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Abstract: The poor thermoplastic formability of reactive Zr-based bulk metallic glass becomes
the main limiting factor for replacing the noble-metal-based and Be-rich bulk metallic glasses in
nanostructure fabrication. In our work, a (Zr50.7Cu28Ni9Al12.3)98.5Y1.5 bulk metallic glass with good
thermoplastic formability has been developed by alloying, where Y addition enlarges the processing
window and decreases the viscous resistance of supercooled liquid caused by the high free volume
density. The prepared Zr-Cu-Ni-Al-Y bulk metallic glass nanostructure retains the amorphous
characteristic and generates the complex oxidization products in the surface layer. The enhanced
hydrophilicity of the as-embossed surface follows a Wenzel-impregnating wetting regime, and it can
be attributed to the large roughness coefficient induced by the capillary effect. This study provides a
low-cost and environmentally friendly bulk metallic glass system to manufacture the nanostructure
with a broad prospect in the field of electrocatalysis.

Keywords: Zr-Cu-Ni-Al-Y bulk metallic glass; nanostructure array; hot embossing microstruc-
ture; wettability

1. Introduction

Bulk metallic glasses (BMGs) are considered potential catalysts because of their good
mechanical properties, outstanding stability in corrosive media and relatively high reaction
activity that results from their unique metastable microstructures [1–4]. Thus, BMGs can
play an important role in the development of energy conversion and storage technol-
ogy [5,6]. The fabrication of BMG components with nanostructures, which can significantly
increase the high specific surface area, has attracted considerable interest in the fields of
fuel cells and electrochemistry to improve catalytic performance [7,8]. At present, the BMG
systems usually utilized in the fabrication of nanostructures and electrocatalysis research
primarily consist of Pt-based and Pd-based BMGs because of their outstanding thermoplas-
tic formability and oxidation resistance [9–12]. Some studies on low-cost BMG systems,
including Zr-Ti-Cu-Be and Ti-Zr-Be-Fe [13,14], have also been performed to replace noble
metal-based BMGs in preparing nanostructures. However, expensive raw materials and
mass Be addition, which may cause serious environmental threats, hinder the practical
application of the aforementioned BMG systems. Therefore, developing new economical
and environmentally friendly BMGs and the corresponding thermoplastic forming (TPF)
method is necessary to achieve the fabrication of the BMG nanostructure. To date, few
reports are found on hot embossing of reactive BMG (including Zr-Cu-Al, Zr-Cu-Ni-Al or
Zr-Co-Al BMG systems) nanostructure arrays with a characteristic size of less than 1 µm.

The main challenges in designing the BMG system suitable for nanostructure fabri-
cation are to enlarge the TPF window, decrease the viscous resistance and optimize the
interfacial states of supercooled liquid [15,16]. Many researchers have pointed out that Y
addition can not only improve the thermal stability of Zr-based BMG and decrease the
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viscosity of supercooled liquid but also contribute to the thin oxide layer on the speci-
men surface [17–19]. Following this strategy, Zr-Cu-Ni-Al-Y BMG systems can meet the
requirements concerning the TPF of nanostructures and are expected to become promising
candidates as future electrocatalysis materials. In this paper, the high-aspect-ratio nanopil-
lar array on (Zr50.7Cu28Ni9Al12.3)98.5Y1.5 (ZrY1.5) BMG was prepared under a low-vacuum
condition, suggesting that the developed Zr-based BMG with excellent thermoplastic
formability can support the need for nanostructure fabrication when reducing the material
cost and environmental threat. The phase composition and structural characteristics of the
nanopillars, as the main factors determining the catalytic efficiency, were retained after the
TPF. In addition, the good wettability of BMG specimens with nanostructure array was
obtained, thereby confirming their potential application in the electrocatalytic field.

2. Materials and Methods

The alloy ingots with nominal compositions of Zr50.7Cu28Ni.9Al12.3 (ZrY0) and (Zr50.7
Cu28Ni9Al12.3)98.5Y1.5 (ZrY1.5) were prepared by arc melting high-purity constituents
(>99.9 wt.%) under Ti-gettered high-purity argon atmosphere. All ingots were melted
and flipped at least four times to ensure compositional homogeneity and then cast into
a copper mold to obtain BMG rods with diameters of 5 mm, as shown in Figure 1a. The
1 mm thick specimens cut from these BMG rods were polished and stacked on the top of
the anodized aluminum oxide (AAO) templates with 200–300 nm diameter pores. Sub-
sequently, the preforms were placed into the mold cavity and pressed under a constant
load of 10 kN. The temperature path of the TPF was set at 20 K/min under a low-vacuum
condition (approximately 100–150 Pa) until the temperature reached the set value; see
Figure 1b. Afterward, the as-embossed preforms were moved into 3 mol/L KOH solution
at 80 °C to dissolve the AAO templates, as shown in Figure 1c.
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melting and copper mold suction casting; (b) hot embossing of nanostructure on the surface of BMG
specimens; (c) demolding process of the as-embossed BMG specimens.
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The amorphous nature of BMG specimens before and after TPF was tested using
X-ray diffraction (XRD, Rigaku MiniFlex600, Tokyo, Japan) with Cu-Kα radiation. The
thermodynamic properties of these two BMGs, such as characteristic temperature and
relaxation enthalpy, were studied by differential scanning calorimetry (DSC, Netzsch 404
F3, NETZSCH-Gerätebau GmbH, Selb, Germany) at continuous heating rates of 10 K/min
under a flow of high purity argon. Their viscosities as a function of temperature in
the supercooled liquid region were measured by using a thermal-mechanical analyzer
(TMA, Netzsch Q400EM, NETZSCH-Gerätebau GmbH, Selb, Germany) with a heating
rate of 10 K/min and a static force of 1.2 N. The oxidation experiments were performed
by a thermal gravimetric analyzer (TGA, Mettler-Toledo DSC3+, Columbus, OH, USA)
in dry air (>99.99 vol.% pure). The surface morphology of the as-embossed specimen
was observed by field-emission scanning electron microscopy (FEI SEM, Quanta450FEG,
Hillsboro, OR, USA). Furthermore, the microstructure of the nanopillar was examined
using a transmission electron microscope (TEM, Tecnai F30, FEI, Hillsboro, OR, USA). The
water contact angle measured via an optical-contact angle-measuring device based on video
(DSA 100S, KRÜSS GmbH, Hamburg, Germany) was used to estimate the wettability of the
smooth and as-embossed ZrY1.5 BMG surfaces. The test was conducted in an atmospheric
environment with a 2 µL droplet of distilled deionized water at room temperature.

3. Results and Discussion

The XRD pattern of the ZrY0 BMG shows a slight diffraction peak superimposed with
the diffuse halo, revealing the crystalline phases (ZrCu phase) in the amorphous matrix, as
shown by the black curve in Figure 2. Different from ZrY0 BMG, no other diffraction peaks
of crystalline phases can be observed on the XRD pattern of as-cast ZrY1.5 BMG, indicating
a fully amorphous structure and good glass-forming ability (see the gray curve in Figure 2).
In general, BMG will entirely change to supercooled liquid and obtain the relatively loose
atomic arrangement at the temperature corresponding to the end of glass transition (Tend),
causing the activated atoms to easily jump into the adjacent free volume. Therefore, the
viscous flow of BMG supercooled liquid will start roughly at Tend [20], and the TPF window
can be defined by the temperature from Tend to Tx. From the non-isothermal DSC curves in
Figure 3a, ZrY1.5 BMG represents a low Tend and wide TPF region ∆TTPF = Tx − Tend (56 K),
which can maintain the disordered structural characteristics after hot exposure to delay
the fluidity drop of ZrY1.5 BMG caused by crystallization during thermoplastic forming.
In addition, the enthalpy value by the structural relaxation of ZrY1.5 BMG (∆HZrY1.5) is
1.368 J/g, 43% larger than that of ZrY0 BMG (∆HZrY0 = 0.957 J/g), revealing a high free
volume content (see Figure 3b) [21–24]. The low atomic stacking density is closely related
to the low energy dissipation during creep flow, thereby reducing the viscous resistance
of BMG-supercooled liquid. This finding is proven by the TMA scanning curve of ZrY1.5
BMG in Figure 4a. By numerically integrating the inverse of the viscosity curves [25], the
variations of thermoplastic formability are intuitively reflected in Figure 4b. Based on these
reasons mentioned above, the relatively good thermoplastic formability of ZrY1.5 BMG
in the supercooled liquid region can be attributed to the optimized thermodynamic and
kinetic properties induced by Y addition [26,27].

The oxidation data obtained from the two as-cast BMGs over the TPF region are shown
in Figure 5 and insert. The mass-gain rate for the ZrY1.5 BMG is significantly lower than
that for the ZrY0 BMG in the temperature range of interest, similar to that reported in the
previous study about the oxidation behavior of Zr-Cu-Ni-Al-Y BMG systems. Lu et al. [19]
pointed out that the Y element can preferentially migrate from the matrix to the surface
and suppress the diffusivity of other elements, resulting in a thinner oxide layer so as to
decrease the surface tension of Zr-Cu-Ni-Al-Y supercooled liquid. The improved oxidation
resistance of ZrY1.5 BMG reduces the pressure drop of supercooled liquid when flowing in
the nanopores. Therefore, the nanostructure can be formed under pressure lower than the
fracture strength of the AAO template.
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rate of 10 K/min.

The morphology of the 300 nm nanostructure array on the ZrY1.5 BMG surface after
non-isothermal embossing is shown in Figure 6. The lengths of these obtained nanopillars
are measured to be over 1 µm, and their aspect ratios exceed 3. The characteristic sizes
of the gaps among these nanopillars are about 50 nm, as shown in the insert. The EDS
result shows that the content of oxygen is over 60%, indicating an oxygen-rich layer formed
on the surface of the nanopillar (Table 1). From the XRD pattern of the as-embossed
specimen, some diffraction peaks are superimposed on the amorphous halo, reflecting
the complex oxidation products in the surface layer of these nanopillars, including Ni-
Al-O, Cu-Al-O, ZrO2, CuO and Al2O3 phases (see the blue curve in Figure 2). The rigid
oxygen-rich layer will prohibit the viscous flow of supercooled liquid, causing the original
Zr-Cu-Ni-Al BMG systems to be unsuitable for nanostructure fabrication under ambient
conditions [28]. However, the oxide layer should not be regarded as just a negative factor
affecting thermoplastic formability. In many cases, the tiny oxidation products, as effective
sites, boost the various electrocatalytic reactions [29–31]. Thus, the nanostructure array can
be endowed with different functions by surface modification or surface coating [6].
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Table 1. EDS results of the nanopillar surface.

Element Weight wt. % Atomic at. %

Zr 26.71 9.09
Cu 19.18 9.37
Ni 5.16 2.73
Al 11.82 13.60
Y 4.27 1.49
O 32.84 63.72

For investigating the structural state of the as-embossed specimen, the high-angle
annular dark-field image of a single nanopillar is shown in Figure 7a. As shown in the
figure, the diameter of the nanopillar is measured to be 390 nm, which is consistent with
the SEM results. Considering the aspect ratio of a single nanopillar is over 3, the prepared
nanostructure array should possess a huge specific surface area. Figure 7b shows two dis-
tinct regions, including a nanopillar matrix and surface layer, where the nanopillar matrix
still exhibits a fully amorphous structure, as indicated by their corresponding selected
area electron diffraction (SAED) patterns (insets of Figure 7b), whereas the surface layer is
partially crystallized. Although a small number of oxygen atoms in the ambient dramat-
ically promote the structural ordering of reactive Zr-based BMGs [32,33], the short TPF
time (less than 180 s) can restrain the long-distance diffusion of oxygen atoms. Combined
with the fact that the micro defects on the AAO templates can be the nucleation site of the
crystalline phase, crystallization is only found on the surface and not in the core of the
nanopillar. Subsequently, these crystalline phases would be crushed by the BMG super-
cooled liquid with a Newtonian flow characteristic, thereby forming the discontinuous
ordered structures in the surface layer [34,35]. Figure 7c shows the EDXS mapping results
of the nanopillar, in which the main component elements (Zr, Cu, Ni, Al, Y and solute O)
are dispersed uniformly along the nanopillar. The distribution states of these component
elements eliminate the possibility of severe crystallization in the surface layer. That means
the as-embossing Zr-Cu-Ni-Al-Y BMG can maintain the mass-free volume in those nanopil-
lars to ensure the specific functions depending on the amorphous characteristic, despite
the nanoscale-ordered structure generation in the TPF stage.

The water contact angle tests were performed on the ZrY1.5 BMG specimens before
and after non-isothermal embossing to study the effects of the nanostructure array on
wettability. Figure 8a shows the results for the ZrY1.5 BMG without hot embossing, which
is 87◦ and similar to the values published for other Zr-based BMGs [36], corresponding to
an indistinct hydrophilic property of the smooth surface. The water contact angle of the
as-embossed surface decreases to 61◦, which is 30% lower than that of the smooth surface,
as depicted in Figure 8b. Then, the water contact angles on the smooth and as-embossed
surface slightly decrease with time (Figure 8c). In this case, a positive effect of the prepared
nanostructure array on the wettability can be confirmed. According to conventional
wisdom, the preparation of a microstructure on the solid surface is an effective method
to improve hydrophobicity [37] because the trapped air prevents the water from wetting
the gaps, which changes the apparent property of the macroscopic interface. However,
contrary to this common notion, the nanostructure array endows hydrophilic ZrY1.5 BMG
with better hydrophilicity. The nanostructure array can decrease the water contact angle
of the BMG specimen, probably because the significant capillary effect drives the water
to flow into those nanoscale gaps, thereby avoiding the air film between the BMG matrix
and water droplet, which indicates that the actual surface of the nanostructure array can be
fully wetted by the water (diagrammatic sketch in Figure 8d). This solid–liquid interface is
in accordance with a typical state of the Wenzel-impregnating wetting regime [38], which
decreases the water contact angle of the as-embossed surface.
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Figure 8. (a) Contact angle on the smooth ZrY1.5 BMG plate. (b) Contact angle on the ZrY1.5 BMG plate with nanos-
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Based on Wenzel’s model, cosθ* = rcosθ (where θ is the contact angle on the ideally
smooth surface, θ* is the apparent contact angle in a stable equilibrium state and r is the
roughness coefficient defined as the proportion of the actual area SA and apparent surface
S), the contact angle of the as-embossed surface is controlled by the r value. Taking a
single nanopillar as an example (see Figure 9a), the modified Wenzel’s model related to
the geometric parameter of the BMG nanostructure array can be written as Equation (1) by
substituting SA and S in Figure 9a:

θ∗ = arccos
[(

1 +
απ

β2

)
× cos θ

]
(1)

where α denotes the aspect ratio of a single nanopillar and β denotes the spacing proportion
factor. The calculation results reveal that the water contact angle monotonously decreases
with the increasing aspect ratio of nanopillar. The high aspect ratio α, leading to a large
r-value, can increase the difference between θ and θ* so that the as-embossed surface
obtains good wettability. Besides, Equation (1) also indicates the size dependence of the
apparent contact angle. The large gaps between nanopillars may weaken the positive effect
of capillarity on the liquid–solid interface roughness coefficient, which is unfavorable for
the hydrophilicity improvement of the ZrY1.5 BMG surface with nanostructure array by
the Wenzel-impregnating wetting regime [39–41]. This inference is in agreement with the
mathematical relationship between β and θ* for ZrY1.5 BMG (see the black curve and red
points in Figure 9b). The small gap significantly decreases the water contact angle of the
as-embossed surface, particularly when the spacing proportion factor is less than 1.25, as
marked in the shaded box. These theoretical analyses and experimental results can quantify
the correlation between the geometric parameters of the BMG nanostructure array and
hydrophilicity and guide the design and fabrication of new functional components.
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4. Conclusions

The nanostructure array was successfully fabricated on the surface of ZrY1.5 BMG by
non-isothermal embossing. The aspect ratio of these prepared 300 nm pillars was more
than 3. The relatively complete amorphous characteristic of the as-embossed specimen
was retained, and the oxygen-rich layer, including Ni-Al-O, Cu-Al-O, ZrO2, CuO and
Al2O3 phases, was formed on the surface of nanopillar after TPF. The wettability of the
as-embossed surface follows Wenzel’s model under the capillary effect, which decreased
the contact angle from 87◦ to 61◦, thus enhancing the hydrophilicity of ZrY1.5 BMG with a
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nanostructure array. The present work has developed an environmentally friendly non-
noble-metal-based BMG to prepare the nanostructure and prove the application potential
of the multifunctional surface with a nanostructure array.
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