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Abstract: Multi principal element alloys have attracted interests as a promising way to balance the
bottleneck of the “inverse relationship” between high hardness and high fracture toughness. In
the present study, the authors demonstrate the effects of Ti addition on the microstructures and
mechanical properties of the CoCrFeNiTix alloys (x values in molar ratio, x = 0.7, 1.0 and 1.2),
which exhibits a multi-phase structure containing face-centered cubic phase and various secondary
phases, such as sigma, Laves, and (Cr,Fe)-rich phase. Throughout the combined experimental
examination and modeling, we show that superb hardness (~9.3 GPa) and excellent compressive
strength (~2.4 GPa) in our alloy system are attributed to solid-solution strengthening of the matrix
and the formation of hard secondary phases. In addition, high indentation fracture toughness is
also derived from the toughening mechanism interplay within the multiple-phase microstructure.
At the fundamental level, the results suggest that multi-principal element alloys containing dual
or multi-phase structures may provide a solution for developing structural alloys with enhanced
strength-toughness synergy.

Keywords: multi-principal element alloys; high entropy alloys; topologically closed packed phase;
solid-solution strengthening; indentation fracture toughness

1. Introduction

Since their discovery half a century ago, topologically closed packed (TCP) atomic
structures [1,2] have been attracting the interest of academia and industries because of their
corrosion resistance [3], superior hydrogen absorption [4], and excellent high-temperature
creep resistance [5]. Because of their exceptional mechanical properties at high temper-
ature, TCP phase materials have been considered competent candidates for the indus-
trial/structural application at the elevated temperature condition, such as nuclear reactor
components and spaceship engines. However, the inherent brittleness of TCP phase-based
materials prevents them from having wider applications in industries. In principle, the
brittleness of TCP phases originates from their close-packed complex atomic structure [6],
which makes dislocation nucleation/movement very difficult [7]. For example, the Laves
phase, which is one kind of the most well-known TCP phases, is famous not only for
high strength and hardness (~9 GPa), but also for its low fracture toughness (~1 MPa

√
m),

which significantly limits their use as a structural material. To circumvent the “inherent”
brittleness of TCP phases, there have been attempts to toughen them by combining a
ductile phase to form a dual or multi-phase metallic composite. For instance, Davidson
et al. [8] showed that, although the pure Laves phase Cr2Nb possessed a rather poor frac-
ture toughness of 1.5 MPa

√
m at room temperature, the Nb-Cr2Nb dual phase composite

showed a fracture toughness of 6 MPa
√

m when the volume fraction of the ductile phase
Nb reached 50%.
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On the other hand, the recent research regarding the development of multi-principal
element alloys provides a new route to make TCP phase-based composites even tougher
and more appealing to structural application. These multi-principal element alloys were
considered to possess a high configurational entropy and therefore were known as high
entropy alloys [9–12]. Unlike conventional alloys with one or two base elements, owing
to the effects of high entropy, including stabilizing random solid solutions [9], sluggish
diffusion [13], lattice distortion [14,15] and the “cocktail” effect [16], these multi-principal
element alloys are believed to be endowed with special properties, often a combination
of attractive mechanical properties, such as high strength, good plasticity, and excellent
toughness [17,18]. The discovery of these new paradigm alloys is intriguing and promising,
which indicates that the TCP phase formed in multi-principal element alloys may remain
hard, but not as brittle as conventional TCP phase alloys. For example, in 2013, Hsu
et al. [19] fabricated a series of AlxCoCrFeMo0.5Ni dual-phase HEAs consisting of body
centered cubic (BCC) and sigma phases, which exhibited excellent hardness of 720 HV
and maintained reasonably good indentation toughness at room temperature. Recently, in
2019, Chung et al. [20] designed the CoCrFeNiNb0.5 HEA, which contains ~50% C14 Laves
phase and ~50% FCC. As a result, this dual phase eutectic composite exhibited superb
hardness with superior fracture toughness of ~14 MPa

√
m.

Inspired by these past studies, for this study, we developed CoCrFeNiTix (x values in
molar ratio, x = 0.7, 1.0 and 1.2) multi principal element alloys containing multiple phases,
such as face centered cubic (FCC) and various TCP (Laves, sigma and new (Cr,Fe)-rich)
phases. Subsequently, we performed a comprehensive study of the strength and fracture
behavior of these newly developed HEAs through hardness, compression and indentation
fracture toughness tests at room temperature. By the experiments and modeling, in
this work, we show that these enhanced strength and fracture resistance properties are
attributed to the heterogeneous multiple phase microstructures.

2. Materials and Methods

A series of CoCrFeNiTix alloy ingots (x values in molar ratio, x = 0.2, 0.3, 0.4, 0.7, 1.0
and 1.2) were fabricated in a vacuum induction melting furnace in an Ar atmosphere. All
of the elements used in the fabrication had a purity higher than 99.9%. A total of 50 g of the
master alloy was molten and cast into rectangular Cu molds (60 mm × 12 mm × 6 mm),
and cooled by circulating cooling water. The possible crystal structures in our alloy
samples were identified using X-ray diffractometry (XRD, D/Max 2500, Rigaku, Japan),
with the scanning angles ranging from 20 to 100◦ at a scanning rate of 4◦ per minute.
Subsequently, the alloy samples were taken out for mechanical grinding and polishing,
and the microstructure and composition of these alloys were analyzed using a scanning
electron microscope (SEM, JEOL JSM-6610, Japan) with an attached X-ray energy dispersive
spectrometer (SEM-EDS, JEOL, Japan), where EDS was operated at an accelerating voltage
of 15 kV for point analyses.

For the CoCrFeNiTix alloys with x = 0.7, 1.0 and 1.2, macro-hardness and modulus
were measured with an indentation tester (HM-211, Mitutoyo, Japan) using a Vickers
tip. During each indentation, the load was increased up to 2 N, which is sufficient to
measure the average properties of the multi-phase microstructure. Furthermore, to evaluate
the properties of the individual phases, micro-indentation tests were carried out on the
nanoindentation system (NHT3, Anton Paar, Germany) using a Berkvich diamond tip.
During each indentation, the load was linearly increased up to 20 mN with the indent
depth around 400 nm. This led to an average indentation size of 1.5 µm. The properties
of these samples were averaged over multiple indentation tests in order to ensure the
data reproductivity. Compression tests were also carried out at room temperature with
a constant strain rate of 10−3 s−1. The dimensions of the compressive specimens were
D = 3 mm (diameter) and H = 6 mm (height).

For the measurement of indentation fracture toughness, indentations with a Vickers
diamond pyramid indenter (HV-112, Mitutoyo, Japan) at a test load of 98 N were conducted
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on polished sample surfaces, which were free from any pre-cracks and defects. The
indentation fracture toughness K values were calculated using an equation proposed by
Niihara et al. [21], expressed as:

K = 0.0123
(

E0.4
)(

H0.1
)(P

l

)0.5
(1)

where H is the macro-hardness of the alloys, E is Young’s modulus, P is the applied inden-
tation load, and l is the length of cracks emanating from the edges of Vickers indents. At
least five indentation SEM images were used to obtain averaged crack lengths. Afterwards,
the indentation impressions and cracks were examined with SEM technique to investigate
the possible toughening mechanisms.

3. Results and Discussion
3.1. Structure Characterization

T 1a shows an equilibrium phase diagram of CoCrFeNiTix, where a mole fraction
of Ti ranges from 0 to 1.2. According to our prediction based on the CALPHAD method
and literature [22], the Co-Cr-Fe-Ni quaternary alloy forms a single phase FCC crystal
structure at above 600 ◦C, while the addition of Ti to Co-Cr-Fe-Ni leads to the formation of
a sigma (σ) phase, a Laves phase and an Eta phase. In this system, 55 at.% or higher of Ti
is required for Laves phase to appear at 900 ◦C. XRD profiles of the CoCrFeNiTix alloys
(hereafter denoted as Ti-x) presented in Figure 1b show the same results achieved with our
CALPHAD prediction. According to Refs. [23–26], apart from the FCC diffraction peaks,
several other diffraction peaks were identified as the σ-phase with a tetragonal crystalline
structure and C14 Laves phase with a hexagonal close packed structure, which agrees with
the prior works [27]. It is worth mentioning that the peak intensity of the sigma phase
increases with the increase in Ti content, indicating the higher volume fraction of the sigma
phase in the alloys with higher Ti.
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Figure 1. (a) The pseudo-binary CoCrFeNi-Ti phase diagram obtained by using the Thermo-Calc software with the
thermodynamic database TCFE9; (b) XRD patterns of the CoCrFeNiTix alloys with various Ti contents.

Figure 2 shows the as-cast microstructure of the CoCrFeNiTix alloys. With the addition
of the Ti content, a secondary sigma phase started to appear in the FCC phase of Ti0.2
(Figure 2a). When the Ti content increased and reached 0.4, the microstructure of the
CoCrFeNiTix alloy was seemingly transformed into a hypo-eutectic microstructure, which
was made up of a mixture of a FCC solid solution and an eutectic lamella structure. This
eutectic structure was composed of FCC and a sigma phase, as seen in Figure 2b,c. When



Metals 2021, 11, 1511 4 of 11

the Ti content was increased to 0.7, the Laves phase appeared and displayed block shapes
with an average size of 5–10 µm, as shown in Figure 2d,g. In Ti0.7, multiple phases co-
existed within the microstructures, i.e., a Laves phase and an eutectic structure consisting
of FCC and a sigma phase. When the Ti content reached 1.0, a new phase with the chemical
composition Co19Cr27Fe23Ni15Ti16 (atom%) evolved and became interconnected, mainly
surrounding the Laves phase, as shown in Figure 2e,h. This newly-appeared (Cr,Fe)-rich
phase could be the Eta phase based on the CALHAD prediction in Figure 1a. However,
due to the small amount of its volume fraction, XRD was not able to detect this (Cr,Fe)-
rich phase (hereafter referred to as the (Cr,Fe)-rich phase for convenience). In Ti1.0, the
morphology was transformed from the lamella eutectic to a complex heterogeneous multi-
phase microstructure, consisting of Laves, sigma, and (Cr,Fe)-rich phases. With the Ti
content reaching 1.2, the fraction of the sigma phase substantially increased up to 56% and
formed the sigma matrix. Table 1 summarizes the chemical compositions of the phases
and their volume fractions. Note that the volume fractions of each phase were obtained
by the area fraction of the SEM images in Figure 2, analyzed by the “Image J” software.
By comparison, the sigma phase in our alloys became more enriched with increasing Ti
contents.
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Table 1. Elemental analysis of different regions in as-cast CoCrFeNiTix composites.

Alloy Phase Vf (%)
Chemical Composition/at%

Co Cr Fe Ni Ti

Ti0.2
FCC 99 24.1 ± 1 26.0 ± 1 24.2 ± 1 24.0 ± 1 1.7 ± 1
σ 1 22.5 ± 1 11.7 ± 1 15.4 ± 1 32.5 ± 1 17.9 ± 1

Ti0.3
FCC 95.5 23.9 ± 1.3 25.7 ± 1.2 24.0 ± 1.3 23.1 ± 1.2 3.3 ± 1.2
σ 4.5 22.8 ± 1.3 12.2 ± 1.5 14.5 ± 1.5 30.3 ± 1.5 20.2 ± 1.2

Ti0.4
FCC 86 22.2 ± 1.5 25.1 ± 1.5 24.3 ± 1.5 22.8 ± 1.5 5.6 ± 1.5
σ 14 21.8 ± 2 13.2 ± 2 15.2 ± 2 29.7 ± 2 19.5 ± 2

Ti0.7
FCC 32 21.6 ± 1.5 23.5 ± 1.2 23.8 ± 2.0 21.7 ± 1.5 9.4 ± 1.5
σ 26 21.4 ± 1.5 15.9 ± 1.8 16.9 ± 1.5 26.2 ± 1.2 19.6 ± 1.2

Laves 46 19.5 ± 2.0 22.4 ± 2.5 14.0 ± 2.0 27.0 ± 2.0 17.1 ± 2.5

Ti1.0
σ 38 22.1 ± 1 13.0 ± 1 18.0 ± 1 19.6 ± 1 27.3 ± 1

Laves 56 18.0 ± 1.5 12.0 ± 1.5 15.2 ± 1.5 32.5 ± 1.5 22.3 ± 1.5
(Cr,Fe) rich 6 19.5 ± 1.2 27.5 ± 1.2 23.0 ± 1.2 15.4 ± 1.2 16.2 ± 1.2

Ti1.2
σ 56 20.7 ± 1.5 14.4 ± 1.5 19.9 ± 1.5 16.3 ± 1.5 28.7 ± 1.5

Laves 41 17.1 ± 1.5 13.9 ± 1.5 14.5 ± 1.5 33.8 ± 1.5 20.8 ± 1.5
(Cr,Fe) rich 3 18.0 ± 2 26.6 ± 2 21.6 ± 2 17.3 ± 2 16.5 ± 2

3.2. Mechanical Properties

To measure the mechanical properties of the CoCrFeNiTix alloys, we first performed
hardness tests. Figure 3a shows the relation between the phase fractions and macro-
hardness changes in our alloys. Macro-hardness gradually increases from 1.3 GPa in Ti0 to
9.3 GPa in Ti1.2, mainly due to the formation of sigma and Laves phases. These phases,
known as topologically close-packed (TCP) structures [1], generally possess exceptional
hardness. Subsequently, the hardness of the individual phase level was evaluated as seen in
Figure 3b. The results show that the hardness of the eutectic region (~5.9 GPa) is relatively
lower than Laves phase hardness (~7.9 GPa) in Ti0.7. Interestingly, even within the same
TCP group of structures, the sigma phase retains substantially higher hardness than the
Laves phase in Ti1.0 and Ti1.2, which indicates that the increase in the sigma phase fraction
plays the most important role in enhancing the alloy hardness.
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Compression tests were carried out for Ti0.7, Ti1.0 and Ti1.2, as presented in Figure 4,
and the corresponding mechanical properties are listed in Table 2, along with other
CoCrFeNiTix mechanical test data from the literature [27,28]. With the increase in Ti
content from 0.7 to 1.2, the yield stress and compressive stress increased from 919 and
1872 MPa to 2161 and 2383 MPa, respectively. Evidently, the Ti0.7 sample exhibits remark-
able ductility and excellent working hardening compared to Ti1.0 and Ti1.2. The sudden
strain reduction and significant increase of yield strength in Ti1.0 and Ti1.2 are attributed to
the extinction of the ductile FCC phase, which is replaced by various hard TCP phases. It
is interesting to note that even without the FCC phase, the Ti1.0 and Ti1.2 alloys exhibited
fair ductility with compressive elongation, reaching 2.4 and 1.7%, respectively. This good
ductility can be attributed to the interaction within the multiple-phase microstructure,
where the (Cr.Fe)-rich phase shows more ductile/tough behavior, as will be discussed in
detail in Section 3.4.
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Table 2. Mechanical properties of CoCrFeNiTix alloys.

Alloy H (GPA) E (GPA) σy (Mpa) σmax
(Mpa) εf (%) Ref.

Ti0 1.32 - 136 871 75 [27]
Ti0.3 3.33 - 648 1529 60 [27]
Ti0.5 5.05 - 898 1502 20 [27]
Ti0.7 6.11 148 919 1872 18.3 Present work
Ti0.8 - 135 - 2020 9 [28]
Ti1.0 8.41 215 1932 2180 2.4 Present work
Ti1.2 9.32 232 2161 2383 1.7 Present work

3.3. Effect of Lattice Distortion on Solid Solution Strengthening

In multi principal element alloys, a severely distorted lattice possibly occurs if a large
atom size difference is present among the constituent elements [29,30], which may be
the case for the CoCrFeNiTix alloys. In our alloy system, the atomic radius of Ti (1.47 Å)
is larger than the atomic radius of the other constitutional elements, i.e., Co (1.25 Å),
Cr (1.28 Å), Fe (1.26 Å) and Ni (1.24 Å). Therefore, the increase in Ti content may further
distort the lattice, resulting in an enhancement of the solid-solution strengthening of our
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alloys. To confirm this theory, in this section, we calculate the lattice distortion δ by the
following equation proposed by Zhang et al. [30]:

δ =

√√√√∑n
i=1 ci

(
1− ri

∑n
j=1 cjrj

)2

(2)

in which ci is the atomic fraction of element i, ri is the atomic radius of element i, and
n is the total number of constituent elements. Although this δ parameter is limited
in the accurate calculation of local lattice distortion, it has been widely accepted for
estimating the general distortion of the phases formed in multi-principal element al-
loys [30,31]. If we approximately take the atomic fraction of element ci obtained from
our EDS analysis (Table 1), we can then obtain the lattice distortion for the individual
phase in our alloys. For example, in Ti0.2, the chemical composition for the FCC phase is
(Co:Cr:Fe:Ni:Ti = 24.1:26.0:24.2:24.0:1.7), which yields the lattice distortion δ = 0.0247. Fol-
lowing this method, we computed the level of lattice distortion for the FCC phase formed
in our alloys, as presented in Figure 5. The lattice distortion of the FCC phase substantially
increased from 0.0247 in Ti0.2 to 0.0496 in Ti0.7, which resulted from the addition of the
larger Ti atoms into the FCC phase in the alloys (See Table 1). Note that Equation (2) is
not applicable to the lattice distortion calculation for the ordered compounds, i.e., sigma
and Laves phases, as in those phases the specific atoms will tend to occupy specific sites in
their lattice. For Ti1.0 and Ti1.2, the formation of hard various secondary phases, such as
Laves and (Cr,Fe)-rich phases, led to the increase in hardness. Based on the above analysis,
we believe that strengthening of the CoCrFeNiTix alloys can be mainly attributed to the
solid-solution strengthening of the FCC matrix when Ti content is below 0.7. After the Ti
content of the alloys increases beyond x = 0.7, the newly-formed hard phases (that is, the
Laves and (Cr,Fe)-rich phase) becomes a more critical factor to strengthen the alloys.
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Ti composition.

To further understand the correlation between lattice distortion and strengthening
effect, we compared the yield strength of the alloys with the lattice distortion as presented in
Figure 5. Figure 5 clearly shows that the lattice distortion is in a proportional relation with
the yield stress of the alloys, which confirms that the solid solution strengthening induced
by lattice distortion has a major effect on the total yield strength of the CoCrFeNiTix HEAs
where x < 0.7 [29]. Overall, the present analytical method can be applied to investigate the
lattice distortion effect on multi-principal element alloys with random solid solutions from
the experimental perspective.
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3.4. Indentation Fracture Toughness

To characterize the fracture behavior of our alloys, we carried out indentation fracture
tests on the CoCrFeNiTix (x = 0.7, 1.0 and 1.2) alloy specimens. Figure 6 shows SEM
images of the cracks that emerged from the edge of the indentation with a load of 98 N.
From the indentation fracture toughness Equation (1) and the inset images of Figure 6a–c,
we can obtain the indentation fracture toughness K = 4.14 ± 0.58 MPa

√
m for Ti1.0 with

H ~8.4 GPa, E ~215 GPa, l ~97 ± 35 µm, and K = 2.79 ± 0.37 MPa
√

m for Ti1.2 with
H ~9.3 GPa, E ~232 GPa, l ~232± 75 µm. For the case of the Ti0.7 alloy (See Figure 6a), after
indentation, the cracks nucleated in the Laves phase; however, they were instantly arrested
by the surrounding eutectic regions, which were already proven to be softer regions than
the Laves phase according to the micro-hardness experiment result in Figure 3b. Therefore,
since the crack propagation is suppressed, indentation fracture toughness for Ti0.7 was
not determined in this study. Here, it is worth noting that measuring indentation fracture
toughness is generally unsuitable for ductile or semi-ductile materials such as Ti0.7, and
such a method should be limited to hard/brittle materials.
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(c) x = 1.2. The inset images of (a–c) show the indentation impression with Palmqvist cracks [21] that
emerged from the edge of the indentation diagonals.

To understand the possible toughening mechanisms of Ti1.0 and Ti1.2, we performed
further SEM examinations near the crack tip and along the crack wake, as shown in
Figure 6b,c. As seen in Figure 6b, crack-tip deflection can be observed along the crack path
in Ti1.0, and the crack tip was stopped by the (Cr,Fe)-rich phase. In addition, we also
observed crack bridging as another toughening mechanism for Ti1.0, where a bridged
crack formed with this (Cr,Fe)-rich phase as the bridging element. When the fraction
of the sigma phase further increased to ~56%, as in Ti1.2 (Figure 6c), the level of crack
deflection reduced and the crack was seemingly able to propagate directly through the
sigma phase matrix. The crack bridging by the (Cr,Fe)-rich phase still provides the source
of toughening in Ti1.2. Meanwhile, the sharp and narrow crack tip in the sigma phase
matrix in Ti1.2 alloy implies very limited crack tip plasticity, which may be caused by
the difficulty of dislocation movement in the topologically close-packed complex atomic
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structure of the sigma phase [32]. This suppressed crack-tip plasticity can be linked to
relatively low intrinsic toughness. Note that fracture toughness in materials is perceived
to be the mutual interaction of intrinsic toughening (crack tip plasticity) and extrinsic
toughening mechanisms (crack deflection and crack bridging). Hence, based on our
observation, the fracture resistance of our Ti1.0 and Ti1.2 alloys can be mainly attributed
to extrinsic toughening mechanisms, such as crack deflection and crack bridging induced
by the formation of the relatively soft/ductile (Cr,Fe)-rich phase, which indicates that this
newly-formed phase is key in enhancing fracture toughness in our alloys.

Finally, it is worthy to compare the hardness and fracture toughness of our multi
principal element Ti1.0 and Ti1.2 alloys with other intermetallic-phase containing alloys,
as shown in Figure 7. Notably, our alloys outperform various metallic composites that
contain both intermetallics and solid solutions, due to a balanced combination of superb
hardness and good toughness, where hard sigma and Laves phases generally enhance
strength while the relatively soft (Cr,Fe)-rich phase improves crack resistance. Indeed, this
fracture toughness value of our alloys is impressive, at about two or three times the fracture
toughness (~1.5 MPa

√
m) of conventional close-packed intermetallic single phases [33].

This result suggests that the alloys formed by the combination of hard and soft multi phases
could lead to a strength–toughness synergy.
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4. Conclusions

In conclusion, in this work, we investigated the effects of the addition of Ti on the
microstructures and mechanical properties of CoCrFeNiTix (x = 0.7, 1.0 and 1.2) alloys.
Based on our results, salient conclusions can be drawn as follows:

• Based on the CALPHAD method, XRD, and SEM-EDX analysis, the microstructure
of CoCrFeNiTix alloys was determined to be FCC + σ + Laves phase for Ti0.7, and
σ + Laves + (Cr,Fe)-rich phase for Ti1.0 and Ti1.2.

• As the Ti concentration increased from x = 0.7 to 1.2, the hardness H (or compressive
yield strength σy) of the alloy increased from 6.1 to 9.3 GPa (or from 920 to 2160 MPa),
whereas its fracture strain decreased from ~18% to ~1.7%.

• Based on our systematic analysis, we believe that in the CoCrFeNiTix HEAs where
x = below 0.7, the increase in hardness and yield stress was mainly caused by the
solid-solution strengthening of the FCC matrix that resulted from the lattice distortion.
With the CoCrFeNiTix HEAs whose x > 0.7, the formation of hard secondary phases (σ,
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Laves and (Cr,Fe)-rich phases) was the main factor contributing to the strengthening
of the alloys.

• The fracture resistance of the CoCrFeNiTix alloys decreased with the increase in Ti
contents (from 4.14 MPa

√
m for Ti1.0 to 2.79 MPa

√
m for Ti1.2). The crack observation

revealed that the (Cr,Fe)-rich phase played an important role in enhancing fracture
toughness, facilitating toughening mechanisms such as crack deflection and crack
bridging.

• Overall, our CoCrFeNiTix (x = 1.0 and 1.2) alloys outperform similar alloy systems
due to a combination of superb hardness and good toughness. The present work
demonstrates that multi principal element alloys containing dual or multi-phase
structures could provide a solution for developing structural alloys with enhanced
strength–toughness synergy.
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