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Abstract: The T-joint is one of the essential types of joints in aluminum welded structures. Double-
sided welding is a preferable solution to maintain high efficiency and avoid significant distortion
during T-joint welding. However, interactions between double-sided molten pools make flow
behaviors complicated during welding. Numerical simulations regarding molten pool behaviors
were conducted in this research to understand the complex flow phenomenon. The influences of wire
feed rates and torch distances were simulated and discussed. The results show that droplet impinging
drives the fluid to flow down to the root and form a frontward vortex. Marangoni stress forces the
fluid to form an outward vortex near the molten pool boundary and flatten the concave-shaped
molten pool surface. With an increased wire feed speed, the volume of the molten pool increases,
and the root fusion is improved. With an increased torch distance, the width of the front molten pool
decreases while the length increases, and the rear molten pool size decreases slightly. Both wire feed
speeds and the torch distances have limited influences on the basic flow characteristics.

Keywords: CFD; numerical simulation; molten pool behaviors; GMAW

1. Introduction

Aluminum alloys are widely used in engineering structures due to their excellent
specific strength and corrosion resistance. Welding is one of the essential processing
techniques used to fabricate heavy aluminum alloy structures. For welded aluminum
structures, the T-joint is one of the essential types of joints. In this joint, a vertical plate
is joined with a horizontal plate using two symmetrical weld beads. This characteristic
determines that double-sided welding is a preferable solution to maintain high efficiency
and avoid significant distortion. However, during double-sided welding, interactions
between double-sided molten pools are complicated, especially when the amount of
penetration is large. Thus, the welding quality is usually hard to control in real-world
welding practice. Although, the weld quality can be improved via the hybridization
method as Prajapati et al. proved [1,2]. However, for double-sided welding, the welding
parameters are much more complicated than those in single-sided welding to coordinate
the two electric arcs. Optimizing the welding process via experiments is time-consuming.

Fortunately, computer-aided engineering (CAE)-guided welding process optimiza-
tion can be a promising alternative, which has recently attracted worldwide attention [3].
Numerical simulations have been proved in different welding conditions to be able to
visualize and forecast the multiscale welding physical phenomenon [4] and even es-
tablish the relationship between process and mechanical properties [5]. Optimization
methods for numerical models with finite experiments are also proposed to improve the
simulation precision [6]. However, for T-joint welding, reported numerical research cur-
rently only focuses on residual stress analysis, distortion control, and reliability analysis.
Chang et al. [7] and Luca et al. [8] explored the residual stress distribution of T-joints made
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of dissimilar steels. Zhang et al. [9] and Khoshroyan et al. [10] investigated the influences
of welding parameters on residual stress and distortions. Deng et al. simulated the control
effects of optimizing weld bead arrangement, weld sequence [11], and fixtures [12] on
residual distortion. Chu et al. [13] simulated the possibility of introducing compressive
residual stress into T-joints via overlay welding. High-efficiency simulation methods were
proposed based on the shell/3D technique [14], heat source simplification [15], and the
inherent strain method [16]. Structural behaviors of T-joints under different loading condi-
tions [17–20] were simulated, and the influences of welding defects were considered with
modern modeling software [21].

In all these studies, the fluid flow in molten pools was ignored. However, as an
essential welding phenomenon, the molten pool is the key factor influencing the welding
appearance, metallurgical reactions, penetrations, defects formation, and finally, the weld-
ing quality. A deep understanding of molten pool behavior during welding is helpful and
necessary for designing process parameters.

Numerical simulations of molten pools in arc welding have been investigated for more
than 30 years. Kou et al. [22] conducted one of the early studies on stationary tungsten
inert gas (TIG) welding in 1985. After that, two research hotspots gradually formed.
One was the model improvement for different welding conditions or higher precision.
Cho et al. [23] proposed a force model for V-groove gas tungsten arc (GTA) and gas metal
arc (GMA) welding. Then, they developed asymmetric heat sources for second-pass GMA
welding [24]. Bahrami et al. [25] developed a model considering the mass transfer to
simulate the welding of dissimilar materials. Jeong et al. [26] proposed a separate heat
source to simulate the molten pool flow in lap joint GTA welding. Hao et al. [27] proposed
a similar model to simulate TIG welding with a reserved gap. Cho et al. [28] discussed the
model setups for more realistic modeling results of one pulse one drop GMA welding. Full
coupled numerical models to simultaneously simulate the electric, droplet, and molten
pool were also proposed [29,30]. However, the conditions are usually 2D and stationary
due to the limitation of computation efficiency.

Using molten pool simulation to visualize the intrinsic mechanism of the welding
phenomenon and optimizing the welding process based on that is the other hotspot.
Traidia et al. [31] explored the formation mechanism of asymmetric bead appearance dur-
ing horizontal narrow-gap TIG welding. Liu et al. [32] investigated the formation process
of ripples in pulsed GTA welding. Cheon et al. [33] discussed the cause of finger-shaped
penetration in GMA welding. Meng et al. and Pan et al. investigated the origin of
humping [34,35] and undercut [35] defects during GTA welding. Then, the influenc-
ing mechanisms of vibration [36], double electrode [37], ultrasonic waves [38], magnetic
fields [39], and gravity [40] on the molten pool flow were simulated and visualized. With
the understanding of the complex flow behaviors in various conditions established, pre-
dicting or optimizing the welding process also becomes possible. Xu et al. [41] optimized
the oscillating parameters in narrow-gap GMA welding via simulation. Additionally,
Lang et al. [42] predicted the molten pool stability during variable polarity plasma arc
welding (VPPAW).

Though significant progress has been made in previous studies, molten pool behavior
during T-joint welding remains unclear, let alone in double-sided T-joint welding. In this
study, to fill the knowledge gap, we developed a 3D numerical model to simulate the
fluid flow during double-sided pulsed GMAW of aluminum T-joints. Then, the molten
pool behaviors under different wire feed speeds and torch distances were visualized
and investigated.

2. Numerical Model
2.1. Basic Assumptions

To make the complex physical phenomenon during double-sided GMA welding of
the aluminum T-joint computable with acceptable precision and efficiency, we adopted the
following assumptions:
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(1) The fluid flow in the weld pool is laminar, and the molted metal is incompressible.
(2) The electric arc is not explicitly considered. Instead, the thermal and mechanical

interactions between arcs and weld pools are considered by source terms.
(3) The influences of metal vapor are ignored.
(4) The physical and geometric heterogeneity of wire and base metal can be ignored.
(5) The drop size and drop transfer frequency are assumed to be uniform.

2.2. Governing Equations

The following equations describe the fluid flow during the welding process with the
above assumptions. Symbols and their physical meanings are described in the nomencla-
ture table.

Mass continuity equation:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= S (1)

where ρ is density, t is the time, u, v, and w are the velocity components in the x, y, and z
directions, respectively, and S is the mass source (metal droplet in this work).

Momentum conservation equations:

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −∂p

∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ Fex (2)

ρ
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∂y

+ w
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∂z

)
= −∂p
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(
∂2v
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∂2v
∂y2 +

∂2v
∂z2

)
+ Fey (3)

ρ

(
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∂t

+ u
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∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
= −∂p

∂z
+ µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
+ ρg + Fez (4)

where p is the pressure, µ is the viscosity, g is the gravitational acceleration, and Fex, Fey,
and Fez are the body forces in the x, y, and z directions, respectively.

Energy conservation equation:

ρcp

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

)
=

∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂z

(
k

∂T
∂z

)
+ Q (5)

where cp is the specific heat, T is the temperature, k is the thermal conductivity, and Q is
the source term caused by arc heating.

The volume of fluid (VOF) method is applied to trace the free surface. Thus, another
VOF conservation equation is needed:

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y

+ w
∂F
∂z

= 0 (6)

where F is the VOF function; it represents the volume fraction of the aluminum liquid in a
single cell.

2.3. Source Terms

Droplet generation during GMA welding is modeled by the source of mass continuity
equation S. Quantitative high-speed photography was carried out during T-joint welding
to determine the average droplet transfer frequency, transferring velocity, and the relative
falling-off location of the droplet before the simulation. The randomness of droplet transfer
was ignored, so the drop size could be calculated according to the mass conservation since
wire feed speed was known. The droplet generation times were assumed to be the time
when peak arc current appears. The mass source term was added to the cell at the specified
falling-off location during the calculation. The initial velocity of the fluid in these cells was
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set to be the same as the measured transferring velocity. The initial temperature of the drop
was set as 2300 K [43].

The body forces exerted on the weld pool were modeled using the source term of
momentum conservation equations. The buoyancy force was calculated according to the
Boussinesq approximation, while the electromagnetic force was calculated following the
simplified form adopted in [41]:

Fex = − µ0 I2

4π2σ2
j r
× exp

(
− r2

2σ2
j

)[
1− exp

(
− r2

2σ2
j

)](
1− z

Lm

)2 x
r

(7)

Fey = − µ0 I2

4π2σ2
j r
× exp

(
− r2

2σ2
j

)[
1− exp

(
− r2

2σ2
j

)](
1− z

Lm

)2 y
r

(8)

Fez = −
µ0 I2

4π2Lmr2

[
1− exp

(
− r2

2σ2
j

)](
1− z

Lm

)
− ρLβM(T − TL)g (9)

where µ0 is the permeability of the vacuum, I is the welding current, σj is the distribution
parameter of the arc current, r is the distance to the arc center, Lm is the plate thickness,
ρL is the liquid density, βm is the volumetric thermal expansion coefficient, and TL is the
liquid temperature of the metal.

The heat input from the electric arc was modeled using the source term of the energy
conservation equation. To deal with the significant free surface deformation during T-joint
welding, we applied an adaptive ellipse surface heat source:

qs =
ηUI

2πσxσy
exp

(
−
(

x2

2σ2
x

)
−
(

y2

2σ2
y

))
(10)

where qs is the heat flux on the free surface of the weld pool, η is the heat efficiency, σx and
σy are the distribution parameters of the heat source in the x and y directions, respectively.
During the simulation, the free surface of the molten pool was traced at every timestep.
The open surface area and volume of fluid in each cell was calculated. For cell ijk, as shown
in Figure 1, we denote the fluid surface area as Sfijk, while fluid volume as is denoted as
Vfijk. The weld heat flux on the free surface of cell ijk can be calculated by Equation (10)
shown above. Then, we converted the surface heat flux to body heat flux via:

Q = S f ijk · qs/Vf ijk (11)Metals 2021, 11, x FOR PEER REVIEW 5 of 18 
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Now, Q has the same dimension as the source term of the energy conservation equation
and can be successfully calculated using the computational fluid dynamic (CFD) solver.
Such a strategy effectively avoids energy nonconservation of the body heat source when
applied on an empty cell. In this study, pulsed GMA welding was used, so the arc voltage,
U, and arc current, I, were time-dependent. Assuming a constant U and I is apparently
inappropriate for the precision of results. Thus, before the simulation, we sampled the
actual U and I during the real welding process. The typical voltage and current curves
when wire feed speed was 9 m/min are shown in Figure 2. Raw data of different wire
feed speeds were collected, denoised, and smoothed. Then, the single period data were
extracted for simplicity. Finally, the time-dependent data were stored in a constant global
array in the solver. During the calculation, the CFD solver read the transient U and I from
the array at each timestep. In this way, a relatively real heat input from the electric arc
could be modeled.
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2.4. Computational Domain, Boundary Conditions

In this study, the 6082 aluminum alloy T-joint was chosen as the simulation tar-
get. As shown in Figure 3, the dimensions of the horizontal and vertical plate were
15 mm × 180 mm × 400 mm. The groove was beveled on both sides of the vertical plate
with an angle of 55◦, while a 2 mm root face was reserved. The axial direction formed an
angle of 35◦ with the horizontal plate and 75◦ with the welding direction. For the sym-
metrical double-sided welding, only half of the T-joint was included in the computational
domain to improve simulation efficiency, as shown in Figure 4. As the size of the computa-
tional domain was limited by computing capacity, the heat source stayed still during the
simulation, while the T-joint moved backward. So, the simulated welding time could be
very long, even if a small computational domain was used. A computational domain of
80 mm × 40 mm × 40 mm was chosen for simulation. The mesh size near the groove was
set as 0.2 mm and transited to 0.6 mm near the boundary. For nonsymmetrical welding
with a longitudinal torch distance, the full computational domain was used instead.

Two types of boundaries were included in our model. The first was the mesh block
boundary, i.e., the boundary of the computational domain. In Figure 2, CBFG is the velocity
inlet, while OAED is the velocity outlet. According to the relative motion mode mentioned
above, the inlet velocity was set as equal to the welding speed. At the inlet surface, the cell
was initialized selectively to keep the consistent geometrical shape of the T-joint groove.
OCGD is the symmetric plane. On this plane, the gradients of state variables on the normal
direction are equal to zero, and the normal velocity is zero:

∂T
∂
→
n
= 0, ∂p

∂
→
n
= 0, ∂u

∂
→
n
= 0, ∂v

∂
→
n
= 0, ∂w

∂
→
n
= 0,

→
v n = 0 (12)
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where ∂T
∂
→
n
= 0 and ∂p

∂
→
n
= 0 means the normal temperature and pressure gradient are equal

to zero, ∂u
∂
→
n
= 0, ∂v

∂
→
n
= 0 and ∂w

∂
→
n

represent the zero normal velocity gradient, and
→
n = 0

represents the zero normal velocity.
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OABC is the wall boundary. On this plane, the normal velocity is zero, and heat
exchange occurs between the fluid and the external environment:

→
v n = 0, k ∂T

∂
→
n
= −hc(T − T0)− σξ

(
T4 − T4

0
)

(13)

where
→
n = 0 represents the normal velocity, and the second equation describes the

convection and radiation loss on the boundary.
ABFE and EFGD is the continuative boundary. This condition consists of zero normal

derivatives at the boundary for all quantities, which is intended to represent a smooth
continuation of the flow through the boundary.

Then, another boundary is the free surface of the molten pool. Arc pressure, surface
tension pressure, and Marangoni stress were applied to this internal boundary. The arc
pressure was assumed to follow Gaussian distribution, which is commonly recognized in
the molten pool simulations [34]:

Parc = −
Pmax

2πσp
exp

(
− r2

2σ2
p

)
(14)

where Parc is the arc pressure, Pmax is the maximum pressure at the arc center, σp is the
distribution parameter of arc pressure. During the calculation, the arc pressure was loaded
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in a similar way to the surface heat source. The cell on the free surface was tracked every
timestep. The arc pressure exerted on every single cell was calculated and converted into
the body force. Then, the body force was decomposed to x, y, and z axis, and added to the
source of the momentum conservation equations.

The surface tension pressure on the normal direction of the free surface can be calcu-
lated by:

Pst = γκ (15)

where Pst is the surface tension pressure, γ is the surface tension, and κ is the curvature of
the free surface.

Marangoni shear stress can be expressed as:

τmax =
∂γ

∂T
∂T

∂
→
s

(16)

where τmax is Marangoni shear stress and
→
s is the unit tangent vector.

From which, the surface tension γ is calculated as follows:

γ = γ0 −
dγ

dT

(
T − Tre f

)
(17)

where γ0 is the surface tension at the reference temperature and Tref is the reference
temperature.

The reliability and correctness of the above numerical model have been validated in
our previously published research [44].

2.5. Simulated Welding Conditions

This study first chose a wire feed speed of 9 m/min to investigate the typical transient
molten pool behavior. Then, conditions with wire feed speeds of 6 m/min, 7 m/min, and
8 m/min were supplemented to figure out the influences of wire feed speed on the fluid
flow. Finally, nonsymmetrical double-sided welding with torch distances of 5 mm, 10 mm,
15 mm, and 20 mm were simulated to investigate the influences of torch distances. The
welding parameters included in the eight different welding conditions are listed in Table 1.

Table 1. Welding parameters included in different welding conditions.

Case No. Wire Feed
Speed (m/min)

Welding
Speed (mm/s)

Droplet Transfer
Frequency (Hz)

Wire Diameter
(mm)

Torch
Distance (mm)

1 9 5.6 220 1.2 0
2 7 5.6 132 1.2 0
3 8 5.6 178 1.2 0
4 10 5.6 214 1.2 0
5 9 5.6 220 1.2 5
6 9 5.6 220 1.2 10
7 9 5.6 220 1.2 15
8 9 5.6 220 1.2 20

3. Results and Discussion
3.1. Basic Transient Molten Pool Behaviors

In the following section, the basic molten pool behaviors are discussed based on
the results of Case 1. In Figure 5, the weld bead formation process is visualized using
the transient temperature contours from the welding time of 0.5 s to 7.0 s. The red part
represents the region whose temperature is higher than the liquidus temperature 642 °C,
i.e., the molten pool. The size of the molten pool increases with the welding time in the
first 5 s and then stabilizes. Due to the impingement of droplets, the free surface at the
molten pool center is concave. The fore part of the molten pool has a larger aspect ratio
than the back part. This is the result of the 75◦ advancing angle (shown in Figure 3).
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(c) 2.0 s, (d) 3.0 s, (e) 4.0 s, (f) 5.0 s, (g) 6.0 s, and (h) 7.0 s.

Then, the results at 7.0 s were chosen to illustrate the quasi-stable-state flow behaviors.
The longitudinal section (Plane 1, the section parallel to the torch and cross the center
of molten pool) and the cross-section (Plane 2, the section parallel to the YOZ plane and
cross the center of the molten pool) at the same welding time are visualized in Figure 6
to help achieve a comprehensive understanding of the spatial flow characteristics. The
black arrows in the figures are the velocity vectors. In Figure 6b, the velocity distribution
shows that most of the molten pool surface has a velocity component towards the welding
direction (the positive X direction). At the same time, Figure 6c demonstrates a frontward
vortex on the longitudinal center plane. These two figures indicate the critical role of the
advancing angle. With a non-vertical advancing angle, the droplet brings the momentum
component to the welding direction, which drives the melt to flow frontward. Similar
to the formation cause of finger-shaped penetration in a previously reported GMAW
simulation [33], this also intensifies the convective heat transfer in the advancing direction,
leading to a large aspect ratio in the front part of the molten pool. As shown by Figure 6d,
the driving effect of droplet impinging is also significant on the cross-section. However, its
influences are concentrated in the center of the molten pool. The velocity vector points to
the centrifugal direction at the outside of the melting metal, which is annotated by white
arrows in Figure 6d. This is the result of Marangoni stress. The vortex near the horizontal
plate is larger than the other, demonstrating that gravity also has a small contribution. Then,
the velocity magnitude on the two planes is visualized in Figure 6e,f. On the longitudinal
section (Figure 6e), the maximum velocity lies on the top surface, while the vortex flow
pattern leads to a relatively small velocity in the molten pool center. On the cross-section
(Figure 6f), the maximum velocity lies on the falling position of the droplet. The results
obtained agree quite well with previously reported ones. The leading driving effect of
the droplet has also been illustrated in multiple independent simulations on the GMAW
molten pool [23,28,30,43], even with altered welding positions [40]. In the pulsed GMAW
of steel, the high flow speed region can move to the bottom of the molten pool with the
droplet [30]. However, in this study, droplet influences on velocity magnitude were only
concentrated near the free surface. This is the result of a much smaller droplet radius
compared with [30]. The outward flow driven by Marangoni stress has also been verified
via different simulation approaches [45,46]. It does play an essential role in autogenous
welding. However, since the droplet has a significant axial transferring speed, the resistance
to Marangoni stress is weak in the molten pool center, and the typical symmetry outward



Metals 2021, 11, 1594 9 of 18

vortexes [44] are not witnessed. Although the welding process was not conducted in the flat
welding position, the influences of gravity are relatively weak on flow behaviors. Similar
phenomena were also reported in steels [31,40].
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Figure 7 shows the temperature contours and velocity distributions at different weld-
ing times. The cross-section was also extracted at the droplet falling position shown in
Figure 6a. The droplet transfer and Marangoni stress are the leading driving force through-
out the whole welding process. The flow behaviors at different times are similar to those
shown in Figure 6d.
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3.2. Fluid Flow during a Single Pulse Cycle

Then, we take a more in-depth look at the molten pool flow behaviors during a single
pulse cycle. As shown by Figure 8, the first droplet investigated is generated at 6.00078 s. At
this time, as shown by Figure 8a, the molten pool surface is still concave-shaped under the
impingement of the last droplet. However, the Marangoni stress forces the fluid to close the
pit. Thus, we witnessed a solid centripetal flow near the molten pool center, as shown by
Figure 8b,c. Moreover, the concave surface is flattened quickly from 6.00078 s to 6.002394 s.
At 6.003196 s, the droplet makes contact with the molten pool surface, bringing intense
axial momentum, as shown by the vectors and the red region in Figure 8d. Furthermore,
the molten pool surface becomes concave again. Similar effects of Marangoni stress after
droplet transfer were also reported in [30]. It plays an important role in maintaining the
uniform weld bead appearance.

After the impingement of the droplet, the axial flow in the molten pool center is
hindered quickly by the pressure resistance inside the melted metal. Additionally, at the
same time, Marangoni stress acts again, generating centripetal flow to flatten the molten
pool surface. At 6.00555 s, as shown by Figure 8g, another droplet is generated, a new pulse
cycle starts, and the above process repeats again. The molten pool center has the largest
flow velocity during the whole cycle, and the maximum velocity significantly increases
when the droplet interacts with the molten pool. However, comparing the temperature
contours in Figure 8a to Figure 8g, although the weld current experiences a drastic change
during a single pulse cycle, the temperature distribution remains constant. This is caused
by the intrinsic nature of welding heat transfer. During the pulsed GMAW with a high
frequency, arc heat transfer to the molten pool bottom relies on convection. In such a short
time current pulse, the influences of the heat input variation on the molten pool surface are
much weaker than the energy input by droplet transfer. Thus, the temperature contours
experience minimal changes; similar results were obtained by [30]. It should be noted that
when the pulse frequency is relatively low, the circumstance will be different. As presented
by [32], the molten pool size evolution with a current pulse less than 10 Hz was significant.
This is because the peak and the base current time are relatively longer, the influences
of arc energy change can be introduced to the whole molten pool with the effective help
of convection.
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3.3. Influences of the Wire Feed Speed

The calculation results of Cases 1, 2, 3, and 4 are compared to investigate the influences
of wire feed speed. At first, the temperature distributions on the model surface and molten
pool cross sections are displayed in Figure 9. The cross sections are also extracted at the
location shown by 6a. As the wire feed speed increases, the volume of the molten pool
also increases significantly due to more extensive heat input. When a wire feed speed of
7 m/min is applied, as shown by Figure 9b, the energy input is not large enough for a good
spreading of melted metal. A lack of fusion is found near the root of the weld bead. As the
feed rates rise to 8 m/min, as shown by Figure 9d, the root fusion is improved. However,
the penetration is still not enough for a solid joint between horizontal and vertical plates.
When the wire feed rate is larger than 9 m/min (Figure 9f,h), full penetration is achieved.
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feed speeds of (b) 7 m/min, (d) 8 m/min, (f) 9 m/min, and (h) 10 m/min.

Then, in Figure 10, the velocity magnitude contours and velocity vectors are visualized
on the molten pool’s longitudinal section and cross-section. The extracting positions of
clip planes are shown in Figure 6a. It can be seen that the wire feed speed does not change
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the basic flow feature of the frontward vortex on the longitudinal section. The droplet
impingement is still the critical driving force. Moreover, the highest velocity magnitude
appears near the droplet falling position. In general, the upper half of the vortex has
a larger velocity magnitude than the lower part. Additionally, the area of the vortex
increases with a larger molten pool size when applying a higher wire feed speed. On the
cross-section, the interplay between droplet impingement and Marangoni stress is also
witnessed. Although higher wire feed speed leads to a larger droplet transfer speed, its
influences on the velocity magnitude mainly act near the molten pool surface. On the
longitudinal section, a larger high-velocity area is witnessed using larger wire feed speed.
However, the velocity magnitude inside the molten pool shows weak correlations with the
wire feed speed.
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3.4. Influences of the Torch Distance

Finally, the influences of torch distances are discussed based on the calculation results
of Case 5, 6, 7, and 8. Figure 11 shows the temperature contours at a welding time of
7.0 s on the model surfaces and cross-sections. Since the two weld torches are now placed
at a non-symmetry position, the contours on the front and rear torch side are displayed,
respectively, in the first and second column of Figure 11, and the contours on molten
pool cross-sections through the center of the front and rear droplet transfer position are
displayed separately in the third and fourth column of the assembly figure. As shown by
the contours on the model surfaces, as the torch distance increases, the width of the front
molten pool decreases, and the length rises. The reduced width results from decreased
heat input on the other side, while the increased length attributes to the retarded cooling
effects of the rear arc. For the rear molten pool, as the torch distance diminishes, the molten
pool size decreases slightly.

Then, we take a closer look into the cross-section (the third and fourth column of
Figure 11). It can be seen that, with a closer torch distance, the two molten pool has stronger
interactions, and the penetration of both sides decreases. Since the front arc always has a
preheating effect for the rear molten pool, the rear molten pool has a significantly larger
amount of penetration. Then, the velocity distributions at 7.0 s on two cross-sections are
shown in Figure 12. Despite the different molten pool sizes, the fluid flow characteristics
are the same as the double-sided symmetry welding. On the pool surface, the liquid metal
flows inward under the impinging of the droplets, and Marangoni stress drives the fluid to
form two outward vortexes near the boundary. This indicates that compared with the two
critical driving factors of fluid flow in the molten pools, the interactions between the molten
pools on different sides have very limited effects on the flow behaviors of liquid metal.
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4. Conclusions

In this work, a 3D numerical model was established to simulate the fluid flow during
double-sided pulsed GMAW of aluminum T-joints. The model assumed that the fluid flow
in the weld pool was laminar and incompressible, effects of the arc could be simplified
as thermal and mechanical interactions, influences of metal vapor could be ignored, and
the heterogeneity of materials could be ignored. Mass, momentum, energy, and VOF
conservation equations were adopted as controlling equations. A transient adaptive heat
source was applied to model the heat input on the free surface of the weld pool. With
the numerical model, molten pool behaviors under different wire feed speeds and torch
distances were visualized and investigated. The main results are summarized as follows:

1. The droplet impinging effect and Marangoni stress are the leading driving forces
during the double-sided pulsed GMAW of T-joints. Under the counterbalance of the two
forces, the melts form a frontward vortex on the longitudinal section. On the cross-section,
the fluid near the center flows downward to the root, while the metal liquid the outside
flows centrifugally.

2. During a single pulse cycle, there is an interplay between the influences of
Marangoni stress and the droplet impingement. When the droplet transfers to the molten
pool, strong axial momentum leads to an axial inward flow in the molten pool center, and
the free surface becomes concave-shaped. Then, Marangoni stress acts to flatten the free
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surface as the pressure resistance weakens the inward flow. The temperature distribution
is insensitive to the current variation in such a short time.

3. When using a higher wire feed speed, the volume of the molten pool increases,
and root fusion is improved. With a wire feed speed larger than 9 m/min, full penetration
can be achieved. Wire feed speed shows no significant effects on the basic fluid flow
characteristics in the molten pool, and its influences on the velocity magnitude only act
near the top surface.

4. As the torch distance increases, the width of the front molten pool decreases while
the length increases, and the rear molten pool size decreases lightly. The interaction between
two molten pools is compromised, and penetration differences between two molten pools
appear. However, the torch distance has minimal effects on the fluid flow behaviors.

It should be noted that the microstructures and mechanical properties of the welded
joint are of the same importance as the intrinsic physical phenomenon during the welding
process. Readers are advised to refer to the upcoming article on the quality evaluation of
the T-joints to relate the molten pool behaviors with the final quality of the welded T-joints.
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2. Prajapati, P.; Badheka, V.J.; Mehta, K.P. Hybridization of Filler Wire in Multi-Pass Gas Metal Arc Welding of SA516 Gr70 Carbon

Steel. Mater. Manuf. Process. 2018, 33, 315–322. [CrossRef]
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