

}〈
2110

〉
and gα3

{
0110

}
<2110>,

which are rotated by 60◦ about
〈
2110

〉
to each other, satisfy DBOR and can nucleate at the

same place. Therefore, these DBOR variants can nucleate and grow either on the opposite
sides of the grain boundary or on the same side to coexist as differently oriented laths as
previously reported [19,45].

6.7. Common {110} Plane Variants in β→α-hex

Another point to be mentioned is nearly common parallel {110} planes of adjacent β
grains, which have been repeatedly reported as the planes to which the basal plane of α-hex
tend to be parallel [19,23,29,30,45,46]. In the observed texture of β, the sample–symmetry
pair of {112}<111> has three common {110} planes, of which plane normals (<110>) are in
the directions inclined by 30 and 90◦ from ND to TD, shown as gray triangles in Figure 11a.
These symmetry pair share the <111> direction in RD as shown in Figure 11b. Then,
the DBOR variants gα-hex1 and gα-hex3 fulfil the common {110} plane rule on these {110}
planes. In the directions shown by arrow a in Figure 11, the {001}<100> and {112}<111>
components nearly also share {110} planes. Then, there are near-DBOR variants, gα-hex1,
of the {001}<100> component and gα-hex1 and gα-hex2 of the {112}<111> components (see
Table 2), which satisfy the common {110} plane rule. However, although there are another
pair of nearly parallel {110} planes in the directions rotated by about 50◦ from ND to
RD (arrow b in Figure 11) for {001}<100> and {112}<111> components, which deviate by
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about 10◦ from each other, no DBOR variant exists sharing these nearly common {110}
planes. This is because the <111> directions perpendicular to the common {110} of the two
components, which should be parallel to

〈
2110

〉
in BOR, deviate by about 21 or 90◦ (not

multiples of 60◦) from each other as shown in Figure 11b. Hence, the common {110} plane
rule does not apply to this case, and this should be the reason why the intensities of the
<0001>α poles in these directions (about 50◦ from ND to RD) are not strong in the final
α-hex textures as shown in Figures 4g and 9f, whereas the {110} poles in the directions are
relatively strong in the observed β texture. Therefore, the common {110} plane rule is not
sufficient to determine the variant selection, since the common {110} plane rule is a part of
the DBOR rules that should determine the variants.

Figure 11. Orientations of (a) (110) and (b) (111) poles of {001}<100> and {112}<111> components in
β structure. Two components in a {112}<111> sample–symmetry pair are distinguished by black and
white triangles. Gray triangles represent common poles of the symmetry pair.

6.8. Influence of ζ, Nucleation Rates, and Macro Zones

Of interest are nucleation rates on the special boundaries. The frequency of nucleation
is in general different in different types of nucleation site because of the different densities
and chemical energy of the site (e.g., grain boundary energy), shape of embryos, and so
on. The classical theory of nucleation describes the total nucleation rate as the sum of
nucleation rates at different potential nucleation sites as given by [47,48]

.
N = ∑

j
Zj·

k·T
h
·exp

(
−

∆G∗j + Qj

k·T

)
(29)

where j denotes the type of nucleation site, and Zj, k, and h are the number density
of the potential nucleation site, Boltzmann constant, and Plank’s constant, respectively.
∆gj* is the change in Gibbs free energy dependent on internal energy change by the
phase transformation, grain boundary energy that is gained by removing it, interphase
interfacial energy, and shape of embryos. Qj is the activation energy of jumping atoms
across interphase boundaries. The ρ(g) approximates the nucleation rates in Equation (29)
as a function of variant orientation. The decrease in the interfacial energy by having
coherent or semi-coherent interfaces by DBOR decreases ∆gj* and increases the nucleation
rate, as approximated by Equations (10), (16) and (17).

The ρ(g) mainly calculates the influence of parent textures on Zj in Equation (29), while
the weight factor of ζ accounts for other influence than the parent texture such as those due
to uneven spatial distribution of texture components such as macro-zones [19] and grain
boundary energy in ∆gj*. For the macro-zone in α-hex, it was observed (by 3D-EBSD) in
CP-Ti, which had a similar texture to the observed texture in this study, that the densities
of small-angle grain boundary and the boundary around 90◦ rotation about

〈
2110

〉
(type

V) were substantially larger than those of the random distribution (by about two and seven
times, respectively) [18]. This observation is roughly consistent with the above discussion.
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However, the number density of boundary around 60◦ about
〈
2110

〉
(type II and close

to types III and IV) was surprisingly lower than the random distribution (from 0.6 to
0.9 times), which should be much larger than unity based on the above analysis.

The number density of boundaries, for which the rotation between crystals on both
sides is ∆R, can be evaluated from textures as a ratio of that in the random boundaries,

GBD(·R) = 1
Ni
·

Ni

∑
i=1

∮
f
(

∆R·∆gh
i ·g
)
· f (g)dg. (30)

Since f
(

∆R·∆gh
i ·g
)
∼= f (g) for small-angle boundaries (∆R→0), it is true that

GBD(small angle) =
∮

f (g)2dg. (31)

The value of Equation (31) for the observed α-hex texture in Figures 3a and 4a–c is
about 3.5, which is only a half of the reported number density of small-angle boundaries,
although the texture observed in this study was a little stronger than that of the material
used in [18]. This indicates the presence of the macro-zone in which similarly oriented
grains cluster together; texture analysis assumes random spatial distribution of texture
components. Another point is that the reported number density of the boundary around
60◦ about

〈
2110

〉
, which should be larger than the random density (see Table 2), was

smaller than the random density as explained above. Thus, considering the high density of
small-angle boundaries together, it is very likely that the grains with the major orientation{

0113
}〈

2110
〉

particularly congregate into a macro-zone so that the density of special
boundaries of type II and near-types III and IV (between the sample–symmetry pair of{

0113
}〈

2110
〉
) decreases, whereas that of small-angle boundaries increases as reported

in [18]. Therefore, the values of ζ in the optimum prediction are large only for the type
V boundaries (ζ = 3) (see Table 2), which is in good agreement with the reported ratio of
number densities between near-type II and type V boundaries (about 2.7) [18]. The value of
ζ for the small-angle boundaries can be large due to its higher number density in contrast
to that expected from the texture. However, its small grain boundary energy [49,50] can
cancel out the effect.

For β→α-hex transformation, since the energy of the small-angle boundary in bcc
metal is also relatively small as compared to high-angle boundaries [50], ζ for the type I
special boundary may be as small as predicted (ζ→0), although the nucleation of α-hex
on the type I special boundary has been observed experimentally [29]. The value of ζ for
the type II special boundary was determined to be three times larger than that for the
other high-angle special boundaries. This indicates that the energy of the type II boundary
can be larger than that of the type III (∑3) and the type IV (60◦ about <110>) boundaries,
in which low energy boundaries have been reported to exist [50]. However, the grain
boundary energy is not only dependent on relative orientation between adjacent grains but
also boundary plane inclination. More research would be required on the grain boundary
characterization of high-temperature β to discuss this result further.

6.9. Simulation of Further Heating Cycles

Whether the strength of textures decreases or increases after several consecutive
heating cycles over the β transus is a question that one would like to ask to control the
anisotropy of properties in products of hexagonal metals. Thus, the texture evolution
during such heat treatment has been simulated using the optimum conditions described
above; EDBOR n = 2 (ω = 0.18) and DBOR (ω = 0.8) for α-hex→β and β→α-hex with ζ listed
in Table 2, respectively.

Two simulations are shown in Figures 12 and 13. One is a continuation of the heating
cycle in the present experiment, and the observed α texture shown in Figures 3c and 4g–i
was used as the starting texture of the second cycle. As seen in Figure 12, the textures of β
as well as α-hex phases greatly developed and were strengthened by the second heating
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cycle; the final α-hex texture was calculated using the computed β texture. Although the
textures consisted of texture components similar to the observed textures, the intensity
maxima in the pole figures of β and α-hex phases during and after the second heating cycle
were as large as about 16 and 100 times the random intensity, respectively.

Figure 12. Pole figures of predicted (a) β and (b) α-hex textures in the second heating cycle based on
the observed texture shown in Figures 3c and 4g–i.

Figure 13. Pole figures of model (a) α-hex→ (b) β→ (c) α-hex→(d) β→ (e) α-hex heating cycles.
Contour levels are 1,2,3. . .

The other was two consecutive heating cycles of a model texture of a recrystallized
Zr sheet. The model texture was based on an in situ observation of textures of α-hex Zr
at 750 ◦C by Wenk et al. [5]. The reported model α-hex structure composed of a mixture
of three Gaussian components of orientations (0◦, 30◦, 0◦), (0◦, 30◦, 30◦), and (0◦, 0◦, 0◦)
in Euler angles, the volume ratio of which was 60%:30%:10% [5], respectively, was used
as the starting α-hex texture. A Gaussian distribution of 20◦ half-width was used for
each component [34]. Although this texture was similar to the observed texture for CP-Ti
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in Figures 3a and 4a–c, the texture was somewhat weaker, and it had a relatively fewer
components with

〈
2110

〉
in RD. Transformation calculations were then applied as explained

above. In contrast to the case of CP-Ti, the texture of α-hex was slightly weakened after the
first heating cycle, and then a similar but slightly strengthened α-hex texture appeared after
the second heating cycle, as shown in Figure 13. It is also noteworthy that these simulated
texture changes well resemble those observed experimentally [5]. Therefore, the texture
memory phenomenon in hexagonal metals is largely dependent on the strength and type
of the initial textures, and there should be a critical intensity or severity of initial textures
above which the texture significantly develops by repeating heating cycles to above the
β transus.

7. Conclusions

Texture memory and its formation mechanisms in hexagonal metals have been inves-
tigated via a prediction method with variant selection mechanisms and in situ observation
of textures by pulsed neutron diffraction. The conclusions are as follows.

(1) Mathematical methods for the prediction of transformation textures in hexagonal
metals using harmonic expansion have been described, and a variant selection mech-
anism has also been formulated in which nucleation and growth preferentially occur
when variants satisfy BOR with two adjoining parent grains at the same time (DBOR)
for both α-hex→β and β→α-hex transformations. Different nucleation and growth
rates for different potential nucleation sites for DBOR, which are five and four types
of special grain boundaries in α-hex→β and β→α-hex transformations, respectively,
are included in the formulation.

(2) The variant selection by DBOR has been extended to describe the selected DBOR
variants to grow not only into one parent grain (the local material conservation) but
also into multiple parent grains with non-linear probabilities (EDBOR).

(3) The special boundaries where DBOR is satisfied in α-hex→β transformation are of
10.5◦ rotation about the c-axis and 60◦, 60.8◦, 63.3◦, and 90◦ rotations about <2110 or
axes near to it. Those in β→α-hex transformation are of 10.5◦, 49◦, 60◦ rotations about
<110> and 60◦ rotation about <111> (∑3). In texture-free materials, the probability of
the existence of these special boundaries is as small as about 13 and 19% in α-hex→β
and β→α-hex, respectively. However, textures of parent phases can increase this
probability, and this is the case for the α-hex→ β→α-hex transformation in CP-Ti
rolled sheets.

(4) The analysis of in situ observed bulk textures of CP-Ti rolled sheets by pulsed neutron
diffraction revealed that the texture memory in CP-Ti can be thoroughly explained
by the DBOR mechanism. The transformation texture formation in α-hex→β obeys
to EDBOR n = 2 (squared probability) in which the nucleation and growth rate for
the special boundary of 90◦ rotation about

〈
2110

〉
is three times larger than that for

the other special boundaries, while the transformation in β→α-hex obeys DBOR well
with the local material conservation. The higher rate for the special boundary of 90◦

rotation is ascribed to a higher number density of this special boundary in CP-Ti,
which relates to the macro-zone formation.

(5) For β→α-hex transformation, the nucleation and growth rates for the special bound-
aries with rotations of 10.5◦ and 49◦ about <110> are predicted to be as small as
zero and three times larger than those for the other high-angle special boundaries,
which can be ascribed to lower and higher grain boundary energies for these special
boundaries than the others, respectively. However, even with all the parameters of
ω and ζ being unity (or ideal), DBOR could predict the texture change in β→α-hex
transformation well.

(6) By considering the DBOR mechanism, several well-known phenomena in CP-Ti, such
as the preferential transformation of the growth components around

{
0113

}〈
2110

〉
in α-hex→β, the coexistence of differently oriented laths, and the common {110} plane
variants in β→α-hex, can be well understood.
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(7) The model calculations of repeating the α-hex→β→α-hex heating cycles suggest that
there should be a critical strength of the texture above which the texture develops
significantly by repeating the heating cycles.
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