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Abstract: The microstructural evolution and properties for varied austempering routes are investi-
gated in a cold-rolled bainitic steel. Special attention is given to the effect of retained austenite (RA)
in terms of its fraction, carbon concentration, and morphology resulting from different austempering
routes on mechanical properties and stretch flangeability. Bimodal sized bainitic laths are provided,
and the carbon concentration of RA maintains the highest value through the two-step austemper-
ing. Total elongation (TEL) is remarkably enhanced for the two-step austempering, deviating from
the exponential relationship between tensile strength (TS) and TEL as maintained by the one-step
austempering. Considering the two plateaus of the strain-hardening exponent, it is considered that
the hierarchical stability of RA is provided by the two-step austempering, leading to the postponed
necking point so as to improve the uniform elongation. Two-step austempering could provide more
complete bainitic transformation as well as more stable film-like RA, supplying a promising way to
improve the combination of strength, ductility, and stretch flangeability.

Keywords: bainitic steel; two-step austempering; retained austenite; strain hardening; stretch flangeability

1. Introduction

The application of high-strength steel is one of the most effective ways to reduce car
body weight while ensuring the required safety. The multiphased steels with a combi-
nation of varied phases, such as ferrite, martensite/bainite, and retained austenite (RA)
are developed to satisfy the demand of structural parts. Among them, bainitic steels
are attractive because of their good combination of strength and ductility. It is well ac-
cepted that the bainitic lath size, which is determined by the transformation temperature,
strongly affects the strength. For instance, Sandvik et al. [1] found that strength can be
obviously increased by refining the bainitic lath size through decreasing the austempering
temperature. Bhadeshia et al. [2,3] developed an ultra-high strength bainitic steel with an
excellent balance of strength and ductility (tensile strength higher than 2000 MPa and total
elongation higher than 20%) by refining the bainitic lath to tens of nanometers through a
low-temperature austempering treatment. Furthermore, remarkable ductility is provided
due to a considerable fraction of RA by means of the transformation of metastable austenite
into martensite, i.e., the transformation-induced plasticity (TRIP) effect.

In addition, it is considered that the hardness difference between the soft and hard
phase can be avoided in bainitic steels, so that ensures the excellent combination of strength
and local formability [4–6] through retarding the strain localization. It is reported that a
certain fraction of RA with relatively high stability is important for the improvement of
the stretch flangeability, because it can suppress the strain-induced transformation in the
punched hole-surface layer before hole expansion and consequently improve the localized
ductility on hole-expanding through the superior TRIP effect [7]. Therefore, it is crucial
to maintain a good balance of strength, ductility, and local formability by optimizing
the bainitic lath size as well as the fraction and stability of RA.
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The fraction of RA can be increased through increasing the austempering temperature.
However, this is at the expense of the strength decreasing [8]. Hase et al. [9] obtained a
bimodal size distributed bainitic microstructure through a two-step austempering in which
blocks of austenite were refined and the RA was further stabilized, achieving a much higher
combination of strength, ductility, and fracture toughness than the one-step counterparts.
Xie et al. [10] reported that a two-step austempering could further stabilize the RA, leading
to a significant increase in ductility as well as a strength–ductility balance.

In this study, we have studied the effect of austempering treatment in terms of temper-
ature and holding time on the microstructure, mechanical properties, and stretch flangeabil-
ity. Comparison of the fraction of RA and its stability and properties was made between
one-step and two-step austempering treatment. The role of RA on work-hardening behav-
ior, failure behavior during hole expansion, and on a combination of strength, ductility,
and stretch flangeability was elucidated.

2. Materials and Methods

The chemical composition of the experimental steel is listed in Table 1. The steel was
melted under vacuum in an induction furnace (North Electric Furnace Factory, Jinzhou,
China) and cast as ingots. The addition of relatively high Si is expected to suppress
the precipitation of cementite during bainite transformation, with an indirect effect on
the stabilization of austenite through the carbon enrichment of austenite as a result of the
fact that Si has very low solubility in cementite. It should be noted that Si can be partially
or completely replaced by Al and/or P considering their similar effect [11–14]. Nb was
added to enhance grain refinement.

Table 1. Chemical composition of experimental steel (wt %).

C Si Mn Nb P S

0.20 1.40 1.70 0.045 0.020 0.045

Aluminum is well known for its ability to hinder the carbide precipitation similar to
silicon; besides, it increases the stability of retained austenite [8]. In addition, the main
feature of using aluminum is that it represents much better surface quality compared
to silicon.

The ingot was hot forged into blocks with a thickness of 50 mm. After austenitization
at 1200 ◦C for 2 h, the block was hot rolled to plate of thickness ≈4.5 mm via 7 passes
and the finish rolling temperature was about 900 ◦C, which was followed by accelerated
cooling to 600 ◦C with subsequent air cooling to room temperature.

The hot-rolled plates were further cold rolled to 1.2 mm with a total rolling re-
duction of 73.3%. The dilatometric samples were machined from the cold-rolled plate
(4 mm × 10 mm) and were performed on a DIL 805 dilatometer (Bähr, Germany) to in-
vestigate the microstructural evolution during austempering. The thermocouples were
spot-welded at the center as well as at the end of the sample to monitor the temperature
homogeneity. Austenization at 950 ◦C for 180 s was adopted. The Ms temperature under
this condition is 364 ◦C. In order to investigate the influence of austempering parame-
ters on properties, a continuous annealing experiment was carried out using a CAS300-II
continuous annealing simulator (RAL, Shenyang, China). The austempering is carried
out at 370 ◦C and 400 ◦C for 50–500 s. In addition, a two-step austempering is adopted,
where the austempering temperature is 370 ◦C and 400 ◦C for the first and second step,
respectively. The schematic diagrams of the detailed experimental parameters are shown
in Figure 1.
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Figure 1. Schematic diagrams for continuous annealing experiments, (a) one-step, (b) two-step.

To examine the microstructure, specimens were mechanically polished and etched
with 2% nital solution and observed using Zesis Ultra 55 field emission gun scanning
electron microscope (FEG-SEM, Carl Zeiss AG, Jena, Germany). For TEM studies, samples
were cut into 500 µm thick slices and mechanically ground to a thickness of 50 µm. Disks
of 3 mm diameter were punched and electropolished in Struer’s Tenupol twin-jet polisher
(Struers, Willich, Germany) using a solution of 93% alcoholic solution and 7% perchloric
acid. The foils were observed in FEI TecnaiG2 F20 transmission electron microscope (FEI,
OR, USA) at an operating voltage of 200 kV. The electron backscattered diffraction (EBSD)
studies were carried out in FEG-SEM for automatic orientation mapping with a 0.07 µm
step size. EBSD data were processed by HKL CHANNEL 5 software (Oxford company,
Abingdon-on-Thames, UK). Quantitative X-ray diffraction was carried out to determine
the volume fraction of RA (Vγ) and its carbon concentration (Cγ). The samples were
electropolished using the aforementioned method and were scanned with a Bruker D8
X-ray diffractometer (XRD, Bruker AXS Inc., USA) at a step size of 0.02◦ and a count time
of 1.2 s per step using Co-Kα radiation. The (200) and (220) diffraction peaks of austenite
and (200) and (211) diffraction peaks of ferrite were selected to calculate the Vγ [15].
The multiple diffraction peaks were combined to minimize the influence of preferred
orientation. The equation aγ = 3.556 + 0.0453Cγ was used to calculate Cγ (wt %) in RA [16],
where aγ (Å) is the lattice parameter of austenite.

Tensile tests were carried out using standard rectangular specimens with a gauge
length of 30 mm and a crosshead speed of 1 mm/min using a SANS 5105 testing machine
(SANS, Shenzhen, China) with a 100 kN load cell. In each condition, three specimens
were tested to obtain an average of mechanical properties. A hole expansion experiment
was performed in a universal testing machine. A conical punch of 10 mm (d0) diam-
eter and angle of 60◦ was used for these tests. To better investigated the relationship
between mechanical properties and local formability, the hole was processed by using
a wire electrical discharge cutting machine (BUAA, Beijing, China) to minimize the ac-
cumulated shearing damage as well as the defect such as micro-cracks caused by the
conventional punching method. A speed of 3 mm/min with a blank holder force of 50 KN
was used in the experiment. The hole expansion rate (HER) was calculated by the equation
HER = (d – d0)/d0 × 100%, where d and d0 are the fractured hole diameter and the initial
hole diameter, respectively.

3. Results and Discussion
3.1. Microstructural Characterization

Figure 2 shows the SEM micrographs of specimens austempered at 370 ◦C and 400 ◦C
for 50–500 s. For both austempering temperature, the microstructure mainly displays lath
morphology. Blocky martensite islands (marked with white arrows) are observed for the
holding time of 50 s (Figure 2a,e), which were formed from untransformed austenite during
subsequent cooling after austempering. When the austempering time increases to 180 s,
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the amount and size of the blocky martensite is obviously decreased but still can be found,
especially for 400 ◦C austempering (shown with white arrows in Figure 2f). The microstruc-
ture is similar for 250 s and 500 s austempering, implying that the bainite transformation is
completed up to 250 s. In addition, the width of the bainitic lath as well as the interlath
film-like retained austenite/martensite (RA/M) seems wider for 400 ◦C austempering.
For the two-step sample (Figure 2i), one can see a refined microstructure with lath morphol-
ogy, similar with that in Figure 2e. In addition, a coarser lath microstructure with wider
RA/M instead of large blocky martensite islands is found, which is considered to result
from the bainitic transformation at 400 ◦C.

Figure 3 shows the image quality map with RA distribution measured by EBSD for
400 ◦C austempering with a holding time of 50 s and 250 s and two-step austempering.
It is found that for the holding time of 50 s, the detected amount of RA is low with blocky
morphology (Figure 3a). As the holding time increases to 250 s (Figure 3b), the amount
of RA is remarkably increased, and the RA particles tend to display a rod-like shape.
For the two-step austempering (Figure 3c), the morphology of RA is alike with that in
Figure 3b, but it seems that more thin film-like RA exists in the microstructure.
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Figure 4 shows the TEM morphology of blocky martensite and film-like RA for 50 s
and 250 s austempering, respectively. In Figure 4a, blocky martensite is presented, in which
twinned martensite is found, indicating the high carbon concentration. As is shown in
Figure 2a,e the transformation at the holding time of 50 s is not completed. The untrans-
formed austenite may transform to martensite due to its insufficient stabilization, and only
a few fractions of austenite would be retained at room temperature. With the completion of
transformation at a longer holding time, the RA with a film-like shape mainly lies between
bainitic laths and blocks, as shown in Figure 4b.
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Figure 4. The TEM morphology of specimens austempered at 400 ◦C for different times, (a) 50 s, (b) 250 s (bright field
of RA), (c) 250 s (dark field of RA).

Figure 5 shows Vγ and Cγ with different austempering parameters. Both Vγ and Cγ

are lower for 370 ◦C than for 400 ◦C austempering. It is found that Vγ increases rapidly
from 50 to 180 s, with the same trend of EBSD measurement (Figure 3a,b), and then it
increases slightly and remains stable with the increasing of holding time after 180 s. Cγ

also increases sharply from 50 to 180 s, resulting from the proceeding of bainitic trans-
formation. Then, it increases gradually with the increasing of holding time, indicating
the continuous carbon partitioning during the austempering. The average Vγ and Cγ for
the two-step austempering is 12.2% and 1.39 wt %, respectively. The Cγ is the highest
among these specimens.
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3.2. Analysis of Microstructural Evolution

For the two-step austempering process, the microstructure morphology as well as
features (fraction, stability, etc.) of RA are determined by the combination of the two
steps. While austempering at a lower temperature, i.e., 370 ◦C for 50 s (first-step) in this
study, finer bainitic laths with higher defect density would be formed. Considering the
relatively short holding time, austenite is partially retained at the end of the first-step
austempering. In the following austempering at 400 ◦C (second-step), untransformed
austenite further transforms into bainite with a larger lath size, and a higher proportion
of austenite may be retained in this case. The schematic diagram of the microstructure
evolution is shown in Figure 6. Considering the two-step bainitic transformation as well as
the carbon partitioning, it is probable that the two-level stability of RA may be provided
through the two-step austempering. It may include the more stable austenite obtained at
370 ◦C austempering, which is further stabilized by subsequent 400 ◦C austempering and
the less stable austenite formed at 400 ◦C austempering.

Consequently, three items can be achieved for the microstructural optimization. Firstly,
bainite transformation proceeds more completely compared to the one-step 400 ◦C austem-
pering, replacing blocky M/A constituents with film-like RA. Secondly, the untransformed
austenite at the end of the second-step austempering is further enriched in carbon, leading
to a higher carbon concentration in the final RA compared to the 370 ◦C austempering
for 50 and 180 s. The above two features contribute to the improvement of ductility and
stretch flangeability. Thirdly, a large quantity of fine lath bainite is formed at the first
step, maintaining high strength. Therefore, it is indicated that the two-step austempering
process provides a good way to balance the strength, ductility, and stretch flangeability.

It is proposed that the bainite transformation ceases once the carbon concentration of
austenite reaches T0 line, where the fcc (face-centered cubic) and bcc (body-centered cubic)
phase with identical composition have the same free energy [17]. Figure 7 shows the T0 and
PE (para-equilibrium) line calculated by Thermo-calc software (2019a version) based on
the TCFE 9 database with accompanied with measured Cγ. One can see that the actual Cγ is
close to the T0 line for the holding time of 50 s, and it exceeds the T0 line as the austempering
time increases. Moreover, Cγ for the two-step austempering is further increased. This is
attributed to the fact that carbon partitions from post-transformed bainite to austenite.
In particular, carbon enrichment further occurs from lower-temperature bainitic ferrite into
neighboring austenite at a higher austempering temperature, because part of the carbon
atoms is usually trapped in bainitic laths with high dislocation density [18–20]. However,
Cγ is still far from the line of PE, which is a local equilibrium for carbon, but there is no
diffusion of iron and substitutional elements.
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3.3. Mechanical Properties

Figure 8a shows the effects of austempering temperature and holding time on mechan-
ical properties. For both austempering temperature, tensile strength (TS) and yield strength
(YS) decrease with the increasing of austempering time, and TS slightly decreases when
the holding time is longer than 250 s. Correspondingly, the total elongation (TEL) increases
as the austempering time is prolonged. The higher TS as well as the lower TEL at the early
stage of austempering is considered to be caused by the blocky martensite. From Figure 8b,
one can see that TEL decreases continuously with the increase of TS, maintaining an ex-
ponential trend between TEL and TS for the one-step austempering process, as reported
in lots of studies in the literature [8,21,22]. However, it is interesting to note that TEL is
remarkably enhanced for the two-step austempering, improving the strength–ductility
balance in this case.
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The following formulas were used to calculate the true stress–true strain data from
the engineering data obtained through tensile testing.

εtrue = ln(1 + e) (1)

σtrue = σeng(1 + e) (2)

where εtrue is true strain, σtrue is true stress, e is engineering strain, and σeng is engineering
stress, and the strain hardening exponent n is calculated as:

n =
d(ln σtrue)

d(ln εtrue)
(3)

Figure 9 shows the strain-hardening exponent versus true strain for three austem-
pering processes. The strain-hardening exponent of three processes decreases quickly at
first and then decreases with a slower rate, forming the first plateau. In the following,
it decreases quickly again and then increases with a slow rate, forming the second plateau.
It seems that the length of the second plateau for 370 ◦C austempering is shorter compared
to the other two processes, which may result from the lower fraction of RA considering
that the carbon concentration is close to that for 400 ◦C austempering.

It is interesting to note that the length of the first plateau for the two-step austempering
is obviously longer than its counterparts. It is probably because most RA, on the one hand,
are in a film-like shape; and on the other hand, they possess a higher carbon concentration
due to adequate partitioning in the second-step austempering, both of which lead to high
stability of RA. In this case, the RA could transform more gradually to martensite during
straining [23,24], leading to a longer first plateau. Especially, the longer first plateaus
contributed by RA allow the necking point to be postponed, improving the uniform
elongation. Considering the corresponding relationship between the plateaus and RA,
the existence of the two-level stability of RA provided through the two-step austempering
is confirmed.
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3.4. Stretch Flangeability

Figure 10a shows the HER under varied austempering temperature and time. The HER
is generally higher for 400 ◦C than for 370 ◦C austempering. With the increasing of holding
time, HER increases gradually for 370 ◦C austempering, but it remains stable for the holding
time of 180 to 500 s for 400 ◦C austempering. The HER value is 54 ± 3% for the two-step
austempering. It is reported that there is a strong correlation between HER and TS where
HER decreases with the increasing of TS up to approximately 700 MPa, but it is insensitive
to the change of TS for TS beyond 700 MPa [25]. Figure 10b shows the experimental data in
this study along with data from the literature [18]. One can see that the data in this study
bring a deviation from the trend in the strength range from 1000 to 1200 MPa. Similarly,
there is also data scattering for dual phase (DP) steel in this figure. The reason is that factors
that less directly affect the TS, such as the morphology of martensite [26] and hardness ratio
of ferrite and martensite [6,27], also play a significant role in the HER value for DP steel.
It is believed that the deviation in the TS-HER relationship for the studied steel results from
the optimal combination of bainite matrix and retained austenite.
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In our previous study [28], there is a linear relationship between the yield ratio (YR)
and HER value, in which ferrite exists in the microstructure. However, YR in this study is
similar, ranging from 0.74 to 0.76, so it is ruled out as a possible factor that may correlate
with HER. In this respect, one can say that the influence of YR on HER is much more
notable for a mixed microstructural constituent than a single microstructural constituent.

The TRIP effect is reported to prevent strain localization, and martensite transforma-
tion occurring at low strains tends to decrease the HER [29]. During the hole expansion
test, a higher HER would be obtained through a steady and continuous transformation
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of RA to martensite throughout the test. Thus, the stability of RA plays a key role in
stretch flangeability. It is known that stability of RA is determined by both chemical and
mechanical stability [30–34]. The carbon concentration in the RA is responsible for its
chemical stability [34,35], whereas mechanical stability is determined by other factors such
as size [31], morphology [34–36], and the surrounding microstructure of RA [30].

Figure 11 shows SEM cross-sectional micrographs nearby the main crack in hole
expansion specimens austempered at 400 ◦C for 50 s and 180 s. In Figure 11a,b, tiny
cracks are observed among the fine bainite region with film-like RA/M (some RA may
transform to martensite due to the TRIP effect during hole expanding). Crack propagation
may be inhibited by TRIP effect of the film-like RA as well as by the tough film-like
RA itself, which is in accordance with the research of Sugimoto et al. [4,30]. However,
a large quantity of voids appears in the vicinity of blocky martensite (shown with white
arrows). It is indicated that the strain incompatibility between the matrix and hard blocky
martensite is the dominant cracking mechanism during hole expanding in this case. Strain
partitioning to the softer matrix occurs during deformation, potentially inducing more
damage to the matrix close to the hard phase, resulting in the nucleation and growth
of voids in these regions [37]. Yang et al. [38] also reported that large blocky RA/M
boosts the crack nucleation. The blocky martensite originated from two parts. One part
is the intrinsic, which is formed during the cooling process after austempering treatment.
The other part comes from the large blocky RA through the TRIP effect in the early stage of
local forming deformation. This would lower the HER by early failure in the vicinity of
blocky martensite through void or crack formation. Thus, tendering more complete bainitic
transformation as well as more film-like RA through two-step austempering would help
improve the stretch flangeability.
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4. Conclusions

In this study, the microstructural evolution of the TRIP-aided bainitic steel under
different austempering routes was investigated. The effect of the microstructure (bainite
and RA) on the mechanical properties as well as on stretch flangeability was elucidated.
The main conclusions from this work are as follows:

(1) With the increasing of austempering temperature, the width of both bainitic lath and
interlath film-like RA/M becomes wider. The bimodal bainitic lath size is provided
through the two-step austempering. Both Vγ and Cγ are lower for 370 ◦C than for
400 ◦C austempering. The Cγ for the two-step austempering maintains the highest
value, which is attributed to the fact that carbon enrichment further occurs from
lower-temperature bainitic ferrite into neighbored austenite at higher austempering
temperature in the second step of austempering.
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(2) TS and YS decrease with the increasing of austempering time, and TS slightly de-
creases when the holding time is longer than 250 s. TEL increases as the austempering
time is prolonged. The higher TS as well as lower TEL at the early stage of austemper-
ing is caused by the blocky martensite. In contrast, TEL is remarkably enhanced for
the two-step austempering, deviating from the exponential relationship between TS
and TEL as maintained by the one-step austempering.

(3) In light of the two plateaus of the strain-hardening exponent, it is considered that
the two-level stability of RA exists, which is provided by the two-step austemper-
ing. The two longer plateaus allow the necking point to be postponed, improving
the uniform elongation.

(4) Strain incompatibility between the matrix and hard blocky martensite is the dominant
cracking mechanism during hole expanding. Tendering more complete bainitic trans-
formation as well as more film-like RA would help improve the stretch flangeability.
The two-step austempering may be a promising way to ensure a good combination of
strength, ductility, and stretch flangeability.
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