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Abstract: Customized small batch orders and sustainable development requirements pose challenges
for product quality control and manufacturing process optimization for steel production. Building a
multi-quality objective process parameter optimization method that converts the original single target
optimization into multi-objective interval capability optimization has become a new method to ensure
product quality qualification rate and reduce production costs. Aiming at the multi-quality objective
control problem of plate products, we proposed a novel multi-objective process parameter interval
optimization model (MPPIO) with equipment process control capability and parameter sensitive
analysis. The multi-output support vector regression method was used to establish a multi-quality
objective prediction model, which was settled as a verification model for the process parameter
optimization results based on the particle swarm optimization algorithm (PSO). The process control
capability functions of key parameters were fitted based on the real data in production. With these
functions, each optimized particle of the classical PSO was converted into the particle beam of the
MIPPO. The iteration process was weight controlled by calculating the Morris sensitivity between
each input parameter and output index in the multi-quality objective prediction model, and finally
the processing control window of each key parameter was determined according to the process
parameter optimization results. The experimental results show that the MPPIO model can obtain
the optimal parameter optimization results with the maximum processing capacity and meet the
customized processing range requirements. The MPPIO model can reduce the difficulty of control
and save production costs while ensuring the product properties is qualified.

Keywords: hot-rolling; quality control; multi-objective optimization; process control capability;
Morris sensitivity analysis; particle swarm optimization algorithm

1. Introduction

With the continuous developing of production technology, market requirements and
the sustainable development requirements in the iron and steel industry [1], different usage
scenarios have put forward differentiated requirements for the lower yield strength (LYS),
tensile strength (TS) and other mechanical properties of products. The manufacturing mode
of steel enterprises has also changed from the traditional single-variety and high-volume
inventory production into multi-variety and small-batch customized order production [2].
Among them, a large number of customized orders are small-scale adjustments based on
the actual needs of customers on the basic products.

The ultimate goal of steel companies is to produce high-quality products that meet
customer needs with less cost and time [3], and the property qualities of steel products
are mainly affected by the composition and processing parameters whose similarities and
differences could lead to the crossover of the final property results [4]. In the actual data-
driven method, it is necessary to associate the composition and the process parameters of
multiple stages with the mechanical properties, so as to predict the mechanical properties
based on the composition and process parameters and realize the reverse design and
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optimization of the composition and process parameters according to the customized
quality requirements.

Considering the different sensitivity of the composition and parameters to property in-
dex, the sensitivity weighted control of process parameters is also meaningful in parameter
optimization. Research have proved that artificial neural network, deep learning, support
vector regression, extreme learning machine, Lasso regression and other methods had good
application effects on regression prediction modeling problems. Hore et al. established a
mechanical properties prediction model based on the adaptive neural network provided a
real-time quality control platform [5]. Li et al. established an effective prediction model for
the tensile strength of hot-rolled strips by adopting the deep learning method to propose a
new convolutional network [6]. The data-driven method can provide a basis for properties
prediction modeling, and it also provides guidance information as a feedback model in
the reverse design and optimization for the process parameters. Xing et al. established an
inverse model between hot-rolling product indicators and process parameters to optimize
process parameters by using backpropagation neural network [7].

However, challenges often appear in the parameter design and optimization stage [8].
On the one hand, it usually takes a long time to optimize different properties results
with the combination of composition and process parameters [9]. On the other hand, the
equipment process control capabilities also restrict the level of product quality control [10];
in this situation, it is necessary to transform the original point optimization problem into
an interval optimization problem.

The traditional manual experience and trial-and-error production development mod-
els will increase the resource waste and costs. In these realistic situations, to maintain the
company’s competitive advantage and fulfill customer order requirements, data-driven
methods and intelligent optimization techniques were combined to build a data-driven
model for customized multi-objective manufacturing process optimization [11]. Based on
the study of historical production data, different process parameters and chemical compo-
sitions were selected to achieve the customized properties requirements. The predictive
model established the correlation between the input and the output, and the intelligent
algorithm was set as an effective solver to optimize [12].

Many intelligent optimization algorithms based on natural phenomena or natural
processes were applied to the processing optimization, such as genetic algorithm (GA),
particle swarm optimization (PSO), ant colony optimization (ACO) and bat algorithm
(BA) [13]. The artificial neural network method was combined with these genetic algorithms
to optimize production process parameters, and it achieved good application effects [14].
In order to speed up the convergence speed, it will also be designed for the characteristics
of the algorithm itself besides gradient descent. For example, Wang et al. used Harmony
Search as the mutation operator in the update process of the bat algorithm to accelerate the
convergence process [15]. In the PSO algorithm, the different sensitivities of particles in
each value direction can also be used for weighted control of speed update.

The multi-objective problem was decomposed into multiple single-objective sub-
problems in some research, and these sub-problems were solved in the order of their
weight values [16]. The previous sub-problem solution results were used as the prior data
for the remaining sub-problems, so as to achieve the multi-objective optimization [17]. This
method might achieve a good solution while the multiple objectives were independent
of each other, but there were complex correlation and coupling relationships between
the quality indicators of steel products [18], which could not be disassembled into an
independent sequential optimization process. In this situation, the multi-quality objective
optimization process needed be treated as a holistic optimization problem. Haber et al.
achieved good results in the optimization problem of the micro-drilling process by using
multi-objective cross-entropy method [19], but the individual particles of the PSO algorithm
could be combined with local optimization constraints to improve the solution effect of the
interval optimization problem.
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This paper aims at the customer-oriented mechanical property quality objectives
and adopts the multi-objective prediction model and PSO with process control capability
and sensitivity analysis to construct a process parameter interval optimization model for
plate products. This model had been applied to an actual industrial case, and the actual
application results proved its effectiveness.

2. Materials and Methods
2.1. Problem Definition

Steel production involves complex physical and chemical changes, which mainly
occur in continuous casting, heating, hot rolling, heat treatment, and cutting [20]. The
final property results are affected by the composition and the process parameters of each
stage. However, it had the capability to produce reasonable explanatory results by using a
physical-driven model. According to the mechanism knowledge or artificial experience,
the relationships between the property results and process parameters could be measured.
However, the computational complexity of physical-driven model was very costly, which
impeded the rapid design and process optimization for customized production. As a
comparison, the data-driven model was very convenient and fast, especially for steel
companies wherein big data technology had been applied [21]. The product quality
prediction model was constructed based on a large amount of historical production data.
The prediction model obtained the actual non-linear correlation in the steel production
process and could be used to simulate the physical and chemical changes. Therefore, the
data-driven quality prediction model could be used as a verification method in the process
parameters design and optimization. The final property quality results could be calculated
based on production data, and the calculation time and cost would be saved. The relational
expression of this data-driven model can be expressed as:

Q = F(D) + ε (1)

where Q is the quality index, D is the components and process parameters, and ε is the
system error.

In this paper, the components and process parameters are designed and optimized to
simultaneously meet the customized multi- objective requirements. It can be expressed
mathematically as:

Objective function : min(
n

∑
i=1

∣∣∣QOpt
i −QAim

i

∣∣∣) (2)

Subject to :
QLow

i ≤ QOpt
i ≤ QUp

i
DLow

k ≤ DOpt
k ≤ DUp

k

(3)

where QOpt
i and QAim

i , respectively, represent the optimized results and the requirements

of quality index i (i = 1, . . . , n), the value of QOpt
i is greater than their lower limits QLow

i

and less than the upper limits QUp
i ; DOpt

k is the content of optimized process parameter k

(k = 1, . . . , g); they are both between their lower limits DLow
k and upper limits DUp

k .
Otherwise, in the steel production manufacturing process, the process control capabil-

ity of equipment also affected the final property quality. In this situation, it was necessary
to introduce process control capabilities as constraints in the process parameter selection
to ensure the stability of product quality. The process control capability was an inherent
attribute, which was expressed as the random probability of the possible fluctuations of
the set value. The process control capability function of parameter Dk was denoted by fDk,
and M associated parameters DEOpt

k were randomly generated by this capability function.

Combining the DEOpt
k with other process parameters to generate the random combination,

which was used to determine the processing control window of the parameters. The qual-
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ity processing capability results QEOpt
i of the optimized parameters with the equipment

process control capability constraints were obtained.

DEOpt
k ∼ (DOpt

k , fDk)

DLow
k ≤ DEOpt

k ≤ DUp
k

(4)

In the optimization process, the possibility ROpt
i of QEOpt

i falling within the range of
the target property quality QAim

i ± δi had to be minimized. According to the customized
requirements, the possibility of each property quality should not be lower than ∂%, and
the objective function of the parameter optimization result would be modified as:

Modified objective function : max(
n

∑
i=1

ROpt
i ) (5)

Subject to : ROpt
i ≥ ∂% (6)

The calculation method of the confidence degree ROpt
i that the processing results meet

the requirement is:

ROpt
i =

QAim
i +δi∫

QAim
i −δi

f (Qi)dQi (7)

where f (Qi) is the probability density distribution function of the quality results QEOpt
i .

The ζi (ζi ∈ [0, 1]) is used to evaluate the deviation of property results corresponding to the
maximum values of f (Qi) and the property requirements QAim

i . The higher its value is,
the better the optimized parameter results meet the requirements.

ζi =

min


QAim

i∫
0

f (Qi)dQi,
+∞∫

QAim
i

f (Qi)dQi


max


QAim

i∫
0

f (Qi)dQi,
+∞∫

QAim
i

f (Qi)dQi


(8)

2.2. Method

The manufacturing process parameter optimization model needed to be modeled
in two dimensions: the forward prediction from the parameters to the quality results
and the reverse design optimization according to the customized requirements to obtain
the reasonable parameters. When taking multiple property indicators of steel products
as optimization goals, it was necessary to established predictive model by using multi-
objective output methods. There were some existing predictive modeling methods being
to make a separate prediction for each property index [22]. Although these methods
might obtain a certain precision, the independent prediction model could not effectively
analyze the correlation and coupling effects between the property indicators. Additionally,
it could ultimately lead to the divergence of the optimization model and would not obtain
a practical solution. This paper proposes a MPPIO model to simultaneously design and
optimize the processing parameters of plate products for multiple objectives, the flow
chart of the algorithm is shown in Figure 1. The multi-output support vector regression
(MSVR) method was used as the forward mechanical property predictive modeling and the
verification model for parameter optimization results. The sensitivity of each parameter
to property index was calculated to weighted control the optimization. The equipment
process control capabilities were analyzed to calculate the confidence level of each feasible
solution. Finally, the MPPIO model obtained the process parameter optimization results
with the optimal processing control capacity while ensured the customer’s requirements.



Metals 2021, 11, 1642 5 of 17

Metals 2021, 11, x FOR PEER REVIEW 5 of 18 
 

 

was used as the forward mechanical property predictive modeling and the verification 
model for parameter optimization results. The sensitivity of each parameter to property 
index was calculated to weighted control the optimization. The equipment process control 
capabilities were analyzed to calculate the confidence level of each feasible solution. Fi-
nally, the MPPIO model obtained the process parameter optimization results with the op-
timal processing control capacity while ensured the customer’s requirements. 

 
Figure 1. The flow chart of the MPPIO (multi-objective process parameter interval optimization) model. MIC: maximum 
information coefficient. MSVR: multi-output support vector regression. 

2.2.1. Mechanical Property Prediction 
Considering the complex relevance and data characteristics between mechanical 

property and parameters, the MSVR method was satisfied for modeling. MSVR is the 
multi-dimensional output form of support vector regression (SVR), and SVR is the form 
of support vector machine (SVM) in the continuous function domain [23]. The SVM 
method is a learning mechanism based on the Vapnik–Chervonenkis dimension theory of 
statistics and the principle of structural risk minimization; SVR transforms a nonlinear 
problem into a linear problem. It optimizes the promotion ability by balancing the com-
plexity and learning ability of the limited sample information. The input parameters 
would have data information loss problems such as unfair punishment while directly us-
ing SVR to perform regression modeling on multiple objectives. As shown in Figure 2, the 
square area formed under the two-dimensional output SVR. The data located in area-1 
will be punished once, whereas the data in the sensitive area-2 where multiple objectives 
overlap will be punished twice. Additionally, the existence of data-b will be punished, but 
there is no penalty for data-a. In this regard, the hyperplane loss area is used to replace 
the insensitive loss band, as shown in the circular area in Figure 2, so as to ensure the 
fairness of the penalty function for each sample. 

Figure 1. The flow chart of the MPPIO (multi-objective process parameter interval optimization) model. MIC: Maximum
information coefficient. MSVR: Multi-output support vector regression.

2.2.1. Mechanical Property Prediction

Considering the complex relevance and data characteristics between mechanical
property and parameters, the MSVR method was satisfied for modeling. MSVR is the
multi-dimensional output form of support vector regression (SVR), and SVR is the form of
support vector machine (SVM) in the continuous function domain [23]. The SVM method
is a learning mechanism based on the Vapnik–Chervonenkis dimension theory of statistics
and the principle of structural risk minimization; SVR transforms a nonlinear problem
into a linear problem. It optimizes the promotion ability by balancing the complexity and
learning ability of the limited sample information. The input parameters would have data
information loss problems such as unfair punishment while directly using SVR to perform
regression modeling on multiple objectives. As shown in Figure 2, the square area formed
under the two-dimensional output SVR. The data located in area-1 will be punished once,
whereas the data in the sensitive area-2 where multiple objectives overlap will be punished
twice. Additionally, the existence of data-b will be punished, but there is no penalty for
data-a. In this regard, the hyperplane loss area is used to replace the insensitive loss band,
as shown in the circular area in Figure 2, so as to ensure the fairness of the penalty function
for each sample.
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Using MSVR to build the property quality prediction model could effectively balance
the accuracy of multiple property predictions and ensure the integrity of data informa-
tion. Additionally, it had the balancing effect of multi-objective optimization guidance
information in the optimization modeling while being used as the verification method.

The quality-related process parameters obtained from multiple stages in steel produc-
tion were multi-source heterogeneous, high-dimensional, and strong correlation. Consider-
ing the lack of sufficient prior knowledge, and the acquired original data might contain
many redundant data to avoid information loss as much as possible. These redundant
data not only wasted storage and computing resources but might also reduce model per-
formance. It could reduce the dimensionality of the original data by applying feature
selection method to reduce costs [24]. The maximum information coefficient (MIC) method
was used to calculate the linear or non-linear correlation between each process parameter
and property index. The optimal feature subset could help the quality prediction model
improve the accuracy and computational efficiency, and it was found by dividing different
MIC thresholds for repeated cross-validation.

2.2.2. Process Parameter Optimization

PSO is a global search optimization algorithm that simulates bird swarm activities in
nature, it considers the solution space as the flight space of the bird colonies. PSO have two
flight information including speed and position. The information exchange according to the
historical optimal position of the individual and group. Then, the particles are constantly
changing their flight direction and speed to approaching the optimal position gradually,
and finally complete the optimal results search. The PSO algorithm has a quite simple
structure [25]; it can generate high-quality feasible solutions in a short time and has more
stable convergence behavior [26]. It has been applicated in solving multi-objective and
constraint problems of high-dimensional nonlinear complex engineering systems. Each
particle in the population can be easily transformed; in this situation, the particles were
converted to particle beams according to the equipment process control capabilities in the
MPPIO model, as shown in Figure 3.
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best is the historical individual optimal position after t iterations;
Pt−1

best is the historical individual optimal position after t − 1 iterations.

The MPPIO model based on PSO is established as follows:
a. Experimental data preparation:
The property targets QAim

i ± δi were determined by the customized orders, and
the population XOpt to be optimized and the initial speed V0 were randomly initialized
according to historical data. Among them, XOpt was composed of N particles containing
g-dimensional process parameters. In the initial population, the particles were converted
into particle beams X0

E after processing capability analyzing according to Equation (4).
b. Fitness evaluation:
The fitness value CFit of each particle beam were calculated in the current iteration, and

it determined the subsequent iteration direction. The average error between the predicted
results and the requirements was used as the fitness value in classical PSO:

CFit =
1
n

n

∑
i=1

∣∣∣∣∣Q
Opt
i −QAim

i
QAim

i

∣∣∣∣∣ (9)

The property prediction results QPre
E of each particle beam were predicted firstly by

the MSVR model, and the confidence level Ri was calculated according to Equation (7). The
Equation (8) was used to calculate the deviation value ζi between the maximum capacity
point of each particle beam and the targets. The confidence level Ri and the deviation
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value ζi were both in the range of [0, 1], and the larger the values were, the better results of
optimization gained. Therefore, the fitness value CFit in the MPPIO was designed as:

CFit =

√√√√√ n
∑

i=1

(
R2

i + ζ2
i
)

2n
(10)

According to Equation (10), the fitness value CFit was a hypersphere with a maximum
radius of 1, and the closer the value was to 1, the better the optimization results gained.
The historical individual optimal position XP and group historical optimal position Xg
were selected according to the fitness values. In each subsequent iteration, if the current
fitness value of the particle beam i was better than its historical optimal value, the particle
contents corresponding to the current particle beam was set to the new XP. If the fitness
value of the particle beam i was better than the global optimal value, the contents of Xg
was updated to the content of the particle i.

c. Speed weighted update based on parameter sensitivity:
The speed and position must be within the feasible range Vi ∈ [Vmin, Vmax] and

Xi ∈ [Xmin, Xmax] in each iteration. Particles out of the solution space needed to be
corrected: values beyond the minimum of the solution space were replaced by the minimum
value, and values over the maximum were replaced by the maximum value. The speed
and position of the particles in traditional PSO were updated as follows:

Vi = ωVi + c1r1(Xi
P − Xi) + c2r2(Xg − Xi) (11)

Xi = Xi + Vi (12)

where ω is the inertia weight that controlled the influence of the previous change on
the current value, and it was usually set to dynamically adjust the number of iterations
to balance the global search and local search efficiency; c1 and c2 are the acceleration
weights for the subset to advance to XP and Xg, respectively, and they were set as adaptive
adjustment based on actual experience. The larger the value of c1, the particles are more
inclined to their historical optimal position during the optimization process; the larger
the value of c2, each particle is more inclined to the optimal position in the population.
In the traditional PSO, r1 and r2 are random numbers in the range of [0, 1]. Similar to
c1 and c2, they are also used to control the change of the distance between its historical
optimal position and the population optimal position in every iteration. In each speed
update, every parameter carried by the particle was randomly assigned the same value
r1 and r2. Considering each steel production process parameter had different correlations
with the property index, the Morris sensitivity analysis method was used to calculate the
sensitivity between each input parameter and property index. In the MPPIO model, the
sensitivity information was used to reduce the non-critical parameters’ interference in the
optimization process.

The basic idea of the Morris method was to slightly perturb a certain input parameter
within the range of change while kept other parameters unchanged and calculated the
output change caused by the change of this parameter [27]. This method could also find
important parameters in nonlinear models. It was calculated according to the one variable
at a time method that the sensitivities between input parameters and property index of
the MSVR model [28]. Firstly, determined the value range of each parameter, the discrete
level p and the disturbance ∆, and decomposed each parameter into a value space of
g-dimensional with p level:

[
0, 1

p−1 , 2
p−1 , . . . , 1

]
; then took values from the value space for

each parameter to form base samples, applied perturbation ∆ to each parameter in the base
samples to form g perturbation test sets, which needed ensure the parameters were still in
the value space; and used MSVR model to predict the results Q0

i and Q∆
i of base sample
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and perturbation sample; finally, the base effects ri of each parameter on the property index
were calculated with the current base samples:

ri =
Q∆

i −Q0
i

∆
(13)

After repeatedly calculating the corresponding base effect M times, the absolute
average µ and standard deviation σ (µ, σ ∈ [0, 1]) of each parameter were calculated. The
absolute average µ of the basis effect represented the sensitivity of the parameter. The
standard deviation σ represented the sensitivity of this parameter to the synergy of other
parameters. The larger the µ and σ value was, the more important this parameter was.
Therefore, in the speed control of iterative optimization, the maximum value of µ and σ
was used as the weighting coefficient W of the value r1 and r2:

W = (max(µ1, σ1), . . . , max(µg, σg)) (14)

The speed update method was:

Vi = ωVi + c1r1W ◦ (XP − Xi) + c2r2W ◦ (Xg − Xi) (15)

d. Termination condition
The termination condition was set as the upper limit of the number of times S iterations

were completed or the optimization results of each particle met the objective function
required by Equation (6) before S iterations.

3. Results and Application
3.1. Experimental Preparations
3.1.1. Mechanical Property Prediction

The MPPIO model had been validated by using real data from a factory’s plate
production. A total of 2631 samples containing 170 production process parameters and two
property indices of LYS and TS were obtained from the production database. After data
de-duplication and removal of samples with missing values, 1504 samples were obtained
at last. The correlations between 170 parameters and property index were calculated by the
MIC method, and after multiple divisions of different thresholds for predictive modeling,
112 production parameters with obvious relevance were selected as the optimal feature
subset. The obtained property prediction results are shown in Figure 4. The mean absolute
percentage errors (MAPE) of the two were 2.79% and 1.29%, respectively.
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3.1.2. Morris Sensitivity Analysis Results

The Morris sensitivity analysis method was used to analyze the sensitivity of each
input parameter of the MSVR model, and the sensitivity results are shown in Table 1.
The sensitivity parameter numbers with different thresholds are shown in Figure 5. The
maximum sensitivity value between LYS and TS was used as the weight coefficient in the
speed control of the MPPIO model.

Table 1. Morris sensitivity results between each parameter and property index/Bit. LYS: Lower yield
strength. TS: Tensile strength.

Parameter LYS TS

C 0.15 0.10
Mn 0.15 0.13
Cr 0.22 0.23
Mo 0.16 0.15

Pull Speed 0.21 0.24
Superheat 0.10 0.11

Time in Furnace 0.17 0.18
Split_1 0.18 0.19

Reduction_1 0.15 0.14
Rolling Force_1 0.14 0.13
Rolling Speed_1 0.1 0.08

. . . . . . . . .
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3.1.3. Equipment Process Control Capability Results

There was different equipment in the production process of steel products, when the
set value was given, the equipment would have a certain probability change within a range.
The process control capability plays an important role in quality control and optimization.
Based on the actual data and Morris sensitivity results, the key parameters were selected
for process control capability analyzing, and the component “C”, “Mn”, “Cr”, “S”, and
“Mo” and the “Reduction” of each rolling pass were taken as examples.

The different distribution functions were estimated by the maximum likelihood esti-
mation method [29]. While fitting the random distribution functions of the key parameters,
the most suitable distribution for each parameter could be directly judged according to
the error of different fitting results. Taking the parameter “C” as an example, the fitting
result is shown in Figure 6. By comparing the obtained fitting distributions, the logistic
distribution was found to be the most suitable distribution for parameter “C”. Other
process parameters also found their most suitable distribution by this method. The random
distribution functions are shown in Table 2, and their fitted density curves are shown in
Figure 7.
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Table 2. Random distribution function results.

Parameter Distribution Probability Density Function

C Logistic x~L (0.138, 0.0039)
Mn Gamma x~G (2838.22, 1954.62)
Cr Gamma x~G (20.79, 848.186)
S Normal x~N (0.00554, 0.0000031)

Mo Gamma x~G (4.58, 1168.67)
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These key parameters mainly obeyed normal distribution, logistic distribution and
gamma distribution, and the probability density functions are as:

f (x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
, x ∼ N

(
µ, σ2

)
(16)

f (x) =
1
γ

exp−
x−µ

γ

(
1 + exp−

x−µ
γ

)2
, x ∼ L(µ, γ) (17)

f (x) =
xk−1

skΓ(k)
exp−sx , x ∼ G(k, s) (18)

where γ > 0, s > 0, k > 0.
In the optimization process, the particles were randomly generated to form the relevant

particle beams to analyze the processing capability results according to their parameter
values and process control capability functions.

According to the process control capability functions obtained by actual fitting, the ac-
tual value probability function of the key parameter setting value in different distributions
is:

f (x) =
1√
2πσ

exp

(
− (x− xSet + µ)2

2σ2

)
, x ∼ N

(
µ, σ2

)
(19)

f (x) =
1
γ

exp−
x−xSet+µ

γ

(
1 + exp−

x−xSet+µ
γ

)2
, x ∼ L(µ, γ) (20)

f (x) =

(
x + xSet − k

s

)k−1

skΓ(k)
exp(−sx− sxSet + k), x ∼ G(k, s) (21)

3.2. Application

Taking the design and optimization of production process parameters for four cus-
tomized orders of a steel plant as an example to study the effectiveness of MIPPO model.
The requirements are as shown in Table 3.

Table 3. Requirements of customized orders.

Order Thickness/mm Width/mm Length/mm LYS/MPa TS/MPa

A 15 3775 37,000 400 ± 15 500 ± 15
B 20 2300 28,800 400 ± 15 500 ± 15
C 15 3775 37,000 450 ± 15 560 ± 15
D 22 3700 23,400 430 ± 15 540 ± 15

The initial population data were randomly generated based on the order requirements.
In these cases, the population size was N = 20 and the maximum number of iterations
was S = 80. After the process control capabilities were analyzed, the 20 particles were
converted into 20 particle beams. There were 100 particles in every particle beam. Take
order A as an example: the initial processing capacity results are shown in Figure 8, and
the processing capacity statistical results of the initial particle beam for the four orders
are as shown in Table 4. Among them, the particle with the maximum fitness value (the
colored curve in the figures) had the optimal processing capacity, which was taken as the
X0

g of the initial population. It can be seen that all the initial particle beams cannot meet the
requirements.
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Table 4. Processing capacity statistical results of the initial particle beams.

Order

LYS TS

Processing
Capacity/%

Max Capacity
Point/MPa

98% Capacity
Range/MPa

Processing
Capacity/%

Max Capacity
Point/MPa

98% Capacity
Range/MPa

A 24.91 420 403, 438 75.02 512 506, 524
B 80.09 390 372, 408 99.86 499 492, 512
C 80.76 448 425, 480 71.66 548 535, 564
D 79.91 435 409, 459 98.5 545 522, 558

After several iterations, the production process parameter results that meet the re-
quirements of each order were obtained by the MIPPO model. The processing capacity
results of the final particle beam for Order A are shown in Figure 9, and the processing
capacity statistical results of the final particle beam for the four orders are as shown in
Table 5.
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Table 5. Processing capacity statistical results of the final particle beams.

Order
LYS TS

Processing
Capacity/%

Max Capacity
Point/MPa

98% Capacity
Range/MPa

Processing
Capacity/%

Max Capacity
Point/MPa

98% Capacity
Range/MPa

A 99.98 400 391, 411 100 500 494, 507
B 100 400 388, 410 100 500 493, 508
C 99.68 450 436, 462 100 559 551, 568
D 100 430 422, 437 100 540 534, 546

The parameter optimization results of the four orders were all able to meet customized
requirements. A part of key process parameter processing control windows for the four
orders are shown in Figure 10. The optimized results were used as scheduling guidance in
the actual production process.
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is the reduction of the first pass. R2 is the reduction of the second pass. R3 is the reduction of the third pass. R4 is the
reduction of the fourth pass. R5 is the reduction of the fifth pass and R6 is the reduction of the sixth pass.

The MIPPO model comprehensively evaluated the geometric size and mechanical
property requirements of the order, and further optimized the parameter values and
processing control windows after generating the initial population based on historical
production data. Order B and Order A had the same property requirements but different
geometric size requirements, and their final results had similar composition results, but the
rolling process parameters were specific; Order C and Order A had the same geometric
size requirements but different property requirements. In their final results, the process
parameters of the rolling stage were similar, but the composition results were significantly
different; the geometric size and property requirements of Order D were different from
other orders, and the composition results and rolling parameters were also significantly
different in its final results. The process parameter optimization results of these four orders
all had a reasonable processing control window, and it proved that the MIPPO model had
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a good effect in the multi-objective process parameter interval optimization problem for
customized production.

4. Discussion

To find out the difference between the traditional point optimization problem and
interval optimization problem, the traditional PSO method was used to optimize the
process parameters that meet the Order A. Its population size is 20 as well as MPPIO. The
mechanical property prediction results of each final particle in traditional PSO method are
shown in Figure 11.
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swarm optimization).

In the traditional PSO method without equipment process control capability, the
obtained parameter prediction results could only reflect the possible predicted values and
could not give a clear degree of reliability that fallen within a given range. As comparison,
the final optimal parameter results obtained by the traditional PSO method were analyzed
for the processing capability, and the results are shown in Figure 12.
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The final optimization results of the traditional PSO method could not reach the
requirements of the Order A. According to the results, the processing capacity of LYS and
TS were 91.23% and 96.2%, respectively. The maximum capacity points of LYS and TS
were 406 MPa and 506 MPa, respectively, which had a deviation from the requirements
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and could not be able to effectively solve the orders with stricter scope requirements. The
optimal solutions of MPPIO had better stability, which could provide more optimized
parameter selections.

5. Conclusions

In this paper, we proposed a multi-objective process parameter interval optimization
model (MPPIO) for customized production of steel products. The control capability con-
straints and sensitivity analysis are added in the process parameters optimization. On
the one hand, the traditional point optimization problem is transformed into an interval
optimization problem, and on the other hand, it also improves the optimization ability and
convergence speed of the model.

The MSVR method was used as a verification in the optimization process to ensure
that the optimization results could meet the requirements of multiple property indica-
tors at the same time. By combining the equipment process control capability constraint
and Morris sensitivity weighted control, the original property quality optimization was
transformed into processing capacity interval optimization and accelerated the iteration
processing and improved the optimization ability. Practical applications proved that not
only can the MPPIO model ensure that the optimization results meet the customization
requirements of multiple property indicators at the same time, but also the optimal parame-
ter processing control window can be obtained, which improved the quality control ability
of the enterprise. This is not possible with traditional process parameter optimization
methods.

There are two important issues our future work will focus on. Firstly, the process con-
trol capability constraints analysis is needed for more parameters to improve the processing
capability interval accuracy; secondly, we will develop new optimization algorithms to
solve more complex optimization problem.
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