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Abstract: A dynamic, first-principles process model for a steelmaking electric arc furnace has been
developed. The model is an integrated part of an application designed for optimization during
operation of the furnace. Special care has been taken to ensure that the non-linear model is robust and
accurate enough for real-time optimization. The model is formulated in terms of state variables and
ordinary differential equations and is adapted to process data using recursive parameter estimation.
Compared to other models available in the literature, a focus of this model is to integrate auxiliary
process data in order to best predict energy efficiency and heat transfer limitations in the furnace.
Model predictions are in reasonable agreement with steel temperature and weight measurements.
Simulations indicate that industrial deployment of Model Predictive Control applications derived
from this process model can result in electrical energy consumption savings of 1–2%.

Keywords: electric arc furnace; mathematical modeling; model predictive control

1. Introduction

Electrical arc furnaces (EAF) perform a primary steelmaking process that converts
recycled steel scrap into liquid steel, which can be refined further in downstream processes.
The EAF is a refractory-lined vessel that is filled with steel scrap at the start of each new
heat. Through holes in the vessel roof, graphite electrodes (a single electrode in DC furnaces
and and three electrodes in AC furnaces) are lowered and used to conduct a high-voltage
electric arc that supplies electrical energy to melt the scrap metal. Gas burners are mounted
along the outer vessel sidewalls. During the course of a heat, the burners can operate in two
different modes: (1) by providing pure oxygen for refining, or (2) by providing a mixture
of oxygen and either liquefied natural gas (LNG) or propane to burn for extra heating. The
burners are typically operated in fuel combustion mode during the early process stages,
while refining takes place towards the end of the heat. The use of gas burners has been
shown to decrease batch time and reduce electrical power consumption. To protect the
vessel and furnace equipment from sustaining damage due to radiation from the electric
arc and heated metal, cooling water heat exchange panels are mounted along the upper
parts of the vessel’s sidewalls and the roof [1].

A heat is typically run as either a one-, two- or three-basket heat. This means the
vessel is charged with scrap metal one, two or three times during a heat, with the first
basket always being charged before the electric arc and gas burners are turned on. The
baskets can vary significantly, both in size and in the type of scrap being charged. Carbon
and additional slag-forming materials are also added to the furnace in order to achieve the
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desired slag-phase composition and foaming. At the end of each heat, the slag phase and
liquid steel are tapped separately from the furnace, and a new heat is ready to begin [1].

Numerous mathematical models have been proposed for predicting the course of the
EAF process. Recently, Hay et al. [2] presented a comprehensive review of mathematical
models proposed to date. They concluded that while there are still several development
areas, modern models can predict the main dynamic changes in distribution of species and
energy with reasonable accuracy. Furthermore, it was suggested that fundamental models
are now sufficiently fast to be used for model predictive control (MPC).

Some relevant studies [3–7] on the application of MPC for the EAF process are summa-
rized in the following sentences. The model by Bekker et al. [3] is intended for controlling
the offgas system and manipulates two variables (fan force and slip-gap) to adjust three
outputs: the relative furnace pressure, offgas temperature and offgas CO mass fraction.
Of these three variables, the relative furnace pressure was regulated, while the offgas
temperature and offgas CO mass fraction were only limited. Extending the model by
Bekker et al. [3], Oosthuizen et al. [4] presented a slag foaming model and introduced the
rate of direct reduced iron (DRI) addition as an additional manipulated input variable.
Later, Oosthuizen et al. [5] proposed a related MPC algorithm based on economic objec-
tives. The MPC proposed by MacRosty and Swartz is formulated in terms of an economic
performance objective. More specifically, the model adjusts the arc power, oxygen flow
from the burner, natural gas flow from the burner, oxygen injection, carbon injection, and
mass of the second charge to minimize the total costs of the EAF process. Shyamal [7]
proposed a shrinking horizon MPC algorithm, which was coupled with multi-rate moving
horizon estimation (MHE) for real-time model calibration. The model was directed at
real-time energy management and employed time-varying electricity prices for decision
making. Shyamal [7] also proposed a real-time dynamic advisory system, which was based
on multi-tiered optimization of the estimated states from MHE. It is worth noting that the
MPC algorithm employed by Oosthuizen et al. [4,5] is linear, while those employed by
Bekker et al. [3], MacRosty and Swartz [6] and Shyamal [7] are non-linear.

A model comprising monitoring and prediction of thermal and metallurgical heat
state evolution in the EAF has been developed by BFI [8–10]. This dynamic EAF process
model uses event driven and cyclically measured process data to calculate the temperature,
weights and analyses of the steel and slag phases in the furnace. The model considers these
phases without spatial resolution and uses ordinary differential equations in time and
algebraic equations to describe the process state. The same model kernel can be used to
monitor the current heat state from actual process data and to predict its further evolution
based on related practice data for the remaining treatment steps. In order to monitor the
thermal process state, the BFI model calculates the current energy content of the melt
based on a cyclically evaluated overall energy balance. The energy into the balance is the
sum of the electrical energy supplied and the chemical energy released by reactions. The
energy leaving the balance takes into account the losses to cooling water, offgas, radiation
and convection. The bath temperature is obtained from the difference of the current
energy content and the energy requirement for meltdown, which is in turn calculated from
the reference enthalpies (i.e., specific enthalpies at reference temperature) of the charged
materials (scrap and slag formers), where the hot heel is also taken into account.

The monitoring of the metallurgical process state in the BFI model comprises the cyclic
calculation of the weight and the composition for the metal bath and the slag phase. For
this purpose, the input by the charged materials as well the effects of the different oxidation
and reduction reactions (decarburization, dephosphorization and slagging/reduction of
metallic elements) are considered. The latter are based on appropriate first-order differential
equations where the reaction rate of an element or oxide is given by its content in steel or
slag multiplied by the oxygen or reduction agent input rate and an adapted oxidation or
reduction efficiency, respectively.

The aim of this work was to formulate a new dynamic model of an EAF that could be
used to optimize the electric power profile and electric arc operation. For that purpose, it
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goes a step beyond the mentioned state-of-the art approaches and uses a more detailed
modelling of different control volumes with liquid and solid phases. The model in this
work is non-linear, allowing for the representation of complex interrelated phenomena,
including estimation of the visibility of the electric arc and arc efficiency for melting and
heating. The MPC application of the proposed model uses a finite receding horizon, where
the duration of the heat is not specified, but the predictions horizon becomes shorter as the
process nears the completion criteria. To validate the viability of the new approach, the
model and related MPC were tested for an industrial scale EAF in stainless steel-making.
While Visuri et al. [11] presented some preliminary results, extensive results along with
accompanying interpretation and explanation are discussed in this article.

2. Materials and Methods

The process model developed for the EAF is based on physical modeling principles
such as mass and energy balances. When creating a process model, it is essential that the
model can provide the necessary information for solving the problem at hand without
becoming computationally cumbersome. In this case, the model is designed to be used as
a basis for real-time optimization. Hence, the focus of the modeling efforts is to ensure
that the model is fast enough to be recalculated multiple times in each time sample. The
model is developed as a continuous-time model that is integrated over selected time steps
using the forward Euler method for numerical integration. The numerical smoothness of
the model has been emphasized for two reasons: (1) so that computationally fast explicit
integration schemes can be applied without losing accuracy, and (2) so that optimization
problems formulated with model output can be more easily designed to be convex [12].
Further, a Kalman filter (KF) has been designed to ensure that the process model follows
the efficiency of the real process. Measurement outputs are calculated by the model and
compared with process measurements. The residuals between the model predictions
and real measurements are fed into the KF, which updates state variables and selected
parameters for estimation [13].

2.1. Control Volumes and State-Space Variables

Figure 1 shows the process state variables that are included in the model. Energy
supplied by three electrodes is used to directly heat the contents of the inner solid and
liquid masses. As a result, the inner control volume has the highest temperatures in the
model and is therefore colored in red, with bordering masses (the outer control volume,
gas) colored in orange gradients. The temperatures, total masses and masses of individual
components in the solid and liquid phases of the inner and outer steel control volumes are
modeled. The temperature, total masses and individual component masses of the solid
and liquid slag phases are also modeled. The component masses are enumerated in Table 1.
The environment is modeled by including dynamic states for the temperatures of the roof,
side panels and gas that fills the space not occupied by steel in the furnace. The roof
and side panels are both in contact with cooling water streams for which the temperature
measurement is recorded. Calculation of the cooling water temperature variation as
predicted by the model allows for real-time comparison to process measurements. The
temperature of the process offgas is recorded downstream in a duct that extracts fumes
from the furnace. The offgas temperature in the duct is modeled accordingly and also
compared to real-time data.

In order to maintain the model’s focus on the energy balance, the modeled slag masses
exchange heat and mass only with the steel and not with the furnace environment. This
assumption reduces the model complexity and allows the parameter estimation discussed
in Section 2.5 to more directly impact the states of interest, namely the solid and liquid steel.
Heat transfer between steel and the slag masses is then tuned to indirectly account for the
interactions of slag with the environment. Slag properties are taken from Jiao et al. [14],
and properties for the furnace materials are taken from Fruehan [1].
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Figure 1. State variables in the EAF process model. Twater
roof , Twater

vessel and Toffgas can be compared to
real-time process data.

Table 1. Modeled components in the steel and slag phases.

Dissolved
Component Phase(s) Reactive with O2 in Model? Equilibrium

Reaction in Model?

Fe Liquid, Solid Yes Yes

C Liquid, Solid Yes Yes

Cr Liquid, Solid Yes Yes

Si Liquid, Solid Yes Yes

Al Liquid, Solid Yes Yes

Mn Liquid, Solid No Yes

FeO Slag No Yes

SiO2 Slag No Yes

Cr2O3 Slag No Yes

Al2O3 Slag No Yes

MnO Slag No Yes

Because the focus of this model is to achieve a dynamic energy balance rather than
a detailed mass balance, not all components recorded in process data are included in the
model. The components listed in Table 1 represent the components whose non-oxide
element represent more than 2% of charged mass and whose reactions have the potential
to significantly affect the energy balance.

2.2. Chemical Reactions

Gas burners supply flows of LNG and oxygen that react to release energy:

{CH4}+ 2{O2} → 2{H2O}+ {CO2}. (1)
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Oxygen that is not fully consumed by the reaction with LNG, for example during the
refining phase, can react with CO gas and components in the liquid steel to form liquid
slag components and gases:

{CO}+ 1
2
{O2} → {CO2}

Fe +
1
2
{O2} → (FeO)

[C] +
1
2
{O2} → {CO}

[C] + {O2} → {CO2}
[Si] + {O2} → (SiO2)

2[Cr] +
3
2
{O2} → (Cr2O3)

2[Al] +
3
2
{O2} → (Al2O3).

(2)

The oxygen for the reactions in Equation (Equation (2)) is divided between the CO
gas and the liquid steel components. Oxygen is allocated to the inner and outer liquid steel
proportionally based on their masses. Within each control volume, the oxygen consumption
in Equation (Equation (2)) is proportional to the mass fractions of Fe, C, Si, Cr and Al.

The model’s explicit treatment of oxygen consumption by reactions in (Equation (2))
does not account for the activity coefficients of the different components. However, ther-
modynamic equilibrium is enforced by the inclusion of reversible reactions between the
liquid steel and slag phases. Including these equilibrium reactions in the model achieves
component mass fraction ratios that are consistent with the equilibrium constants given
in Appendix A.2, which have been adapted from Turkdogan [15]. The following steel–
slag equilibrium reactions take place, where both the forward and backward reactions
are modeled:

(FeO) + [C]↔ Fe + {CO}
(FeO) + [Mn]↔ Fe + (MnO)

(MnO) + [C]↔ [Mn] + {CO}
2(FeO) + [Si]↔ 2Fe + (SiO2)

2(MnO) + [Si]↔ 2[Mn] + (SiO2)

3(FeO) + 2[Cr]↔ 3Fe + (Cr2O3)

3(SiO2) + 4[Al]↔ 3[Si] + 2(Al2O3).

(3)

Equations (1)–(3) form a pared down version of the reactions modeled by
Logar et al. [16], with the exception of the reactions involving Al and Al2O3.

The energy released and consumed by the reactions in Equations (1)–(3) is distributed
between different masses in the furnace model. Energy released by Equation (1) is
split between the steel and the gas, where the efficiency of LNG burning to heat steel
changes during the process as described by Logar et al. [17]. All of the energy released
by Equations (2) and (3) heats the steel. The steel-heating reaction energy is first divided
between the inner and outer steel proportionally based on their volumes, as defined by
the dimensions given in Appendix A.4. The model distributes the total reaction energy to
the entire furnace contents because distributing energy based on the control volume of the
reactants produces physically unreasonable results. For example, using all of the reaction
energy to heat the inner steel when only the inner steel contains liquid phase reactants
leads to excessively high temperatures and unreasonable temperature gradients. Within
each control volume, the reaction energy is divided between the solid and liquid phases
proportionally based on mass.
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2.3. Heat Transfer

Heat transfer in the model is simplified such that all energy supplied to and lost by
the furnace contents is exchanged exclusively with the steel masses. The heating of other
furnace contents, namely slag, is then accounted for indirectly by tuning the heat transfer
between the steel and slag masses. Heat transfer between some masses are modeled
linearly, while others are accounted for only by radiation.

Convection and conduction between select masses in the furnace are modeled as linear
heat transfer:

Qij = kij Aij
(
Ti − Tj

)
. (4)

In Equation (4), the amount of heat flowing from mass i to mass j is proportional to
the temperature difference

(
Ti − Tj

)
, heat transfer coefficient kij and area for heat transfer

Aij. A comprehensive list of all masses involved in linear heat transfer along with the
corresponding coefficients and areas is available in Table 2.

Table 2. Prefactors for linear heat transfer between different masses in the furnace. The subscript letters (s, l, c, b, r, v, g)
refer to (solid steel, liquid steel, solid slag, liquid slag, roof, vessel, gas), respectively. An empty table entry indicates that
linear heat transfer between the two masses is omitted from the model.

Inner Solid Outer Solid Inner Liquid Outer Liquid Solid Slag Liquid Slag Roof Vessel Gas

Inner Solid - kss Across
ss ksl Ainner

sl ksl Across
sl kcs Ainner

cs kbs Ainner
bs - - ksg Ainner

bs

Outer Solid kss Across
ss - ksl Across

ls ksl Aouter
sl kcs Aouter

cs kbs Aouter
bs - - ksg Aouter

bs

Inner Liquid ksl Ainner
sl ksl Across

ls - kll Across
ll kcl Ainner

cl kbl Ainner
bl - - klg Ainner

bl

Outer Liquid ksl Across
sl ksl Aouter

sl kll Across
ll - kcl Aouter

cl kbl Aouter
bl - - klg Aouter

bl

Solid Slag kcs Ainner
cs kcs Aouter

cs kcl Ainner
cl kcl Aouter

cl - - - - -

Liquid Slag kbs Ainner
bs kbs Aouter

bs kbl Ainner
bl kbl Aouter

bl - - - - -

Roof - - - - - - - - kgr Ar

Vessel - - - - - - - - kgv Av

Gas ksg Ainner
bs ksg Aouter

bs klg Ainner
bl klg Aouter

bl - - kgr Ar kgv Av -

To model the area for heat transfer between solid and liquid phases within each steel
control volume, the scrap metal is assumed to linearly transition from being a single slab at
the beginning of the process (solid mass fraction xsolid ≈ 1) to small solid particles at the
end of the process (solid mass fraction xsolid ≈ 0) in a manner that resembles the melting
phenomenon described by González et al. [18]. This transition is modeled as:

rmax
particle =

(
3msolid
4ρsolidπ

)1/3

rparticle =
(

rmax
particle − rmin

particle

)
xsolid + rmin

particle.

(5)

Equation (5) means that the maximum particle size in either control volume is a
function of the instantaneous mass of solid msolid and the solid fraction, where msolid refers
either to the model states mouter

solid or minner
solid as depicted in Figure 1. The maximum particle

radius is first calculated by assuming the whole mass of the solid to be a single spherical
particle. This assumption is then corrected for by relating the actual particle radius size
to the solid mass fraction. When xsolid < 1, the mass of solid is assumed to be broken up,
leading to smaller particle radii. The radii of solid particles decrease until they reach the
model constant rmin

particle = 10 cm, at which point the particle’s mass is assumed to be purely
virtual. The area for solid–liquid heat transfer is then modeled as a function of both the
liquid mass fraction xliquid, the solid mass and rparticle:

Asl =
3xliquidmsolid

ρsolidrparticle
. (6)



Metals 2021, 11, 1587 7 of 26

The liquid fraction factor in Equation (6) accounts for the liquid coverage of the solid
particles: at small xliquid, the entire surface area of the solid particles may not be in contact
with liquid metal. Equation (6) is applied directly to calculate Ainner

sl and Aouter
sl . The area

for heat transfer between unlike phases in different control volumes is also calculated from
Equation (6), but the result is scaled by a factor of 3 to account for reduced mixing between
the control volumes and the substitution of terms depends on the specific combination of

phases being modeled (Across
sl =

xouter
liquidminner

solid

ρsolidrinner
particle

; Across
ls =

xinner
liquidmouter

solid

ρsolidrouter
particle

).

To model the area for heat transfer between like phases in different control volumes,
the total area separating the control volumes is first calculated and then scaled with the
appropriate phase fractions:

hinner =

minner
solid

ρsolid
+

minner
liquid

ρliquid

Ainner

houter =

mouter
solid

ρsolid
+

mouter
liquid

ρliquid

Aouter

Across = πdinner
hinner + houter

2
Across
(ss/ll) = xinner

(solid/liquid)x
outer
(solid/liquid)Across.

(7)

The inner and outer control volume areas and diameters are defined by the model
dimensions given in Appendix A.4.

The areas for heat transfer between steel and solid slag are calculated based on the
solid slag mass, the specific area of slag As given by Bekker et al. [19] and the appropriate
phase fractions:

A(inner/outer)
c = mc As

A(inner/outer)

Ainner + Aouter

A(inner/outer)
c(s/l) = x(inner/outer)

(solid/liquid)A(inner/outer)
c .

(8)

The areas for heat transfer between steel and liquid slag are calculated based on the
metal bath surface area because the liquid slag forms as a layer on top of the steel. These
areas are also applicable for the heat transfer between steel and the surrounding gas:

A(inner/outer)
b(s/l) = x(inner/outer)

(solid/liquid)A(inner/outer). (9)

Although the roof and side panel cooling water does not exchange heat directly with
the steel, the linear heat flux from the furnace to the cooling water must be calculated in
order to predict the outlet water temperature and compare to process data:

Q(r/v)w = k(r/v)w A(r/v)

(
T(r/v) − Tw

(r/v)

)
. (10)

Radiation between steel and the furnace surfaces is included in the model. Table 3
lists the equations for heat flux from the steel to the furnace roof and vessel Q(inner/outer)

(s/l)(r/v) .
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Table 3. Radiative heat transfer between different masses in the furnace. The subscript letters (s, l, b,
r, v) refer to (solid steel, liquid steel, liquid slag, roof, vessel), respectively.

Roof Vessel

Inner Solid σSB Ainner
bs VFinner

r(
εsTinner

s
4 − εrTr

4
) σSB Ainner

bs VFinner
v(

εsTinner
s

4 − εrTv
4
)

Outer Solid
σSB Aouter

bs VFouter
r(

εsTouter
s

4 − εrTr
4
) σSB Aouter

bs VFouter
v(

εsTouter
s

4 − εrTv
4
)

Inner Liquid
σSB Ainner

bl VFinner
r(

εlTinner
l

4 − εrTr
4
) σSB Ainner

bl VFinner
v(

εlTinner
l

4 − εrTv
4
)

Outer Liquid
σSB Aouter

bl VFouter
r(

εlTouter
l

4 − εrTr
4
) σSB Aouter

bl VFouter
v(

εlTouter
l

4 − εrTv
4
)

σSB is the Stefan–Boltzmann constant. The view factors VFinner
v and VFouter

v are calcu-
lated based on equations for disks (inner steel) and annular rings (outer steel) embedded
in the base of a cylinder to the cylinder column (vessel) [20]. Because no radiative heat
transfer from steel to gas or between steel phases is included in the model, the roof is
the only other surface that absorbs steel radiation, and the view factors between the steel
control volumes and the roof are solved for (VFinner

r = 1−VFinner
v ; VFouter

r = 1−VFouter
v ).

Radiative heat transfer from the roof to the furnace vessel is given by:

Qrv = σSB ArVFr
v

(
εrTr

4 − εvTv
4
)

. (11)

The view factor VFr
v in Equation (11) is calculated based on an equation for the base

of a cylinder (roof) to the cylinder column (vessel) [20].

2.4. Solid–Liquid Phase Change

Melting and freezing are a mass transfer mechanism between the solid and liquid
phases in the inner steel, outer steel and slag. Melting is assumed to take place gradually
as the solid temperature increases in a range centered around a defined melting/liquidus
temperature Tm. Similarly, freezing takes place as the liquid temperature decreases in the
same range. When both solid and liquid temperatures are within this range, melting and
freezing take place simultaneously with temperature-dependent rates.

The melting and freezing mechanisms are illustrated in Figure 2. During the melting
process, the solid temperature increases above the lower boundary for the phase change
region. Liquid mass begins to accumulate and the liquid temperature changes quickly from
its original virtual value. Eventually, the solid mass disappears, and additional energy
inputs heats the liquid phase. Analogously, the liquid temperature decreases below the
upper boundary for the phase change region to start the freezing process. Solid mass
accumulates and the solid temperature changes quickly from its original virtual value.
Eventually, the liquid mass disappears, and the solid mass continues to cool.

The rates of melting and freezing are given by:

rmelt = kphasems
max(0, (Tsolid + dTm)− Tm)

2dTm

rfreeze = kphaseml

max
(

0, Tm −
(

Tliquid − dTm

))
2dTm

.

(12)

The heat of fusion determines the amount of energy exchanged between the two phases:

Qmelt = ∆Hfusionrmelt

Qfreeze = −∆Hfusionrfreeze.
(13)
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The terms for the heat of melting and freezing of each phase contribute to the energy
balance equations found in Equation (A21).

Figure 2. Illustration of (left) melting and (right) freezing. Tm indicates the steel melting temperature
and dTm is a constant used for calculating the rates of melting and freezing.

2.5. Arc Efficiency

A novel model for electrical energy efficiency based on arc visibility has been imple-
mented. Observations from process data and literature indicate that arc efficiency, defined
as the percentage of supplied electrical energy that heats steel, changes during the course
of a heat [21]. While visibility of the arc is just one of many factors that affects arc effi-
ciency [21], a description of arc coverage is a natural extension of the dynamic model states
and can provide valuable insight into the current and future states of the process.

Figure 3 denotes the dimensions used by the arc efficiency model. Depending on the
electrode height and the heights of the scrap (solid), liquid and slag phases, the electric arc
length larc can be completely covered or partially exposed. The length of the electric arc larc
is a constant while the position of the arc in the furnace is determined by the height of the
electrode helectrode, which changes during the boredown and melting stages of the process.
The heights of the phases and the total bath are given by:

h(solid/liquid/slag) =
m(solid/liquid/slag)

Afurnaceρ(solid/liquid/slag)

hbath = hscrap + hliquid + hslag.
(14)

The visibility of the arc can then be written:

visarc = max
(

min
(

helectrode − hbath
larc

, 1
)

, 0
)

. (15)

The arc visibility is zero when the full length of the arc is below the cumulative height
of the bath components (scrap hscrap, liquid hliquid and slag hslag). The visibility is combined
with additional model parameters in order to write the model for arc energy losses that
includes estimation parameter kloss, which can be used to tune the model to better follow
individual heats:

xloss
arc = kloss

(
visarc + kloss

basket

)
. (16)

Using process data to calculate the electrode height helectrode is challenging because
the electrodes are consumed during the process, causing the length of the electrodes to
vary from heat to heat. Instead of using process data to determine to electrode position, the
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electrode height is modeled with an equation that captures typical boredown behavior as
a function of the total instantaneous solid and liquid mass and the total electrical energy
supplied to the furnace kWh:

helectrode = exp(−kWh/kWhbasket) +
msolid + mliquid

Afurnaceρliquid
. (17)

The density of slag ρslag is modeled as a function of the overall liquid fraction, consis-
tent with the observation that foaminess increases as meltdown progresses [22]:

ρslag = 120 + 1380 exp(−xl/xbasket). (18)

Equations (16)–(18) each include a term with the subscript basket. These terms are
model-fitting constants that are fit for the cases of one-, two- and three-basket heats.

Figure 3. Variable and static dimensions used to calculate arc visibility for the arc efficiency model.

3. Results and Discussion
3.1. Model Behavior

Figure 4 shows typical model meltdown behavior. Heats typically result in the pro-
duction of approximately 140 tonnes of liquid steel. The inner solid mass is heated directly
by the electric arc and always begins to melt first, while the outer solid mass begins to
melt before the inner solid is completely liquefied. The melting process is interrupted by
pauses in process operation and the addition of the second basket, at which point all mass
solidifies before continuing to be heated and re-melted. Each time a new heat begins, the
furnace is emptied (solid steel, liquid steel, slag and component masses are reset to initial
states, along with all temperatures except for the furnace roof and vessel).

The process begins when the power and gas burners are turned on. The electrodes are
located in the center of the furnace and supply power to the most closely situated charged
material. The arc power is therefore used to heat the inner steel control volume as described
in Appendix A.1. As a result, the inner solid temperature rises much faster than the outer
solid temperature. Heat transfer limitations described in Section 2.3 govern the rate at
which arc energy is dissipated from the inner to the outer control volume. The furnace
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surroundings are heated by energy losses from the burners and arc as well as by heat
transfer from the steel. Eventually, the inner solid becomes hot enough to melt and an inner
liquid mass begins to appear. At this point in the process, additional planned baskets will
usually be added, cooling the furnace contents. Time delays in adding baskets also cause
the furnace contents to cool undesirably. Power continues to be supplied to the furnace,
and the outer solid finally begins to melt before the inner solid has fully disappeared.

Figure 4. Steel meltdown dynamics and change in (A) solid mass and (B) liquid mass during five
consecutive two-basket heats.

Figure 5 shows model agreement with process data from 250 heats for liquid steel
temperature and weight after tapping. The model does not account for a hot heel, which can
vary from heat to heat and may explain some of the observed scatter in weight agreement.
The hot heel discrepancy may also affect the scatter in temperature agreement. Both the
weight and temperature agreement are within reasonable expectations for model behavior
and measurement accuracy.

Figure 5. Agreement of model predictions with process measurements from 250 heats for (A) liquid
steel temperature and (B) liquid steel weight after tapping. Model biases for temperature and weight
are negligible while residual standard deviations reflect scatter.
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3.2. Recursive Estimation of Arc Efficiency

In order for MPC to be effective, the underlying model describing the process needs to
be able to accurately predict the behavior of the optimization targets as the heat progresses.
For the purpose of optimization for energy savings, the model not only has to follow the
present efficiency, but must also be able to predict the future efficiency with sufficient
accuracy. The goal of developing the arc energy loss model described in Section 2.5 is
therefore to accurately predict efficiency at upcoming stages in the meltdown process such
that the power profile can be optimized accordingly. Arc power can be adjusted down and
up during low and high efficiency periods, respectively, in order to minimize energy losses
to the environment.

The arc efficiency model includes basket-dependent constants as described in
Section 2.5. In order to fit the constants kloss

basket, kWhbasket and xbasket, a precursor study
using process data was performed in which the percentage of arc power loss to the furnace
roof and vessel (xloss

arc in Equation (16)) was recursively estimated with a KF [13]. The
average result of this study for one-, two- and three- basket heats is shown in Figure 6,
where a higher arc energy loss proportion corresponds to a lower arc efficiency. The
discernible features denoted in Figure 6 allow us to propose a physical explanation that
we can later use to model arc efficiency. These features are most apparent for one-basket
heats, as multiple-basket heat results are impacted by the variable proportions of electric
energy added per basket. High arc losses at the beginning of the heats are explained by arc
exposure during boredown. As boredown continues, the arc is covered by scrap and the
loss proportion decreases until the scrap begins to melt and re-exposes the arc. The arc is,
however, only temporarily exposed, as the appearance of a liquid steel phase is followed
quickly by a liquid slag phase, and the reactions between liquid steel and slag components
lead to a larger, foamier slag phase. This foamy slag phase provides the arc with coverage
as the heat nears completion.

Efficiency model constants kloss
basket, kWhbasket and xbasket are fit to best reproduce the

average data for one-, two- and three-basket heats presented in Figure 6. The arc efficiency
model effectively reproduces the one- and two-basket heat data, but performs less well
when compared to the three-basket heat data. The discrepancy between the model and the
three-basket heat data could be due to poor statistics, as far fewer three-basket heats were
recorded in the data series.

While the basket-dependent parameters do enable the model to capture average
process behavior, there still exists a variable degree of energy losses between heats with the
same number of baskets. These differences between heats could be due to many factors
not currently accounted for by the efficiency model, including variable density of baskets,
electrode tip wear and hot heel. The strategy employed for addressing this variation is
to include scaling parameter kloss in the model for arc efficiency given by Equation (16).
Unlike the efficiency model constants, which are tuned for all heats with the same number
of planned charged baskets, the kloss term in Equation (16) is a designated parameter for
recursive estimation. Variations in efficiency from heat to heat are to be expected and
can be followed using a KF [13]. Figure 7 shows an example of the impact of recursive
estimation on the same five consecutive two-basket heats plotted in Figure 4. The ballistic
simulation uses a kloss value that best matches the average for all heats with the same
number of baskets. The ballistic simulation follows the trend in cooling water process data
well, but is prone to sometimes overpredicting heat losses and the resulting cooling water
outlet temperature. Recursive estimation of kloss fares better: after overcoming initial errors
that come from reinitializing the heat, the estimation results match both the trend and level
of cooling water temperature data.
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Figure 6. Comparison of arc efficiency estimation and model for (A) one-basket heats, (B) two-basket
heats and (C) three-basket heats. The x-axis is the normalized progress of each heat as measured
by the percentage of total electric energy added to the furnace. Low %kWhinput-results are not
meaningful as the efficiency estimation requires several samples to change from the initial guess
factor of 0.02.

Figure 7. Example of arc loss coefficient kloss estimation during five consecutive two-basket heats. (left) A constant kloss

produces model results that follow the cooling water dynamics but sometimes overpredict the outlet temperature. (right)
Estimation of kloss produces more accurate model results.
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3.3. Industrial Use and Application

Model predictive control (MPC) is an advanced method of process control that deter-
mines a sequence of process inputs that optimizes a predicted process output at specified
time points in the future [23]. Online MPC routines re-evaluate the current process state at
each successive sampling time, allowing the optimization to adapt to process disturbances.
The process control scheme referred to in this work can be more specifically described as
Non-linear model predictive control (NMPC) because the predicted response to proposed
inputs are calculated based on a non-linear process model.

MPC simulations were performed based on logged plant data from 250 heats with
the CyberneticaTM Cenit software. The goal of these MPC simulations is to optimize the
electrical power input in order to increase the overall efficiency of the arc power. In order
to adapt the process data for the MPC study, the basket contents and schedule of charges
are preserved according to logged data without the exact schedule being preemptively
revealed to the MPC. Logged power input is overwritten by the closed-loop simulation.
Because the operation of the gas burners should be in sync with the accumulated electrical
energy added to the furnace, logged LNG and oxygen flows are replaced with the gas
burner recipe used in plant operation. Logged time delays and pauses in electrical power
supply are preserved in the MPC simulations.

In the CyberneticaTM Cenit implementation of MPC, the optimization takes the form
of minimizing an objective function. Because the EAF is operated as a batch process, the
process outputs that contribute to the objective function are evaluated at the end of the
batch (the time at which the model predicts the furnace contents are fully melted). The
MPC algorithm seeks to simultaneously minimize the total batch time and maximize the
efficiency of the electric arc based on the objective function J:

J =
1
2

∆UT S ∆U + RT(Z− Zmax). (19)

The optimization criteria J is a scalar calculated from the sum of the right-hand side
terms in Equation (19). U represents manipulated variable (MV) process inputs and ∆U
is the vector of changes to manipulated inputs proposed by the optimization. Changes
to MVs are weighted by the penalties contained by the diagonal of matrix S. Z is vector
of control variables (CV) calculated by the model, and Zmax is a vector of soft maximum
constraints for each CV. The violation of each constraint is weighted linearly by vector R,
and the term is only evaluated for the largest constraint violation in the prediction horizon.

For the EAF optimization simulations, the elements of the U-vector are:

• U1−15 or MV1−15: Shift from the nominal power profile during optimization interval
(i = 1 to 15) (MW).

The MPC optimizes deviation U from a nominal power profile in order to propose a
more efficient power profile solution. The MV in this optimization problem is therefore
change to power input rather than the power input itself. The prediction horizon is
divided into 15 intervals, each of which is shifted by a separate Ui. The nominal power
profile is given by plant recipes for one-, two- and three-basket heats. The elements of the
Z-vector are:

1. Z1 or CV1: Batch time (seconds)
2. Z2 or CV2: Energy losses from the electric arc (kWh).

The elements of Zmax are in this case set to zero in order to direct the optimization to
minimize both of the CVs.

Because the arc efficiency changes as the solid scrap melts down and a slag phase
forms, as discussed in Section 3.2, adjusting the power levels over the course of the heat
can lead to a more optimal power profile. Figure 8 shows an illustration of power profile
optimization. The MPC scheme uses a finite receding horizon, meaning that the as the
heat proceeds the output power profile will have shorter remaining duration. The criteria
for ending the output power is the model prediction of full meltdown of the solid mass
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in the furnace. The example batches following the nominal and optimized input power
trajectories are predicted to end at different times, and the optimized trajectory is projected
to incur fewer energy losses directly from the arc to the environment.

Figure 8. An illustration of MPC optimization for batch time and electric arc efficiency. Historical MV
and model CV predictions are shown as solid black lines. Within the prediction horizon, optimized
MV (MPC output) and CV are shown in orange, while nominal MV and the resulting CV are shown
in blue.

Figure 9 shows the energy savings predicted by the MPC simulations for one-, two-
and three-basket heats. The average predicted savings are:

• One-basket heats: 15.75 kWh/tonne per heat (2315 kWh per heat, based on an average
charged weight of 147 tonne);

• Two-basket heats: 13.32 kWh/tonne per heat (1945 kWh per heat, based on an average
charged weight of 146 tonne);

• Three-basket heats: 6.78 kWh/tonne per heat (983 kWh per heat, based on an average
charged weight of 145 tonne).

Figure 9. Change in specific energy consumption (SEC) due to MPC for (A) one-basket heats, (B) two-basket heats and
(C) three-basket heats. ∆SEC is calculated by subtracting the logged SEC up to the point where the model predicts steel
meltdown from the MPC simulation result.
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These results only account for the process energy savings up to the point when the
model predicts that all the scrap metal has melted. This means that if the model predicts
that the logged power profiles continue to heat the furnace after all the scrap metal is
liquefied, which happens frequently, the additional energy savings beyond the point of
full meltdown are neglected. While the model predicts that accounting for turning off
the furnace earlier can cut down energy usage per heat by up to 15 kWh/tonne, these
additional savings are not included in the average predicted savings listed above or in the
data shown in Figures 9 and 10. The purpose of this savings criteria is to evaluate the MPC
scheme’s potential for efficiency improvements independently from the model’s accuracy
of end-point prediction.

Figure 10. Logged specific energy consumption (SEC) up to the point of melting vs. change in SEC due to MPC for
(A) one-basket heats, (B) two-basket heats and (C) three-basket heats. ∆SEC is calculated as described in Figure 9.

While the MPC simulations predict the largest energy savings for one-basket heats, the
overall findings for one-, two- and three-basket heats are similar. Within these subgroups,
the electrical energy savings are not uniform for all heats: Figure 10 shows that the MPC
savings (∆SEC) are correlated with the magnitude of the logged specific electrical energy
consumption (SEC). As SEC approaches approximate threshold values of 400 kWh/tonne
(one-basket heats) and 390 kWh/tonne (two- and three-basket heats) ∆SEC steadily de-
creases, potentially indicating that the MPC is not able to save significant amounts of
energy beyond a given lower bound.

The decreased energy demand for melting the furnace contents while following MPC
recommendations raises the question of whether the the optimized power profile signif-
icantly affects the endpoint state of the liquid steel. The process and model dynamics
are such that fully melting the scrap metal within the time frame of a standard batch
requires heating the liquid steel well above the melting temperature. In practice, temper-
ature measurements are made only after tapping, making a temperature target difficult
to verify, and the assumption that typical meltdown temperatures are high enough for
downstream processing has been shown to be sufficient. Because the optimization scheme
uses a meltdown criteria rather than an explicit temperature target, the energy-saving
recommendations could conceivably result in lower temperatures that are not optimal for
further processing and refining of the steel. To investigate this question, model predictions
of liquid steel temperatures from optimized and logged power profile simulations are
examined and compiled in Table 4. Two process data-derived temperatures are presented:
TMelt

Log is the liquid steel temperature at the moment the model predicts the steel is melted,

while TFull
Log is the liquid steel temperature when the logged power is shut off. Because the

MPC simulations shut off power once all the steel has melted, TMelt
Log is the most appropriate

quantity for comparison to TMPC.
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Table 4. Temperature of fully-liquefied steel prior to tapping as predicted by the model when follow-
ing logged process data and MPC simulations. Both means and standard deviations are presented.

TFull
Log TMelt

Log TMPC

1-Basket 1688.5 ◦C ± 27.8 ◦C 1684.5 ◦C ± 27.9 ◦C 1693.0 ◦C ± 13.0 ◦C

2-Basket 1693.3 ◦C ± 21.6 ◦C 1687.6 ◦C ± 23.4 ◦C 1703.7 ◦C ± 17.1 ◦C

3-Basket 1717.9 ◦C ± 2.1 ◦C 1717.2 ◦C ± 2.2 ◦C 1702.5 ◦C ± 0.9 ◦C

The results presented in Table 4 show that, at the point of meltdown, the liquid steel
actually reaches higher temperatures in the MPC simulations than in the simulations with
logged data. These results point to an interesting finding: according to the model, the
optimized power profile leads not only to lower process energy demand due to reduced
heating of the environment directly by the electric arc, but also to more efficient heating of
the steel by the energy that is able to be absorbed. MPC meltdown temperatures are also
higher than predicted temperatures at the point of logged power shut off, indicating that
following the optimized profile should not cause the liquid steel to be too cold at tapping
such as to cause problems for downstream plant processes.

4. Conclusions

The EAF is a challenging process to model and optimize from a precision point of
view: there are significant uncertainties associated with materials and electrodes that can
be difficult to resolve using an automated approach. This work aimed at formulating a
first-principles mathematical model in terms of ordinary differential equations for the state
variables of the EAF that can be adapted to process data using recursive parameter esti-
mation. The resulting model described in this article is of manageable size yet sufficiently
detailed and adaptable to be useful for process optimization.

An MPC-based optimization application based on this model has been running online
using data for a 140 tonne EAF furnace since August 2020, demonstrating that the model
is fast enough for industrial deployment. The predicted metal temperatures and weights
were found to be in reasonably good agreement with the measured values. Results indicate
that MPC-based process operation leads to both a reduction in total energy usage as well
as more efficient dissipation and heating of the steel by the consumed energy.

While several MPC studies for EAF processes have been reported in the literature [3,6],
this study is, to the best of the authors’ knowledge, the first where the efficiency of the
power input and electric arc has been the target for MPC optimization. The framework
for optimizing power input with MPC opens up the possibility of incorporating a more
complex model of the electrical power in order to achieve more effective and sensitive
optimization of arc efficiency [21]. Additional optimization scenarios can be considered in
further work: an economic optimization of burner vs. electrical power can be implemented
using the same framework, and new data and dynamic states can be added to the model
in order to optimize for operational costs such as equipment life cycle and electrode
consumption [24].
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Abbreviations
The following abbreviations are used in this manuscript:

EAF Electric Arc Furnace
MPC Model Predictive Control
NMPC Non-linear Model Predictive Control
SEC Specific Energy Consumption
KF Kalman Filter
LNG Liquefied Natural Gas
VF View Factor
CV Controlled Variable
MV Manipulated Variable
DRI Direct Reduced Iron

Nomenclature
The nomenclature for constants and variables used in the main text and appendices of this manuscript
are listed:

Aij Area for heat transfer between mass i and mass j m2

di Diameter of i m
d
dt Derivative operator
εj Radiation emissivity of surface j
Fi Molar rate of change of component i mol

s
Cp, i Heat capacity of i J

kg K
hk Height of mass k m
Hi Enthalpy of component i J

kg
kij Heat transfer coefficient between type i and type j W

m2K
mj

i Mass of component i in phase j kg
Mi Molar mass of component i g

mol
Qij Heat flowing from mass i to mass j W
Pk Power from source k MW
pi Pressure of phase i Pa
ri Reaction rate of reaction i kg

s
rparticle Radius of particle m
ρi Density of i kg

m3

σSB Stefan-Boltzmann constant for radiation 5.670374× 10−8 W
m2K4

t Time s
Tj Temperature of phase j K

vi
Stoichiometric coefficient of component i in a chemical
reaction

Vk Volume of mass k m3
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Wi Mass rate of change of component i kg
s

xj
i Mass fraction of component i in phase j

xj Area fraction of control volume j
subscript: b Liquid slag
subscript: c Solid slag
subscript: g Gas
subscript: l Liquid steel
subscript: r Roof
subscript: s Solid steel
subscript: v Vessel

Appendix A. Extended Model Details

Appendix A.1. Electrical and Chemical Power

The power input supplied by the electric arc Parc is a logged process input. The arc
power is partitioned between several model masses:

Pgas
arc = xgas

arc Parc

Ploss
arc = xloss

arc Parc

Psteel
arc =

(
1− xgas

arc − xloss
arc

)
Parc

(A1)

The calculation and estimation of xloss
arc is described in Section 2.5, while xgas

arc is a model
constant for the fraction of arc power used to heat the gas phase. Ploss

arc is used to heat two
pieces of furnace equipment: the furnace vessel and roof. The further partitioning of Ploss

arc
is determined by model constant xloss

v :

Pvessel
arc = xloss

vesselP
loss
arc

Proof
arc =

(
1− xloss

vessel

)
Ploss

arc
(A2)

The molar LNG flow rate into the furnace FLNG is given by conversion from logged
gas flow rates according to standard temperature and pressure (STP; T = 0 ◦C, p = 100 kPa).
The molar flow rate of oxygen FO2 is similarly calculated by conversion from logged
standard flow rates. Given that enough oxygen is present, the LNG is assumed to combust
completely, allowing us to write an expression for the LNG power PLNG:

PLNG =
(

1.0× 10−3
)

min
(

FLNG,
FO2

2

)
MLNGHLNG (A3)

MLNG and HLNG refer to the the molar mass and enthalpy of combustion for the
specified composition of LNG. PLNG heats both the steel and gas phases, with the gas phase
being heated to a greater extend as meltdown progresses:

xgas
LNG = 0.25

(
tanh

(
5xoverall

liquid − 2.5
)
+ 2
)

Pgas
LNG = xgas

LNGPLNG

Psteel
LNG =

(
1− xgas

LNG

)
PLNG

(A4)

Oxygen consumption by the combustion of LNG can be calculated:

FLNG
O2

= 2×min
(

FLNG,
FO2

2

)
(A5)
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Any oxygen not consumed by LNG combustion remains available for further chemical
reactions. Oxygen not consumed by LNG can be used for combustion with CO:

FCO
O2

= min
(

FO2 − FLNG
O2

,
kCOnCO

2

)
(A6)

nCO denotes the accumulated moles of CO from refining reactions present in the
furnace and kCO refers to a model limiting rate constant for the CO combustion reaction.
The power released by CO combustion is given:

pCO = FCO
O2

HCO (A7)

HCO refers to the enthalpy of combustion for CO. The amount of oxygen available for
refining reactions can be calculated based on the mass of liquid steel species:

minner
refine =

inner

∑
i = Fe, C, Si, Cr

minner
i, liquid

mouter
refine =

outer

∑
i = Fe, C, Si, Cr

mouter
i, liquid

Frefine
O2

= max
(

FO2 − FLNG
O2
− FCO

O2
, 0
)

(A8)

mi, liquid denotes the mass of species i within a given control volume and krefine refers
to a model limiting rate constant of refining for the liquid steel components. Frefine

O2
is

partitioned to the inner and outer control volumes and used for the reactions described in
Appendix A.2:

Frefine, inner
O2

=
minner

refine

minner
refine + mouter

refine
Frefine

O2

Frefine, outer
O2

=
mouter

refine

minner
refine + mouter

refine
Frefine

O2

(A9)

The power from all refining reactions is calculated from the sum of reactions described
in Appendix A.2:

Prefine = ∑
roxygen

(
F

roxygen
O2, inner + F

roxygen
O2, outer

)
H

roxygen
O2

+ ∑
requilibrium

(
F

requilibrium
XO, inner + F

requilibrium
XO, outer

)
H

requilibrium
XO (A10)

HO2 refers to the enthalpy of each refining reaction involving oxygen and HXO refers
to the enthalpy of each steel-slag equilibrium reaction per mol of XO, where XO is the oxide
species listed for each reaction in Tables A3 and A4.

The total chemical power to the steel is given:

Pchemical = Psteel
LNG + Prefine + PCO (A11)

The total steel-heating power is partitioned between the inner and outer control
volumes, with all of Psteel

arc being used to heat the inner steel:

Pinner = xinner

(
Psteel

LNG + Prefine + PCO

)
+ Psteel

arc

Pouter = xouter

(
Psteel

LNG + Prefine + PCO

) (A12)

xinner and xouter are the area fractions of the inner and outer control volumes, respec-
tively, as calculated from the model dimensions given in Appendix A.4. The total power to
the gas phase is given:

Pgas = Pgas
LNG + Pgas

arc (A13)
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Appendix A.2. Reaction Kinetics

The rates of oxygen consumption by the different reactions listed in Equation (2)
depend on the species mass fractions. The rates of consumption and production of the other
species involved can be calculated from the oxygen consumption rate. The consumption
and production rates of different species are given in Table A1 and hold for both the inner
and outer control volumes, where the steel mass fractions and oxygen available for refining
can vary.

Table A1. Oxygen consumption and species rate of change for each steel reaction with oxygen. F
denotes molar rates of change, v denotes stoichiometric coefficients and x denotes mass fractions.

Reaction O2 Consumption Rate Species i Rate of Change

Fe + 1
2{O2} → (FeO) FFe→FeO

O2
= xsteel

Fe Frefine
O2

FFe→FeO
i =

vFe→FeO
i

vFe→FeO
O2

FFe→FeO
O2

[C] + 1
2{O2} → {CO} FC→CO

O2
= 1

2 xsteel
C Frefine

O2
FC→CO

i =
vC→CO

i
vC→CO

O2

FC→CO
O2

[C] + {O2} → {CO2} FC→CO2
O2

= 1
2 xsteel

C Frefine
O2

FC→CO2
i =

vC→CO2
i

vC→CO2
O2

FC→CO2
O2

[Si] + {O2} → (SiO2) FSi→SiO2
O2

= xsteel
Si Frefine

O2
FSi→SiO2

i =
vSi→SiO2

i

vSi→SiO2
O2

FSi→SiO2
O2

2[Cr] + 3
2{O2} → (Cr2O3) FCr→Cr2O3

O2
= xsteel

Cr Frefine
O2

FCr→Cr2O3
i =

vCr→Cr2O3
i

vCr→Cr2O3
O2

FCr→Cr2O3
O2

2[Al] + 3
2{O2} → (Al2O3) FAl→Al2O3

O2
= xsteel

Al Frefine
O2

FAl→Al2O3
i =

vAl→Al2O3
i

vAl→Al2O3
O2

FAl→Al2O3
O2

The equilibrium reaction constants keq and dependence on species i mass fractions

xsteel
i and xslag

i are adapted from Turkdogan [15] and are given in Tables A2–A4. The rates
of change of different species are given in Table A5 and hold for both the inner and outer
control volumes, where the steel mass fractions and temperatures can vary.

The reference states for all species and the equilibrium constants in Table A2 are the
standard state of 25 ◦C and 1 atm.

Table A2. Equilibrium constants for reactions. Tl denotes liquid phase temperatures.

Reaction Equilibrium Constant

(FeO) + [C]↔ Fe + {CO} log10

(
KFeO↔CO

eq

)
= −5730

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 5.096

(FeO) + [Mn]↔ Fe + (MnO) log10

(
KFeO↔MnO

eq

)
= 2

(MnO) + [C]↔ [Mn] + {CO} log10

(
KMnO↔CO

eq

)
= −13182

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 8.574

2(FeO) + [Si]↔ 2Fe + (SiO2) log10

(
KFeO↔SiO2

eq

)
= 1510

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 1.72

2(MnO) + [Si]↔ 2[Mn] + (SiO2) log10

(
KMnO↔SiO2

eq

)
= 1510

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 1.27

3(FeO) + 2[Cr]↔ 3Fe + (Cr2O3) log10

(
KFeO↔Cr2O3

eq

)
= 0.3

3(SiO2) + 4[Al]↔ 3[Si] + 2(Al2O3) log10

(
KSiO2↔Al2O3

eq

)
= 17065

1
2

(
Tsteel

l +Tslag
l

)
+273.15

− 14.465
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Table A3. Forward reaction rates for equilibrium reactions. x denotes mass fractions and kf refers to
kinetic model constants for each reaction.

Reaction Forward Reaction Rate Units

(FeO) + [C]↔ Fe + (CO) FFeO↔CO
f =

(
0.11 · 104)KFeO↔CO

f xslag
FeOxsteel

C
mol FeO

s

(FeO) + [Mn]↔ Fe + (MnO) FFeO↔MnO
f = 104 · KFeO↔MnO

f xslag
FeOxsteel

Mn
mol FeO

s

(MnO) + [C]↔ [Mn] + {CO} FMnO↔CO
f =

(
0.017 · 104)KMnO↔CO

f xslag
MnOxsteel

C
mol MnO

s

2(FeO) + [Si]↔ 2Fe + (SiO2) FFeO↔SiO2
f =

(
2 · 104)KFeO↔SiO2

f

(
xslag

FeO

)2
xsteel

Si
mol FeO

s

2(MnO) + [Si]↔ 2[Mn] + (SiO2) FMnO↔SiO2
f =

(
2 · 104)KMnO↔SiO2

f

(
xslag

MnO

)2
xsteel

Si
mol MnO

s

3(FeO) + 2[Cr]↔ 3Fe + (Cr2O3) FFeO↔Cr2O3
f =

(
3 · 104)KFeO↔Cr2O3

f xslag
FeOxsteel

Cr
mol FeO

s

3(SiO2) + 4[Al]↔ 3[Si] + 2(Al2O3) FSiO2↔Al2O3
f =

(
1.5 · 104)KSiO2↔Al2O3

f xslag
SiO2

xsteel
Al

mol SiO2
s

Table A4. Backward reaction rates for equilibrium reactions. x denotes mass fractions, kf refers
to kinetic model constants for each reaction, pCO is the partial pressure of CO and M denotes
molar masses.

Reaction Backward Reaction Rate Units

(FeO) + [C]↔ Fe + {CO} FFeO↔CO
b =

KFeO↔CO
f

KFeO↔CO
eq

pCO
mol Fe (FeO)

s

(FeO) + [Mn]↔ Fe + (MnO) FFeO↔MnO
b = 102 · KFeO↔MnO

f
KFeO↔MnO

eq
xslag

MnO
mol Fe (FeO)

s

(MnO) + [C]↔ [Mn] + {CO} FMnO↔CO
b = 102 · KMnO↔CO

f
KMnO↔CO

eq
pCOxsteel

Mn
mol Mn (MnO)

s

2(FeO) + [Si]↔ 2Fe + (SiO2) FFeO↔SiO2
b =

(
2 · 102) K

FeO↔SiO2
f

K
FeO↔SiO2
eq

xslag
SiO2

mol Fe (FeO)
s

2(MnO) + [Si]↔ 2[Mn] + (SiO2) FMnO↔SiO2
b =

(
2 · 104) K

MnO↔SiO2
f

K
MnO↔SiO2
eq

(
xsteel

Mn
)2xslag

SiO2
mol Mn (MnO)

s

3(FeO) + 2[Cr]↔ 3Fe + (Cr2O3) FFeO↔SiO2
b =

(
6·102 ·MCr

MCr2O3

)
K

FeO↔Cr2O3
f

K
FeO↔Cr2O3
eq

xslag
Cr2O3

mol Fe (FeO)
s

3(SiO2) + 4[Al]↔ 3[Si] + 2(Al2O3) FSiO2↔Al2O3
b =

(
1.5 · 104) K

SiO2↔Al2O3
f

K
SiO2↔Al2O3
eq

xsteel
Si xslag

Al2O3
mol Si (SiO2)

s

Table A5. Species rates of change for each steel–slag equilibrium reaction.

Reaction Species i Rate of Change

(FeO) + [C]↔ Fe + {CO} FFeO↔CO
i =

vFeO↔CO
i

vFeO↔CO
FeO

(
FFeO↔CO

f − FFeO↔CO
b

)
(FeO) + [Mn]↔ Fe + (MnO) FFeO↔MnO

i =
vFeO↔MnO

i
vFeO↔MnO

FeO

(
FFeO↔MnO

f − FFeO↔MnO
b

)
(MnO) + [C]↔ [Mn] + {CO} FMnO↔CO

i =
vMnO↔CO

i
vMnO↔CO

MnO

(
FMnO↔CO

f − FMnO↔CO
b

)
2(FeO) + [Si]↔ 2Fe + (SiO2) FFeO↔SiO2

i =
vFeO↔SiO2

i

vFeO↔SiO2
FeO

(
FFeO↔SiO2

f − FFeO↔SiO2
b

)
2(MnO) + [Si]↔ 2[Mn] + (SiO2) FMnO↔SiO2

i =
vMnO↔SiO2

i

vMnO↔SiO2
MnO

(
FMnO↔SiO2

f − FMnO↔SiO2
b

)
3(FeO) + 2[Cr]↔ 3Fe + (Cr2O3) FFeO↔Cr2O3

i =
vFeO↔Cr2

i

vFeO↔Cr2
FeO O3

(
FFeO↔Cr2O3

f − FFeO↔Cr2O3
b

)

The molar rates of change due to reactions Fi

(
mol

s

)
can be combined with the molar

mass of each component Mi
( g

mol
)

to calculate the total mass rates of change of all dynamic

state components Wi

(
kg
s

)
:
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Wi =
(

1.0× 10−3
)

Mi

(
∑

oxygen
Foxygen

i + ∑
equilibrium

Fequilibrium
i

)
(A14)

Appendix A.3. Overall Heat and Mass Balances

Many of the heat and mass balances refer to the area fractions xinner and xouter:

xinner =

(
rinner

rfurnace

)2

xouter = 1− xinner

(A15)

Depending on the sub- and super-scripts, x(inner/outer)
(solid/liquid) refers to the solid (s) or liquid

(l) mass fractions in the inner or outer control volume. Similarly, x(inner/outer)
i, (solid/liquid)

In the following overall steel mass balances, uscrap refers to scrap metal input to
the furnace.

dminner
solid

dt
= xinneruscrap − rinner

melt + rinner
freeze

dmouter
solid

dt
= xouteruscrap − router

melt + rinner
freeze

dminner
liquid

dt
= rinner

melt − rinner
freeze + ∑

i, steel
Winner

i, steel

dmouter
liquid

dt
= router

melt − router
freeze + ∑

i, steel
Wouter

i, steel

(A16)

In the following overall slag mass balances, uslag refers to slag input to the furnace.

dmslag
solid

dt
= uslag − rslag

melt + rslag
freeze

dmslag
liquid

dt
= rslag

melt − rslag
freeze + ∑

i, slag

(
Winner

i, slag + Wouter
i, slag

) (A17)

The species i fraction of the charged scrap xscrap
i enters the scrap component balances:

dminner
i, solid

dt
= xinneruscrapxscrap

i − rinner
melt xinner

i, solid + rinner
freezexinner

i, liquid

dmouter
i, solid

dt
= xouteruscrapxscrap

i − router
melt xouter

i, solid + router
freezexouter

i, liquid

dminner
i, liquid

dt
= rinner

melt xinner
i, solid − rinner

freezexinner
i, liquid + ∑

i, steel
Winner

i, steel

dmouter
i, liquid

dt
= router

melt xouter
i, solid − router

freezexouter
i, liquid + ∑

i, steel
Wouter

i, steel

(A18)

The species i fraction of the charged slag xslag
i enters the slag component balances:

dmslag
i, solid

dt
= uslagxslag

i − rslag
meltx

slag
i, solid + rslag

freezexslag
i, liquid

dmslag
i, liquid

dt
= rslag

meltx
slag
i, solid − rslag

freezexslag
i, liquid + ∑

islag

Wislag

(A19)
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The mol balance of CO gas is given:

dnCO

dt
= ∑

equilibrium
Fequilibrium

CO − 2FCO
O2

(A20)

The temperature balances of steel phases:

dTinner
solid
dt

=

xinner
solid Pinner −Qinner-inner

solid–liquid −Qinner-outer
solid–solid −Qinner-outer

solid–liquid −Qinner
solid-roof −Qinner

solid-vessel −Qinner
solid-gas

−Qinner-slag
solid–solid −Qinner-slag

solid–liquid + Qinner
freeze −Qinner

melt − Cp,solidxinneruscrap
(
Tinner

solid − Tambient
)

Cp, solidminner
solid

dTouter
solid
dt

=

xouter
solid Pouter −Qouter-outer

solid–liquid + Qinner-outer
solid–solid −Qinner-outer

liquid–solid −Qouter
solid-roof −Qouter

solid-vessel −Qouter
solid-gas

−Qouter-slag
solid–solid −Qouter-slag

solid–liquid + Qouter
freeze −Qouter

melt − Cp,solidxouteruscrap
(
Touter

solid − Tambient
)

Cp, solidmouter
solid

dTinner
liquid

dt
=

xinner
liquidPinner + Qinner-inner

solid–liquid −Qinner-outer
liquid–solid −Qinner-outer

liquid–liquid −Qinner
liquid-roof −Qinner

liquid-vessel −Qinner
liquid-gas

−Qinner-slag
liquid–solid −Qinner-slag

liquid–liquid + Qinner
freeze −Qinner

melt

Cp, liquidminner
liquid

dTouter
liquid

dt
=

xouter
liquidPouter + Qouter-outer

solid–liquid + Qinner-outer
solid–liquid + Qinner-outer

liquid–liquid −Qouter
liquid-roof −Qouter

liquid-vessel −Qouter
liquid-gas

−Qouter-slag
liquid–solid −Qouter-slag

liquid–liquid + Qouter
freeze −Qouter

melt

Cp, liquidmouter
liquid

(A21)

The temperature balances of slag phases:

dTslag
solid
dt

=

Qinner-slag
solid–solid + Qouter-slag

solid–solid + Qinner-slag
liquid–solid + Qouter-slag

liquid–solid

+ Qslag
freeze −Qslag

melt − Cp, slaguslag

(
Tslag

solid − Tambient

)
Cp, slagmslag

solid

dTslag
liquid

dt
=

Qinner-slag
solid–liquid + Qouter-slag

solid–liquid + Qinner-slag
liquid–liquid + Qouter-slag

liquid–liquid

+ Qslag
freeze −Qslag

melt

Cp, slagmslag
liquid

(A22)

The temperature balances of gas phases:

dTgas

dt
=

Pgas + Qinner
solid-gas + Qouter

solid-gas + Qinner
liquid-gas + Qouter

liquid-gas −Qgas-roof −Qgas-vessel

− FLNGCp, LNG
(
Tgas − Tambient

)
− FO2 Cp, O2

(
Tgas − Tambient

)
Cp, gasngas

dToffgas

dt
=

FoffgasCp, gas

(
Tgas − Toffgas

)
+ 0.05FairCp, air

(
Tambient − Toffgas

)
2Cp, gasngas

(A23)

ngas is calculated from the ideal gas law using standard temperature and pressure
(STP) conditions (T = 0 ◦C, p = 100 kPa) and the furnace volume given by the dimensions in
Appendix A.4. Cp, gas is calculated from the LNG and oxygen flow rates and heat capacities:

Cp, gas =
FLNGCp, LNG + FO2 Cp, O2

FLNG + FO2

(A24)

The temperature balances of furnace equipment:
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dTroof
dt

=

Proof
arc + Qinner

solid-roof + Qouter
solid-roof + Qinner

liquid-roof + Qouter
liquid-roof

+ Qgas-roof −Qroof-water −Qroof-vessel

Cp, roofmroof

dTvessel
dt

=

Pvessel
arc + Qinner

solid-vessel + Qouter
solid-vessel + Qinner

liquid-vessel + Qouter
liquid-vessel

+ Qgas-vessel −Qvessel-water + Qroof-vessel

Cp, vesselmvessel

(A25)

Appendix A.4. Model Constants and Dimensions

Table A6. Model constants and dimensions. An empty entry in the Units column indicates a unitless quantity.

Constant Description Value Units

dfurnace Furnace diameter 8.1 m

dinner Inner control volume diameter 4.65 m

hfurnace Furnace height 5.2 m

hpanel Cooling water panel height 2.89 m

Cp, solid Heat capacity of solid steel 39 J
mol K

Cp, liquid Heat capacity of liquid steel 46 J
mol K

Cp, slag Heat capacity of slag 50 J
mol K

ρsolid Density of solid steel 2000 kg
m3

ρliquid Density of liquid steel 7000 kg
m3

kphase Phase change constant 0.005 1
s

kCO Limiting constant for CO combustion 0.25 1
s

xgas
arc Fraction of arc power used to heat gas 0.05

xloss
vessel Fraction of arc losses used to heat vessel 0.3

kss Heat transfer coefficient: solid steel–solid steel 400 W
m2K

ksl Heat transfer coefficient: solid steel–liquid steel 12,000 W
m2K

kll Heat transfer coefficient: liquid steel–liquid steel 60,000 W
m2K

kcs Heat transfer coefficient: solid slag–solid steel 2000 W
m2K

kcl Heat transfer coefficient: solid slag–liquid steel 2000 W
m2K

kbs Heat transfer coefficient: liquid slag–solid steel 5 W
m2K

kbl Heat transfer coefficient: liquid slag–liquid steel 5 W
m2K

ksg Heat transfer coefficient: solid steel–gas 20 W
m2K

klg Heat transfer coefficient: liquid steel–gas 10 W
m2K

kgr Heat transfer coefficient: gas–roof 25 W
m2K

kgv Heat transfer coefficient: gas–vessel 25 W
m2K

krw Heat transfer coefficient: roof–water 300 W
m2K

kvw Heat transfer coefficient: vessel–water 300 W
m2K

εs Emissivity of solid steel 0.4

εl Emissivity of liquid steel 0.6

εr Emissivity of furnace roof 0.7

εv Emissivity of side panels 0.5
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