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Abstract: The dynamic recrystallization (DRX) behavior of as-extruded AM50 magnesium alloy was
modelled and simulated by a cellular automaton (CA) method. Isothermal compression experiments
were conducted, and the characteristic parameters in the CA model were obtained by the testing stress–
strain flow curves in a wide temperature range of 250–450 ◦C and strain rate range of 0.001–10 s−1.
The flow stress, DRX volume fraction and DRX grain size of the as-extruded AM50 magnesium
alloy were predicted by CA simulation. The results showed that the DRX behavior of the studied
magnesium alloy was susceptive with the temperature and strain rate; meanwhile, the prediction
results were approximate to the experimental values, indicating that the developed CA model can
make a confident estimation on the DRX behavior of the as-extruded AM50 magnesium alloy in high
temperature conditions.

Keywords: AM50 magnesium alloy; hot compression; dynamic recrystallization; microstructure
evolution; cellular automaton

1. Introduction

The application of light alloys and their composites is considered as an important
lightweight way in advanced industrial fields (e.g., automobile, aerospace and electron-
ics) [1–4]. Recently, magnesium alloys have been given increasing attention due to their
high strengths and low densities (≈1.8 g/cm3) [5–7]. An important method for fabricating
magnesium parts is plastic deformation. In general, magnesium alloys are considered to
be unviable in room-temperature plastic deformation due to the poor ductility. A main
cause is that the cross-slip of dislocations are difficult to proceed in the hexagonal crystal
structures (HCP) with low-level stacking fault energies of magnesium alloys [8]. Thermo-
plastic deformation is a commonly acceptable method for the plastic forming of magnesium
alloys. The dynamic recrystallization (DRX) plays an important role in the microstructure
refinement during thermoplastic deformation of magnesium alloys [9]. Furthermore, it
can remarkably impact the mechanical performances according the Hall–Petch relation-
ship [10–12].

Simulation methods are expansively used in studying the microstructure evolution
during plastic deformation [13–16]. Particularly, cellular automaton (CA) is a preferred
method due to its precise physical meaning and efficient algorithm rule. The CA simulating
method was used by Goetz to predict the DRX behavior [17]. Li et al. investigated the
microstructural evolution of AZ80 magnesium alloy by CA model coupled with finite
element simulation [18]. Chen et al. gave a new approach to predict the average DRX grain
size of AZ31B magnesium alloy by CA method [19].
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The CA simulation results from the physical-based recrystallization kinetic model.
Common phenomenological models, e.g., modified Avrami type equations, are widely
used for describing the DRX behavior of magnesium alloys [20–22]. However, these phe-
nomenological equations are experience-depended (i.e., without physical meanings), and
can only be used in some special deformation conditions. As a result, these phenomenolog-
ical models are difficult to preciously predict the complex microstructure evolution during
DRX [23]. In other words, a physical-based DRX model is critical for CA simulations to
describe the DRX microstructure.

AM50 Mg alloy is a widely used extruded magnesium alloy with excellent plasticity
and fatigue strength compared to those for as-cast ones [24,25]. However, few researches
have focused on microstructure evolution during the hot deformation of AM50 Mg alloy.
In this work, the DRX behavior of AM50 Mg alloy during hot deformation was investigated
by means of the CA method. The accuracy of the model and simulation are verified by
experiments. Furthermore, the relationship between the DRX behavior and the deformation
conditions for AM50 Mg alloy are discussed.

2. Materials and Testing Procedure

The chemical composition of the AM50 Mg alloy ingot in wt. % is as follows: 5.2 Al,
0.32 Mn, 0.156 Zn, 0.056 Si, 0.0012 Cu, 0.0001 Fe, 0.0003 Ni, 0.0005 Be and Mg for bal-
ance. The cylindrical samples, which had a diameter of 8 mm and length of 12 mm, were
machined from an extruded rod along the extrusion direction. Hot compression simu-
lation tests were performed at deformation temperatures of 250, 300, 350, 400, 450 ◦C
and strain rates of 0.001, 0.01, 0.1, 1, 10 s−1 by a thermal simulated test machine (Data
Sciences International, Inc., St. Paul, MN, USA). The true strain of 0.9 was defined as the
maximum deformation in the test. Once the hot compression was completed, the deformed
specimens were immediately quenched into water for reserving the microstructures. The
hot compression scheme is shown in Figure 1.
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Figure 1. Scheme of the hot compression test.

The specimens were ground and mechanically polished before optical microstructure
examinations, and then a solution of picric acid (1.5 g, Xinning Pharmaceutical CO., LTD.,
Taizhou, China) + glacial acetic acid (0.5 g, Xinyue Chemical and Glass CO., LTD., Weihai,
China) + ethanol (25 mL, Xinyue Chemical and Glass CO., LTD., Weihai, China) + water
(10 mL) was used to etch the specimens for 60 s. The microstructures were examined
by an optical microscope (Olympus Corporation, Tokyo, Japan). Figure 2 shows the
initial microstructure of the as-extruded AM50 alloy. The grain size was measured to be
approximately 13.6 µm, along with a few gas porosities to be detected.
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3. Model Description

The thermoplastic deformation behavior of alloys can be understood as a counterac-
tion between work-hardening and the dynamic softening. Furthermore, the microstructure
evolution is a coaction of the multiplication and annihilation of dislocation. Considering
these physical relations, a CA model depends on the time and dimension discretization
as well as transformation rule for neighboring cells to simulate the microstructure dy-
namic evolution.

3.1. Evolution Modeling of Dislocation Density

In this work, the evolution of dislocation density is modelled as follows [26]:

dρ

dε
= K1

√
ρ− K2ρ (1)

where ρ is the dislocation density. The right side of Equation (1) represents the interaction
effect of work-hardening and dynamic recovery on the dislocation density. K1 and K2
are constant parameters that are associated with work-hardening and dynamic recovery,
respectively. K1 can be determined by 2θ/(θαµb) and K2 can be determined by 2θ/σsat [27].
θ is the work-hardening rate. σsat is the saturation stress.

Furthermore, the relationship between flow stress and dislocation density can be
represented as following [28]:

σ = aµb
√

ρ (2)

where a is the material constant, which can be commonly regarded as the value of 0.5. µ is
the shear modulus. b is the Burger’s vector.

3.2. Nucleation

Ding [29] proposed that the rate of nucleation on the grain boundary obeys the
following functional relation:

.
n(

.
ε, T) = C

.
ε

m exp
(
−Qact

RT

)
(3)

where C and m are material constants. Qact is the activation energy.
According to Roberts and Ahlbom [30], the criterion for the occurrence of DRX is the

critical dislocation density (ρc) exceed threshold, and ρc is represented as:

ρc =

(
20γi

.
ε

3Mblτ2

)1/3

(4)

where γi is the grain boundary energy. τ is average dislocation line energy which can be
obtained by τ = αµb2. l is the free dislocation path which can be calculated by l = 10 µb/σs.
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σs is the steady state stress, and M is the grain boundary mobility which can be calculated
as follows:

M =
bδD0b

kT
exp

(
−Qb

RT

)
(5)

where δ is the grain boundary thickness. D0b is the diffusion coefficient of the migrated
grain boundary. Qb is the diffusion activation energy, and k is the Boltzmann constant.

The grain boundary energy γi is calculated as follows [31]:

γi =

{
γm

θi
θm

(
1− ln θi

θm

)
θi ≤ θm

γm θi > θm
(6)

where θi is the misorientation of grain boundary. θm is grain high angle boundary misori-
entation (set as 15◦), γm is the grain boundary energy of high-angle boundary, which is
expressed as [30]:

γm =
µbθm

4π(1− v)
(7)

where v is the Poisson’s ratio.

3.3. Grain Growth

The driving force of grain growth derives from the dislocation density difference
between DRX grains and original grains. The relationship between the growth velocity of
recrystallized grain boundary (vi) and the driving force on the grain boundary per cell area
(fi) can be expressed as [32]:

vi = M fi (8)

In this work, the geometrical shape of DRX grain is considered to be spherical, and
the fi is calculated as [33]:

fi = τ(ρm − ρi)− 2γi/ri (9)

where ρm is the matrix dislocation density. ρi is the dislocation density of the ith recrystal-
lized grain, and ri is the radius of the ith recrystallized grain.

4. Simulation Procedures
4.1. Cell Dimension Model and State Variable Setting

A two-dimensional CA program code was developed according to the models of
dislocation density evolution, nucleation and grain growth. The area of CA model is
defined as 150 µm × 150 µm to predict the DRX behavior of the AM50 alloy. The length
of quadrangular cell is 0.2 µm and the neighboring transforming rule is Von Neumann
type. In the CA model, each cell has five state-variables, including: 1. the dislocation
density variable which is initially set to be 1 × 1011 m−2 uniformly; 2. the orientation
variable which has a random value within the limits of 0–180; 3. the migrating distance
variable which controls the growth distance in each iteration step; 4. the recrystallization
number variable which records the DRX number of times; and 5. the grain boundary
symbol variable which is used to validate the grain boundary through two figure marking.

4.2. CA Performing Formulation

In the CA model, some assumptions are used to improve the simulation efficiency. For
instance, the gradient of dislocation density in a grain is neglectful, and the DRX nucleation
only occurs on the initial grain boundary and DRX grain boundary. Then, the time in each
iteration (∆t) is calculated as following [34]:

∆t =
Lc

vmax
(10)

where Lc is the cell length and vmax is the maximum moving velocity of grain boundaries.
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The strain increment is expressed as ∆ε =
.
ε ∆t. In each simulating iteration, the DRX

evolution complies with the transformation rules of the state variables, and these state
variables are renovated according to the calculated results. The results of CA simulation
such as flow stress (σ), DRX volume fraction (XDRX) and average grain size (daverage) are
calculated as follows [19,35]:

σ = αµb

(
1

N0

i=A1, j=B1

∑
i,j

ρi,j

)
(11)

XDRX =
NDRX
Ngain

(12)

daverage =

Ngain

∑
i=1

di
Si
S

(13)

where N0 is the amounts of the cells. A1 and B1 are the amounts of cells in i and j direction,
respectively. ρi,j is the dislocation density for the cell in (i,j) coordinates. Ngian is the
amounts of total cells and NDRX is the amounts of DRX cells. S is the overall areas of total
cells and Si is the area of the ith grain. di is the diameter of the ith gain, which can be
calculated as:

di = 2

√
NCSC

π
(14)

where NC is the number of cells occupied by the grain, SC is the area of a cell.

4.3. Material Parameters of CA Simulation

The value of deformation activation energy Qact in the CA model was obtained by
the flow stress curves of the as-extruded AM50 alloy. The flow stress σ is represented
as follows [36]:

.
ε = A[sinh(ασ)]n exp(−Qact/RT) (15)

where n, α and A are the material constants, respectively. R is the gas constant of
8.314 J mol−1 K−1.

.
ε is strain rate (s−1), and T is temperature (K). Taking the natural

logarithm of both sides of Equation (15), the expression is re-expressed as follows:

ln
.
ε = ln A + (−Qact/RT) + n ln[sinh(ασ)] (16)

Moreover, Qact can be expressed as:

Qact = nR
∂ ln sinh(ασ)

∂(1/T)
(17)

α can be represented as the following equation:

α =

(
∂ ln

.
ε

∂σ

)
/
(

∂ ln
.
ε

∂ ln σ

)
(18)

In this study, the value of σ is considered as σp [37], and linear regression analysis is
conducted on the data of ln

.
ε− ln σp, ln

.
ε− σp, ln

.
ε− ln

(
sinh

(
ασp
))

and ln
(
sinh

(
ασp
))
−

1/T as shown in the Figure 3. According to the results of Equations (17), (18) and the
regression analysis, the value of Qact can be calculated to be 130.845 kJ mol−1.
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The Zener–Hollomon parameter (Z) is commonly used to combine the effects of strain
rate and temperature on the hot deformation [38]. It can be presented as follows:

Z =
.
ε exp

(
Qact

RT

)
(19)

The correlation analysis of the values of K1 and K2 on the Z parameter are shown in
Figure 4. The results indicate that ln K1 and ln K2 are remarkably linear relative with ln Z.
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K2 = 1.829× 102Z−0.018 (21)

In addition, comparing with experimentally measured DRX grain size at certain defor-
mation conditions, some inaccessible material parameters can be determined by iteratively
refinement in the CA simulation, and the final values are shown in Table 1. Remarkably,
the optimized value of Qb is approximate to the value of experimental diffusion activation
energy [39].

Table 1. Obtained appropriate values of material parameters in the simulation.

Qb/kJ mol−1 µ/MPa b/m δD0b/m3s−1 m C v

145.425 175,000 3.2 × 10−10 1 ×
10−13 0.75 1.2 × 1010 0.32

5. Results and Discussion

The flow stress of the AM50 alloy under different deformation conditions are calcu-
lated by Equation (11) using the dislocation density outputs by the CA simulation. Figure 5
shows the comparisons of the flow stress between the CA predicting results and experimen-
tal results in the temperature ranges of 250–450 ◦C and the strain rate ranges of 0.001–10
s−1. The results reflect that the simulated results of flow stress are well agreement with
the experimental results. Moreover, the stress increases obviously at the beginning of the
deformation and subsequently decreases to a stable stage after the stress peak. It indicates
the occurrence of the DRX. Moreover, as shown in Figure 6, the maximum relative error (R)
is calculated to be 0.99483.
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The DRX volume fraction of the as-extruded AM50 alloy can also be simulated by CA.
To verify the accuracy of the predicted results of the DRX fraction, experimental values are
also obtained as [40]:

XDRX =
σP − σ

σP − σSS
(22)

where, σp is the peak stress and σSS is steady stress. Figure 7 shows the volume fraction of
DRX by CA-prediction under different strain rates and temperatures, which indicated that
the CA-predicted DRX volume fraction results are well matched with the experimental
results. Moreover, the DRX fraction curves of the AM50 alloy in Figure 7 show as an
“S” like shape. It demonstrates that the dynamic recovery dominates at the beginning of
hot deformation. As the deformation proceeded, the dislocations were accumulated and
gave adequate motivations for the DRX. Therefore, the DRX volume fraction increased
rapidly. With the development of DRX, a balance between the dynamic softening and
work-hardening can be finally obtained, corresponding to the steady stages of the DRX
fraction curves.
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Figure 8 shows the simulations of the microstructural evolution with different strains
(350 ◦C, 0.1 s−1) of 0.1, 0.2, 0.5 and 0.9, respectively. According to Figure 8a, few DRX grains
are obtained at the strain of 0.1. It can be attributed to that the grain-inside dislocation
density is below the critical dislocation density for DRX. When the strain was 0.2 (Figure 8b),
DRX nucleation occurred at the grain boundaries, and recrystallization grains are found.
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In Figure 8c, when the strain increased to 0.5, the accumulated distortion energy was
further promoted, thus the DRX nucleation as well as the DRX volume fraction increased
obviously. According to Figure 8d, when the strain was 0.9, all the original grains had
been replaced by DRX grains. The results indicate that elevating the strain in the hot
deformation is significant for the DRX of AM50 Mg alloy, thus giving fine microstructures.
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CA simulation.

Figure 9 shows the experiment and simulated microstructure of AM50 Mg alloy under
different strain rates (with a temperature of 350 ◦C and a true strain of 0.9). The results
indicate that the CA simulation results can be used to predict the microstructural morpholo-
gies of AM50 Mg alloy under large thermoplastic deformation. According to Figure 9a,d,
although fine DRX grains can be obtained, numerous of original grains remained under a
strain rate of 10 s−1. Under a strain rate of 0.1 s−1, fine and homogeneously distributed
grains are obtained, along with a completely elimination of original grains, as shown in
Figure 9b,e. According to Figure 9c,f, under a strain rate of 0.001 s−1, although the DRX
proceeds completely, the DRX grains is obviously coarser than that under a strain rate of
0.1 s−1. The difference of microstructure evolution under different strain rates is attributed
to that a longer deformation period is given under a low strain rate. In this case, the grain
boundary migrations are improved, resulting in a high growth rate of the DRX grains [41].

Figure 10 shows the experiment and simulated microstructures at different temper-
atures of 250 ◦C, 350 ◦C and 450 ◦C (with a strain rate of 0.01 s−1 and a true strain of
0.9). Figure 10a–c show that the DRX grain size is elevated with the increasement of the
temperature. In addition, as shown in Figure 10a, deformation twinning can be found at the
deformation condition of 250 ◦C/0.01 s−1. It indicates twin dynamic recrystallization also
occurred at low temperature [4]. According to Figure 10d–f, the experimental results match
the simulation results. It indicates that a high deformation temperature is helpful to give
more dislocation energy, thus improving the DRX. Generally, the migration rate of grain
boundaries and the growth of DRX grains are positive correlated with the deformation
temperature [42].
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As analyzed above, the DRX grain size of the AM50 Mg alloy is susceptive with
the temperature and strain rate. Table 2 gives the comparison on average grain sizes
between the experiment and CA simulated microstructures. The maximum relative error is
calculated to be 8.82%, indicating the CA simulation is reliable to predict the DRX grain
morphology and the grain size of AM50 Mg alloy during hot deformation.
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Table 2. Comparison on the average grain size between the experiment and CA simulated microstruc-
tures.

Temperature/◦C Strain Rate/s−1
Average Grain Size/µm

Error (%)
Experiment CA Simulated

250 0.1 7.5 7.8 4.00
350 0.001 6.6 6.4 3.03
350 0.1 5.1 4.9 3.92
350 10 6.8 6.2 8.82
450 0.1 8.5 8.7 2.35

6. Conclusions

A CA model was proposed for predicting the DRX behavior of AM50 Mg alloy during
hot deformation in a wide temperature range of 250–450 ◦C and a strain rate range of 0.001–
10 s−1. The flow stress, DRX grain size and DRX volume fraction were predicted by the CA
simulation. The DRX behavior of the AM50 Mg alloy is susceptive with temperature, strain
and strain rate. The grain size can be remarkably refined by the DRX under an appropriate
deformation condition. The CA simulated results are well matched with the experiment
results, and it demonstrates that the established CA simulation method is appropriate for
describing the DRX behavior of AM50 Mg alloy during thermoplastic deformation.
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and H.Z. All authors have read and agreed to the published version of the manuscript.
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