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Abstract: In this work, the mechanical behavior of the AZ31B-F magnesium alloy under cyclic loading
is analyzed with the goal of contributing to the advancement of its use in the design of AZ31B-F
components and structures. To achieve this goal, an experimental program was implemented to
evaluate the cyclic response of the AZ31B-F under specific proportional loads with different stress
amplitude ratios. Afterwards, regression methods were applied to extend the experimental data
to a wide range of proportional loads. As a result, the AZ31B-F damage map, a material property
that stablishes the damage scale between normal and shear stresses for finite life loading regimes,
was obtained. In addition, a safety factor was developed for the AZ31B-F material when subjected
to proportional loading. The achieved results have a direct application in mechanical design of
components/structures made of AZ31B-F contributing to its reliability.

Keywords: AZ31B-F magnesium alloy; multiaxial fatigue; fatigue damage; experimental testing

1. Introduction

Nowadays, sustainability is a major concern for society. Over the years, industry
in general has evolved without really thinking about the environmental impact of its
strategies. However, societies are beginning to realize that change is needed, especially
in the transportation industry, which today has a strong impact on the sustainability of
planet Earth by contributing to the increase in greenhouse gas emissions [1–3]. In this sense,
alternative strategies have been developed to reduce gas emissions by reducing the weight
of transportation structures. In this context, the replacement of steels and aluminum alloys
with magnesium alloys has been strongly considered. Magnesium alloys are the lightest
structural metals. They are 33% lighter than aluminum alloys and 75% lighter than steels.

In fact, the use of magnesium alloys in the transportation industry is not new. The
first magnesium alloys developed were used in the automotive and aircraft industries,
especially for castings, but the low corrosion resistance of these alloys dampened the
expectations placed in them [4]. In the meantime, new structural magnesium alloys with
better corrosion resistance and mechanical strength have been developed [5–7]. These
new properties have encouraged the use of magnesium alloys for applications other than
castings. Magnesium alloys have a very different mechanical behavior than steels or even
aluminum alloys. The hexagonal close-packed structure gives these alloys various prop-
erties such as polarity, twinning, mechanical behavior dependent on loading conditions,
anisotropy due to slip-twin interactions, and different stress-strain behavior in tension and
compression, making the mechanical behavior of these alloys quite different from that of
other structural metals [8–12].

In this sense, it is extremely important to develop tools that characterize this mechani-
cal behavior in order to be used in mechanical design. This is because the tools normally
used in the design of steel or aluminum alloy components and structures do not take into
account the mechanical behavior of magnesium alloys, especially in fatigue.
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Many papers have been published in the literature on the fatigue strength of mag-
nesium alloys under uniaxial loading conditions [13–16], and new methods have been
proposed to evaluate the fatigue strength of magnesium alloys under such loading con-
ditions. For example, Liu et al. [17] proposed a new method for evaluating AZ31B using
thermal indicators, which employs an infrared thermography technique to analyze the tem-
perature variations under cyclic loading, which in turn is used to estimate fatigue strength.
This result is of particular interest in very high cycle fatigue testing where the high self-
heating temperatures present additional challenges due to the high testing frequencies [18].
Despite these advances, there is very little work for multiaxial loading conditions [19–22].
This is of particular concern as the loads in practice are usually multiaxial, i.e., the com-
ponents and structures are usually subjected to normal and shear stresses with different
amplitudes over time and different loading sequences. These loading conditions are very
different from those simulated in the laboratory when a uniaxial SN curve is evaluated.
Nevertheless, uniaxial loading testing remains the preferred approach for characterizing
the fatigue strength of magnesium alloys. In fact, the uniaxial loading case is important
in that one needs a reference, called the SN curve, to estimate fatigue life. However, the
problem is that the link between fatigue strength under multiaxial loading and uniaxial
fatigue strength is missing. The evaluation of this relationship in magnesium alloys is a
complex and interesting challenge, strongly influenced by the cyclic behavior of closed
microstructures typically found in magnesium alloys.

One way to make this connection is to develop some sort of equivalence between
multiaxial and uniaxial loading conditions. This allows multiaxial stress conditions to be
reduced to a single equivalent stress, which is used in conjunction with the uniaxial SN
curve to estimate the fatigue strength of a given material under multiaxial loading [21–23].
This equivalence between loads is always done by calculating shear and normal stresses
to obtain an equivalent normal stress or an equivalent shear stress. This calculation must
always take into account the extent of damage between these stresses in order to calculate
this equivalence.

In fact, this calculation is necessary because normal and shear stresses have different
damage scales, for both static and cyclic loading conditions [21,23]. For illustration, known
information can be used, e.g., the fatigue limit of the uniaxial shear curve SN is always
lower than the fatigue limit of the uniaxial normal curve SN for a given material. This
means that the fatigue strength varies according to the type of stress, in this sense, the
damage scale of shear stresses is always different from the damage scale of normal stresses.
Moreover, the von Mises formula for equivalent stresses in static or quasi-static loading
defines

√
3 as the scaling factor between normal and shear stresses. From this, it can be seen

that normal and shear stresses have different damage scales and that a constant scaling
factor is used when calculating an equivalent stress to account for both types of stresses.
The problem is that this scaling factor is not constant for materials subjected to cyclic
loading and varies depending on the type of material, stress level, and multiaxial loading
conditions, such as the ratio of shear to normal stress. This scaling factor is much more
complex than what has been considered in the conventional multiaxial fatigue models,
which consider this scaling factor as a constant. It can be assumed that this scaling factor
is a material property that can be measured by experimental tests [21]. In this sense, this
work aims to evaluate the scale of damage between cyclic loads (normal and shear) for
magnesium alloy AZ31B-F under proportional loading conditions. This evaluation will
be based on experimental tests and the result will be presented as a damage map, which
can be used as a material property representing the AZ31B-F damage scale between shear
and normal stresses for multiaxial loading conditions, which is a novelty in the mechanical
characterization of magnesium alloys. Moreover, the damage map of AZ31B-F obtained in
this work is compared with the damage map of AISI 4140, a high strength steel studied
in previous works [21,23]. This comparison allows conclusions to be drawn about the
influence of the microstructure on the damage scale between shear and normal stresses.
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2. Materials and Methods

This paper investigates the fatigue strength behavior of AZ31B-F under multiaxial
fatigue testing conditions. The objective is to evaluate the damage map of the AZ31B-F. This
is a function that relates the damage scale of normal stresses with respect to shear stresses or
vice versa. For this purpose, an experimental program has been implemented to obtain the
necessary data to calculate the damage map. Then the experimental results are computed
to derive the damage scale between shear and normal stresses, and then a fitting is made to
model the experimental tests. As a result, a function with two variables is obtained, which
provides the damage scale for the stress paths considered in the experimental program and
for the stress paths not considered. The determined damage map can be used in the fatigue
design of AZ31B-F magnesium alloy components and structures subjected to multiaxial
loads.

2.1. Material

The chemical composition of magnesium alloy AZ31B-F is mainly composed of 97%
magnesium (Mg), 3% aluminum (Al) and 1% zinc (Z). The letter B indicates that this alloy
was the second to be developed, and F is a code designation meaning “As fabricated”.
Table 1 shows the complete chemical composition of AZ31B-F.

Table 1. Typical AZ31B chemical composition.

Element Al Zn Mn Fe Ni Cu Ca Si Mg

Weight (%) 3.1 1.05 0.54 0.0035 0.0007 0.0008 0.04 0.1 Balance

In this composition, aluminum aims to increase the strength of the alloy, manganese
produces relatively harmless compounds and improves corrosion resistance by controlling
the solubility of iron, which is a very harmful impurity because it reduces corrosion
resistance, and zinc, like aluminum, aims to improve the mechanical strength of the alloy.
AZ31B-F is available in various forms such as plates, sheets, and bars. It is an alternative to
aluminum alloys as it has a high strength to weight ratio and is widely available compared
to other magnesium alloys. This alloy is easy to machine but is flammable and requires the
use of a lubricant during machining to lower the temperature at the point of machining. It
can also be formed by preheating to 260 ◦C and can be welded using arc welding techniques.
The main applications are aerospace and general commercial. AZ31B-F is a wrought alloy
with typical tensile strength, yield strength in tension and compressive strength values of
290 MPa, 203 MPa, and 97 MPa, respectively. Table 2 summarizes the typical mechanical
properties for these alloys.

Table 2. AZ31B-F mechanical properties, data from [17].

Microstructure Type HC

Poisson’s ratio 0.35
Density (Kg/m3) 1770
Hardness (HV) 86

Tensile strength (MPa) 290
Yield strength (MPa) 203

Elongation (%) 14
Young’s modulus (GPa) 45

σ
′
f—Fatigue strength coefficient (MPa) 450

b—Fatigue strength coefficient −0.12
ε
′
f—Fatigue ductility coefficient 0.26

c—Fatigue ductility exponent −0.71

2.2. Experimental Program

Fatigue tests were carried out through a biaxial servo-hydraulic fatigue testing ma-
chine, Instron 8874 (Instron, Norwood, MA, USA) 25 kN/100 Nm, under stress control



Metals 2021, 11, 1616 4 of 17

according to the ASTM E466 Standard. Figure 1 shows the geometry of the specimens and
the corresponding dimensions. The specimens were fabricated with a CNC machine from
extruded AZ31BF rods, with their longitudinal direction coinciding with the extrusion di-
rection. Due to the hexagonal, compact microstructure of AZ31BF and due to the extrusion
process, some anisotropy in the radial direction maybe present in the fabricated samples.
The samples were polished with sandpaper of decreasing grit size until they were mirror
polished.
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Figure 1. Specimen geometry and respective dimensions in [mm].

The experimental program carried out includes a series of proportional multiaxial
fatigue tests with different ratios of normal to shear amplitude and r = −1 in both loading
channels, i.e., no mean stresses were considered in these loads. The tests were conducted
at room temperature and a loading frequency of 4 Hz, which corresponds to the upper
limit established for the strain rate of magnesium alloys in fatigue tests. The criterion for
completion of the tests was complete separation of the specimen. Figure 2 shows the stress
paths plotted in the von Mises stress space.
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Figure 2a,b represent the two uniaxial load paths, normal and shear (PT and PS), and
Figure 2c–e represent three proportional loads (PP30, PP45, and PP60) with different ratios
of normal to shear amplitude. PP30 means that the arctangent of the ratio of shear to
normal amplitude gives a 30◦ angle, PP45 gives a 45◦ angle, and PP60 gives a 60◦ angle.
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Increasing the angle means increasing the amplitude of the shear stress and decreasing the
amplitude of the normal stress. In this way, it becomes possible to distinguish proportional
loads according to the predominance of shear stresses over normal stresses and vice versa
on a given proportional load path. Figure 3 summarizes the amplitudes of the normal and
shear stresses with R = −1 in used in the experiments for each loading path.
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2.3. Fatigue Damage Map Assessment Method

In this work, the damage map for the magnesium alloy AZ31B-F was constructed
following the procedures published by Anes et al. [21] for the high strength steel 42CrMo4.
The main idea behind this procedure is based on the concept that the normal and shear
components of a proportional load have different damage scales, and both can be calculated
together to obtain an equivalent shear stress with a fatigue damage scale equivalent to that
found in the uniaxial shear stress amplitudes. Figure 4 illustrates this idea by comparing
two SN curves of a given material. One is the uniaxial shear curve SN and the other is the
SN curve of a given proportional load represented by the amplitudes of normal and shear
stress. The comparison between these two SN curves is made by considering the stress
amplitudes at both loads that lead to the same fatigue damage, i.e., that lead to the same
number of load cycles at failure. In this way, it can be assumed that these stress amplitudes
are equivalent as they lead to the fracture of the material at the same number of load cycles,
i.e., they lead to the same fatigue life result.

To illustrate this in Figure 4, fatigue damage was considered at 105 loading cycles
where the uniaxial shear amplitude SN is between the proportional normal and shear stress
amplitudes, which is always the case for any material subjected to proportional loading. As
can be seen, the proportional shear stress amplitude represented by the segment AB is not
sufficient to cause fatigue failure at 105 cycles of loading. For this purpose, it is necessary to
add an additional shear stress amplitude equal to the segment BC to achieve the uniaxial
shear stress amplitude leading to the rupture at 105 load cycles, represented by the segment
AC in Figure 4. In this sense, the damage of the additional shear stress amplitude BC
required to cause the fatigue rupture at 105 load cycles is caused by the normal stress
amplitude represented by the segment AD. However, this segment is much larger than the
BC segment, which means that there is a different damage scale between normal and shear
stress amplitudes, because the damage caused by the AD (nor-mal) segment is equal to the
damage caused by the BC (shear) segment, but these segments have different lengths, so
their scales must be different.
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To convert the normal damage scale into a shear damage scale, Anes et al. [21] use the
stress scale factor (ssf) given by the ratio of BC segment to AC segment. From experiments,
the authors found that this factor varies as a function of the normal stress amplitude (σa)
and the ratio of shear stress (τa) to normal stress amplitude, represented by λ in Figure 4,
where λ = τa/σa. With this in mind, the authors established the stress paths shown in
Figure 2 to investigate the variation of the stress scale factor in 42CrMo4 for different
proportional stress paths and different normal stress amplitudes. In order to estimate
the ssf factor for proportional stress paths that were not considered in the experiments,
the authors performed a fitting of the experimental results obtained in this way to the
function ssf(λ, σa), which is the fatigue damage map that updates the fatigue damage scale
of normal stresses to the damage scale of shear stresses. With this damage map, it becomes
possible to calculate the ssf equivalent shear stress, Equation (1), and then estimate the
fatigue life using the uniaxial shear curve SN.

τeqv = τa + ss f (λ, σa) · σa (1)

The purpose of this paper is to determine the ssf(λ, σa) function (fatigue damage map)
for the magnesium alloy AZ31B-F and to compare the results with those obtained by Anes
et al. [21] for 42CrMo4.

3. Results and Discussion
3.1. S-N Experimental Results

Table 3 shows the experimental results obtained for each loading path shown in
Figure 2 and the stress amplitudes shown in Figure 3. In run-out situations, i.e., cases
where the specimen did not fracture as a result of the applied loading, the number of
loading cycles Nf is presented as 106 cycles.
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Table 3. Az31B-F experimental fatigue data for proportional loading paths, Cases 1 to 5.

Loading Case Normal Stress (MPa) Shear Stress (MPa) Nf

Case 1
PT

140 13,164
135 22,873
130 38,102
120 62,352
105 721,573
100 1,000,000

Case 2
PS

75 88,871
69 128,769
64 227,808
59 388,236
53 1,000,000

Case 3
PP30

112.58 37.53 65,318
108.25 36.08 84,432
103.92 34.64 170,311
99.59 33.2 366,799
95.26 31.75 1,000,000

Case 4
PP45

106 61 16,800
92 53 46,874
78 45 138,986
74 43 242,685
71 41 353,718
67 39 1,000,000

Case 5
PP60

60 60 52,110
55 55 94,116
50 50 191,187
45 45 1,000,000

Similar to the procedure developed by Anes et al. [21] for the analysis and calculation
of fatigue data, a trend line approach over the experimental results was used to correlate
the amplitudes of normal and shear stress. To perform this correlation, the trend line
equations for each stress component (normal and shear stress) were obtained (see Figure 5).
The trend lines were represented by dashed lines in the graphs and the respective equation
was shown near these lines.

Figure 5b–d show the results of the fatigue data for loading cases 3, 4, and 5, respec-
tively. In each case, the biaxial loading is represented by two trend lines, one representing
the axial stress component and the other the shear stress component, as described in
Section 2.3. In addition, the pure shear results (loading case 2) are also presented together
with each proportional loading case and case 1. The aim is to use Case 2 as a reference,
as shown in Figure 4. From the results shown in Figure 5, it can be concluded that the
shear stress amplitude of each biaxial loading compared to the reference line SN (Case 2) is
clearly insufficient to cause fatigue failure, i.e., the trend lines of shear stress amplitudes of
loading cases 3 to 5 are always lower than the reference case. This means that the part of
the damage that is absent in the shear loading is caused by the axial component. Moreover,
the axial trend lines in cases 3 and 4 are above the SN line of case 2. This result clearly
indicates that normal and shear loading have different damage magnitudes. If only this
loading component was used in the reference trend line equation to estimate the fatigue
life, the result would be shorter than the experimental results. The opposite is observed in
loading case 5, the axial trend line of the biaxial loading is lower than the reference case.
Table 4 summarizes the trend line equations obtained based on the experimental data for
each loading path. The trend lines have a power law format that typically fits well with the
fatigue behavior, with acceptable R2 values between 0.95 and 0.98.
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Table 4. S-N trend lines for normal and shear loading components of loading cases 1 to 5 experimen-
tally evaluated for AZ31B-F.

Case λ = τa/σa Trend Line [MPa]

1 0
σa = 283.93(Nf)−0.075

τa = 0

2 ∞ σa = 0
τa = 365.14(Nf)−0.141

3 0.33
σa = 211.65(Nf)−0.058

τa = 70.572(Nf)−0.058

4 0.56
σa = 322.22(Nf)−0.117

τa = 180.44(Nf)−0.114

5 1
σa = 163.66(Nf)−0.095

τa = 163.66(Nf)−0.095

3.2. Stress Scale Factor (ssf) Determination Based on Experimental Results

In this section, the stress scaling factor is calculated as described in Section 2.3 using
the trend lines summarized in Table 4. The calculated results for loading cases 1 and 3
to 5 are shown in Tables 5–8. In these tables, the first row shows the trend line equations
used to calculate the stress amplitudes as a function of the number of cycles to failure
(column 1), and the last position of the first row shows the reasoning used to calculate
the ssf parameter using the numbers in the columns containing the stress amplitudes
calculated using the respective trend lines. For example, if we consider Table 5, Case 3,
to calculate the ssf parameter for Nf = 105 cycles, the uniaxial shear stress amplitude is
first evaluated using the experimental trend line τa = 365.14(105)ˆ(−0.141), which yields
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72 MPa, as shown in the second column (1). Afterwards, the normal stress amplitude of the
PP30 loading path is also evaluated for Nf = 105 cycles using the corresponding trend line,
σa = 211.65(105)ˆ(−0.058), which yields 109 MPa, shown in the third column (2). Next, the
shear stress amplitude of the PP30 loading path for Nf = 105 cycles is evaluated using the
trend line, τa = 70.572(105)ˆ(−0.058), which yields 36 MPa, shown in the fourth column (3).
To evaluate the ssf parameter at Nf = 105 cycles, the expression shown in the last column is
used, i.e., (72−36)/109 that gives the value of 0.33. The data presented in Tables 5–8 have
been compiled in Table 9 to find a model that better describes these data using regression
methods.

Table 5. ssf results for Case 1—AZ31B-F.

Nf
(1)

Pure Shear (Case 2)
τa = 365.14(Nf)ˆ(−0.141) [MPa]

(2)
Pure tension (Case 1)

σa = 283.93(Nf)ˆ(−0.075) [MPa]
ssf = (1)/(2)

103 138 169 138/169 = 0.82
104 100 142 0.70

5 × 104 79 126 0.63
105 72 120 0.60

5 × 105 57 106 0.54
106 52 101 0.52

Table 6. ssf results for Case 3—AZ31B-F.

Nf

(1)
Pure Shear (Case 2)

τa = 365.14(Nf)ˆ(−0.141)
[MPa]

(2)
Normal (Case 3)

σa = 211,65(Nf)ˆ(−0.058)
[MPa]

(3)
Shear (Case 3)

τa = 70,572(Nf)ˆ(−0.058)
[MPa]

ssf =
((1)−(3))/(2)

103 138 142 47 0.64
104 100 124 41 0.47

5 × 104 79 113 38 0.37
105 72 109 36 0.33

5 × 105 57 99 33 0.25
106 52 95 32 0.21

Table 7. ssf results for Case 4—AZ31B-F.

Nf

(1)
Pure Shear (Case 2)

τa = 365.14(Nf)ˆ(−0.141)
[MPa]

(2)
Normal (Case 4)

σa = 322,21(Nf)ˆ(−0.117)
[MPa]

(3)
Shear (Case 4)

τa = 180,44(Nf)ˆ(−0.114)
[MPa]

ssf =
((1)−(3))/(2)

103 138 144 82 0.39
104 100 110 63 0.33

5 × 104 79 91 53 0.30
105 72 84 49 0.28

5 × 105 57 69 40 0.24
106 52 64 37 0.23

Table 8. ssf results for Case 5—AZ31B-F.

Nf

(1)
Pure Shear (Case 2)

τa = 365.14(Nf)ˆ(−0.141)
[MPa]

(2)
Normal (Case 5)

σa = 163,66(Nf)ˆ(−0.095)
[MPa]

(3)
Shear (Case 5)

τa = 163,66(Nf)ˆ(−0.095)
[MPa]

ssf =
((1)−(3))/(2)

103 138 85 85 0.62
104 100 68 68 0.46

5 × 104 79 59 59 0.36
105 72 55 55 0.31

5 × 105 57 47 47 0.22
106 52 44 44 0.18
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Table 9. ssf results for all loading cases—AZ31B-F.

σa λ = atan(τa/σa) (rads) ssf

169 0 0.82
142 0 0.70
126 0 0.63
120 0 0.60
106 0 0.54
101 0 0.52
142 0.32 0.64
124 0.32 0.47
113 0.32 0.37
109 0.32 0.33
99 0.32 0.25
95 0.32 0.21

144 0.52 0.39
110 0.52 0.33
91 0.52 0.30
84 0.52 0.28
69 0.52 024
64 0.52 0.23
85 0.79 0.62
68 0.79 0.46
59 0.79 0.36
55 0.79 0.31
47 0.79 0.22
44 0.79 0.18
0 1.57 0.8

The first column shows the normal stress amplitude followed by the stress amplitude
ratio given by λ = atan(τa/σa) and respective ssf. The stress amplitude ratio aims to
differentiate proportional stress paths based on their normal and shear stress amplitudes.

This ratio is the tangent of the angle between normal and shear stress amplitudes
de-picted in the von Mises stress space, and the atan of this ratio gives the angle itself,
which improves the identification of the stress path. For the loading cases considered in
this study, the ratio of stress amplitudes varies from 0 to 1.57, i.e., case 1 has λ = 0; case
2 λ = 1.57; case 3 λ = 0.32; case 4 λ = 0.52; and finally, case 5 λ = 0.79.

The regression study was conducted using Datafit software, version 9.1 (Oakdale Engi-
neering, Oakdale, Pennsylvania, USA). This software has a large database of multivariable
equations that are evaluated for a given data set, e.g., Table 9. These equations are then
prioritized according to their quality of fit, i.e., the equations are prioritized according to
decreasing values of R2; equations with higher R2 fit the experimental results better and
therefore come first in this prioritization. Next, the graph of the equation that best fits the
results must be analyzed to verify that the equation matches the expected result, i.e., the
mechanical behavior expected for materials subjected to cyclic loading. If it does not, the
search continues until the correct equation is found.

These methods were applied to Table 9 and as a result Equation (2) was obtained to
model the ssf variation of magnesium alloy AZ31B-F. The R2 of this equation is 0.93, which
is a map that sets the damage scale between normal and shear stresses according to their
stress amplitude ratio and normal stress amplitudes, which can be considered as a material
property.

ss fAZ31BF = a + b · σa + c · σa
2 + d · σa

3 + e · σa
4 + f · σa

5 + g · λ + h · λ2 + i · λ3 + j · λ4 (2)

The input variables of Equation (2) are given in MPa and in radians, and the equation
constants a to j are given in Table 10.
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Table 10. Constant values of Equation (2) for the condition of best fit (R2 = 0.93)—AZ31BF dam-
age map.

Variable Value

a 3.00516795748732
b 0.138210394574867
c 2.11406573677796 × 10−3

d 1.51576767021405 × 10−5

e −4.82672910096113 × 10−8

f 5.11194628585213 × 10−11

g −0.518185467569207
h −1.19420385023642
i 2.98394174345283
j −0.655924758831285

Figure 6a shows the AZ31B-F ssf variation for the four load paths considered. To
improve the comparison between the loading paths, the normal stress amplitudes were
divided by their respective maximum values. As can be seen for 42CrMo4 [21], the
trend lines correlating ssf and normal stresses have different slopes for different stress
amplitude ratios, which means that the damage scale between normal and shear stress
amplitudes is not constant and varies depending on the loading path (different trend lines
in Figure 6a) and depending on the normal stress amplitude (different slopes of the trend
lines). Figure 6b shows the graph of Equation (2) represented with a color gradient and
the data listed in Table 9 represented by black dots. The trend lines shown in Figure 6a fit
these black dots, i.e., they are the expected intersection of the graph shown in Figure 6b for
the stress amplitude ratios considered in the experiments.
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The objective of the AZ31B-F damage map represented by Equation (2) is to determine
the ssf for stress amplitude ratios other than those considered in the experiments, since it
is almost impossible to obtain these data for all possible stress amplitude ratios through
experiments. An important aspect to be analyzed when selecting and validating a ssf func-
tion is the ssf transitions between experimental stress amplitude ratios. The ssf aestimates
for stress amplitude ratios that were not included in the experiments must be consistent
with the experimental data. This means that it is not sufficient to use only the quality of fit
parameters to select the ssf functions, but it is necessary to verify the function transitions
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and infer the quality of their ssf estimates. Figure 6b shows the best fit for the experimental
ssf data after analyzing the transitions between the estimates and the experiments. As we
can see, the transitions are smooth and do not change direction abruptly; moreover, the ssf
function is defined in all domains. These features together with a high R2 led us to choose
Equation (2) as the damage map for the AZ31B-F. Despite the high R2 of Equation (2),
other equations from the database considered in this study have better R2, but their ssf
transitions do not represent the expected mechanical ssf behavior or they were not defined
in all domains.

Equation (3) shows the ssf damage map for the high strength steel 42CrMo4 [21],
which was used to demonstrate the ssf theory. As you can see, Equation (2) has a different
expression with ten constants compared to the eight constants of Equation (3).

ss f42CrMo4 = a + b · σa + c · σa
2 + d · σa

3 + f · λ2 + g · λ3 + h · λ4 + i · λ5 (3)

Equation (2) represents the best fit for the AZ31B-F material. However, the original ssf
equation (Equation (3)) is still valid and can also be applied to AZ31B-F, but with a lower
R2. Table 11 shows the constants of Equation (3) (42CrMo4 expression) obtained for the
AZ31B-F material.

Table 11. Regression variable results for AZ31BF damage map (R2 = 0.9) for the condition of the
42CrMo4 fit equation type given by Equation (3).

Variable Value

a −0.759474996569004
b 2.80999535970111 × 10−2

c −2.13782035002517 × 10−4

d 6.13142129539061 × 10−7

f −5.34317526860744
g 14.1883590988772
h −11.7431172616598
i 3.26772185827734
j −0.759474996569004

The R2 obtained for the AZ31B-F using the 42CrMo4 expression was 0.9 against
0.93 obtained with the best fit equation approach. The difference between these two
expressions regarding the R2 can be considered negligible which means that the original ssf
expression, Equation (3), can be used to model the ssf variation in materials very different
from the 42CrMo4 material, such as the Az31B-F magnesium alloy. This idea is reinforced
by comparing Figure 6b with Figure 7a where it can be seen a strong similarity between the
two graphs. Figure 7 shows the ssf graphs for both materials considering Equation (3), i.e.,
considering the 42CrMo4 ssf expression. Observing this figure one can conclude that there
is a mirroring between these two graphs, however the surface shape for both materials is
similar. This behavior results from a kind of SFF symmetric variation in both materials, to
better describe this, Figure 8 shows these variations for both materials according to stress
amplitude ratios.
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Figure 8. ssf experimental results for AZ31B-F and 42CrMo4. (a) Case 1—PT pure tension,
(b) Case 3—PP30, (c) Case 4—PP45, and (d) Case 5—PP60.

Figure 8a–d shows the variation of ssf as a function of variation of normal stress
for both materials. From these results, it can be concluded that in cases 1, 4, and 5, the
trend lines of both materials have slopes with different signs. For example, in Figure 8a,
case 1—PT, the ssf increases when the normal stresses in AZ31B-F increase. On the other
hand, the ssf decreases when the normal stresses in 42CrMo4 increase. This means that
the contribution of normal stress amplitudes to the total damage (damage due to shear
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stress amplitudes plus damage due to normal stress amplitudes) is weighted differently
depending on the material and fatigue state (LCF or HCF). In all subframes of Figure 8, the
42CrMo4 trend lines lie above the Az31B-F trend lines for dimensionless normal stresses
near 0.6; this means that under the HCF regime, the normal stress amplitude has a higher
contribution to the total damage in the 42CrMo4 material compared to AZ31B-F. On the
other hand, in the LCF regime, the opposite is true, i.e., the amplitude of the normal stress
has a higher contribution to the aggregate damage in AZ31B-F than in 42CrMo4. This
behavior is the reason for the mirror image in the plots in Figure 7. The contribution of
normal stresses to the aggregate damage in magnesium alloy AZ31B-F is larger in LCF than
in HCF. Therefore, the role of shear stress amplitudes in fatigue damage increases as the
amplitudes of normal and shear stresses decrease, i.e., in the threshold region between finite
and infinite life, shear stress amplitude will be the dominant stress component. Figure 9
shows the aerial view of Figure 7, showing the correlation between the normal stresses and
the stress amplitude ratios, with the colors indicating the ssf variation. In this figure, the
lower grey area shows the infinite life diagram area and the upper area above this grey
area bounds the finite fatigue life area. Based on this grey area, a model can be created that
establishes a boundary between finite and infinite life for proportional loads.
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Figure 10 shows the threshold model for the AZ31B-F material, where each point
represents the normal stress amplitude at 106 cycles (infinite life threshold) versus the
respective stress amplitude ratio. The line shown in the graph is obtained by creating a
linear trend line over the data of the graph. An offset is then made to place all points above
the trend line. In this way, it becomes possible to obtain a simple boundary where a safe
region can be identified by the trend line equation, as shown in Figure 10 and Equation (4).

The safe/unsafe region approach can be used in the design of AZ31B-F material
structures or components subjected to proportional loads with any combination of shear
and normal stress amplitudes. In this approach, Equation (4) is used to calculate the
maximum value of σa for a given λ. Then, Equation (5) can be used to determine the
respective shear stress amplitude.
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σa_th = 96.29− 67.90 · λ (4)

τa_th = σa_th · tan(λ) (5)

These two values, σa_th and τa_th, calculated in this way, represent the maximum amplitudes
allowed for infinite life condition, where _th denotes threshold. In this sense, it is possible
to develop an expression to estimate the safety factor in terms of infinite life for a given
proportional load. To do this, Equation (1) is used to obtain the threshold value of the ssf
equivalent shear stress, and then the same equation is used to obtain the ssf equivalent shear
stress for the loading (σa, τa) as seen in Equation (6) where τa is replaced by σa · tan(λ).

n =
σa_th · tan(λ) + ss f · σa_th

σa · tan(λ) + ss f · σa
(6)

simplifying Equation (6) we get Equation (7)

n =
σa_th

σa
(7)

replacing σa_th by its expression in Equation (7) it is obtained the safety factor expression for
the AZ31B-F magnesium alloy subjected to proportional loadings, Equation (8), where σa
is the normal stress amplitude of a given proportional loading and λ is its stress amplitude
ratio.

n =
96.29− 67.90 · λ

σa
(8)

4. Conclusions

In this work, the cyclic behavior of the AZ31B-F was analyzed using the methodology
developed by Anes et al. for the high strength steel 42CrMo4. The stress paths described
in this methodology were implemented in the laboratory for the AZ31B-F and the results
were subsequently analyzed. To extrapolate the experimental results to a wide range of
stress amplitude ratios, a regression was performed over the experimental data resulting
in the AZ31B-F damage map (ssf). The main conclusions were as follows:

1. The ssf damage map has been successfully evaluated for AZ32BF and can be used to
estimate the fatigue life of AZ31BF components and structures under proportional
loads.
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2. As for 42CrMo4, the damage scale between normal and shear stresses (ssf) in AZ31B-F
material varies depending on the stress amplitude ratio and stress intensity, but the
pattern of this variation is different from 42CrMo4 material.

3. The regression study showed that the 42CrMo4 expression for the damage map was
also valid for AZ31B-F material, but with a lower R2 compared to the R2 obtained for
the best fit condition.

4. It is concluded that the polynomial function with eight constants initially obtained
for the 42CrMo4 material is a good candidate for modelling the ssf damage map of a
variety of materials, but further studies are needed to confirm this hypothesis.

5. Based on the AZ31B-F damage map, an expression was developed to calculate the
safety factor of AZ31B-F under proportional loading. This safety factor was developed
with respect to infinite life conditions.

Future work is planned to include non-proportional effects in the damage map and
safety factor for infinite life. To the best of the author’s knowledge, the non-proportional
loading effects for various stress amplitude ratios are not yet known for the AZ31B-F
material.
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