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Abstract: The current work presents a detailed investigation for the effect of a wide range friction
stir welding (FSW) parameters on the dissimilar joints’ quality of aluminum alloys. Two groups of
dissimilar weldments have been produced between AA5083/AA5754 and A5083/AA7020 using tool
rotational rates range from 300 to 600 rpm, and tool traverse speeds range from 20 to 80 mm/min.
In addition, the effect of reversing the position of the high strength alloy at the advancing side and
at retreating side has been investigated. The produced joints have been investigated using macro
examination, hardness testing and tensile testing. The results showed that sound joints are obtained
at the low heat input FSW parameters investigated while increasing the heat input results in tunnel
defects. The hardness profile obtained in the dissimilar AA5083/AA5754 joints is the typical FSW
hardness profile of these alloys in which the hardness reduced in the nugget zone due to the loss of
the cold deformation strengthening. However, the profile of the dissimilar AA5083/AA7020 showed
increase in the hardness in the nugget due to the intimate mixing the high strength alloy with the low
strength alloy. The sound joints in both groups of the dissimilar joints showed very high joint strength
with efficiency up to 97 and 98%. Having the high strength alloy at the advancing side gives high
joint strength and efficiency. Furthermore, the sound joints showed ductile fracture mechanism with
clear dimple features mainly and significant plastic deformation occurred before fracture. Moreover,
the fracture in these joints occurred in the base materials. On the other, the joints with tunnel defect
showed some features of brittle fracture due to the acceleration of the existing crack propagation
upon tensile loading.

Keywords: friction stir welding; dissimilar welding; aluminum; mechanical properties; fracture

1. Introduction

AA5754 and AA5083 are aluminum magnesium alloys, and their most prominent
features are the high corrosion resistance and good formability. Thus, they have been
extensively used in pressure vessels, tanks, trucks and shipbuilding [1,2]. AA7020 is a
precipitation-hardened aluminum alloy, demonstrating high strength per weight ratio [3].
The use of the dissimilar alloys leads to the sustainable advantages such as overall cost
reduction and hybrid properties that are available in the two different alloys. Appropriate
joining process and its parameters optimization plays a vital role in the service performance
of these alloys. Challenges like solidification cracking, porosity, intermetallic formation
and so on are present due to the difference in the chemical and physical properties of the
dissimilar alloy’s combinations. Recently, the friction stir welding (FSW) of dissimilar
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aluminum alloys combinations has been studied extensively, which proved the potential of
the process to join these alloy combinations [4–6]. However, improper FSW parameters
give rise to the formation of intermetallic compounds and internal and external defects (e.g.,
tunnel formation, voids, surface grooves and flash) [6–10]. Therefore, the investigation of
FSW parameters is very important for obtaining defect-free joints with good mechanical
properties. The placement of the higher strength aluminum alloys at the advancing side
(AS) or at the retreating side (RS) affects material flow as it strongly influences material the
stirring and flow behavior [10,11]. This can be a crucial parameter affecting the final joint
microstructure, particularly when the selected combinations of base material (BM) have
significant differences in their mechanical properties, microstructure and texture [4,12–16].
Some researchers studied the effect of the placement of BM on the material flow and
the resulting FSWed microstructure and the mechanical properties [17,18]. Palanivel
et al. [15] revealed that the tool rotational rate and tool pin profiles affected the AA5083-
H111/AA6351-T6 joint strength because of the loss of cold work in the heat affected zone
(HAZ) of AA5083 side, dissolution and over-aging of precipitates of AA6351 side and
macroscopic defects formation in the weld zone. Jannet and Mathews [17] concluded
that the AA6061 T6/AA5083 O joints fabricated at tool rotational rate of 900 rpm yielded
a higher tensile strength than those fabricated at 750 rpm contributed by the thorough
plastic flow and dissolving of dissimilar alloys and due to reduction in heat generated
from plastic flow of the metal at 750 rpm. Park et al. [18] showed that the materials were
more properly mixed when the AA5052-H32 was in the AS and the AA6061-T6 was in
the RS than the reverse case on RS. Leitao et al. [19] reported that the global mechanical
behavior of the AA6016-T4/AA5182-H111 welds was a 10–20% strength reduction relative
to the base materials and important losses in ductility. Khanna et al. [20] concluded that
softer alloy should be placed on AS with tool offset towards it for better FSWed AA6061-
T6/AA 8011-H14 qualities. Kailainathan et al. [16] showed that the tensile strength of the
6-mm-thick AA6063/AA8011 joints was increased with the increase in the tool rotational
speed due to the uniform temperature distribution at the weld region. However, beyond
1200 rpm, an adverse effect was noticed due to the distortion in the weld region. Abd
Elnabi et al. [21] reported that the traverse speed has the highest contribution to the process
for ultimate tensile strength of AA5454/AA7075 joints. Cole et al. [22] estimated that the
AA6061/AA7075 joint strength was improved with decreasing the power input to the
weld because of the sensitivity of alloy to heat input and weld temperature. The work
of Ouyang and Kovacevic [23] suggested that the lower-strength alloy should be placed
on AS for obtaining a better weld quality. Gerard and Ehrstrom [24] mentioned that the
material with the higher solidus temperature should be on the AS not only for joint quality
improvement but also for internal defects/porosity elimination. Guo et al. [25] revealed
that the material mixing is much more effective when AA6061 alloy was located on the AS
for AA6061/AA7075 joints. The ultimate tensile strength of the joints increases with the
decrease of the heat input induced by friction. Kim et al. [26] demonstrated that excessive
agglomerations and defects generated by joints when the high strength Al alloy on the AS
of AA5052/AA5J32 are placed due to limited flow of material. Lee et al. [27] concluded
that the mechanical properties of the stir zone showed higher values when AA6061 were
positioned at the RS due to the complex microstructure of the stir zone. On the other hand,
Jonckheere et al. [28] showed that material flow and joint quality are more dependent on
the FSW conditions and their effects on heat input and temperature distribution in weld
nugget, regardless of BM placement. Due to the material plastic flow during FSW, the heat
generation is controlled by tool rotation and welding speed [29–31]. However, very high
rotation speeds lead to macroscopic defects because of the excessive heat input [1,32–34].
To the author’s knowledge, the FSW of AA5083/AA5754 and AA5083/AA7020 have
not been reported in the open literature. The present work focuses on the influences of
FSW parameters more deeply including the traverse speeds (20–80 mm/min) and AS/RS
positions of base materials on the quality and the mechanical properties of the dissimilar
AA5083/AA5754 and AA5083/AA7020 joints.
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2. Experimental Procedure
2.1. Materials

Three commercial aluminum alloys AA5083-O, AA5754-H14 and AA7020-T6 were
chosen for producing dissimilar friction stir butt welds. The alloys were purchased in the
form of rolled plates of 10 mm thick. The butt welds were designed to be 200 mm total
width which composed of two plates; each plate was 100 mm wide and 200 mm long. The
nominal chemical compositions of the parent materials are listed in Table 1. Moreover, the
tensile strength, temper condition and hardness of the parent materials are summarized in
Table 2.

Table 1. Nominal chemical composition of aluminum alloys AA5083, AA5754 and AA7020.

Alloy Elements in wt.%

Si Fe Cu Mn Mg Zn Cr Ti Al

AA5083 0.40 0.40 0.10 0.4–1.0 4.0–4.9 0.25 0.05–0.25 0.15 Bal.
AA5754 0.40 0.40 0.10 0.50 2.6–3.6 0.20 0.30 <0.15 Bal.
AA7020 0.35 0.40 0.20 0.05–0.50 1.0–1.4 4.50 0.1–0.35 <0.35 Bal.

Table 2. Mechanical properties of the aluminum alloys AA5083, AA5754 and AA7020.

Alloy Condition Tensile Strength, MPa Hardness, HV

AA5083-O Annealed 233 68

AA5754-H14 Strain hardened-1/2 hard 251 74

AA7020-T6 Solution heat treated and
artificially aged 364 117

2.2. Friction Stir Welding Procedure

The welding process was performed on the friction stir welding machine (EG-FSW-M1)
at Suez University. This machine has been locally designed and manufactured in Egypt. The
main motor power of this machine is 30 HP (22 kW) and can deliver torque up to 100 N·m,
rotational speed up to 3000 rpm and tilt angel up to ±5◦. The travel speed of the table
up to 1000 mm/min. The tool design is an important parameter in FSW processes, which
influences the heat generation, plastic flow, the resulting microstructure and mechanical
properties of the welded material. The used rotating tool was of a cylindrical threaded
pin with scrolled shoulder made of H13 tool steel that heat treated to obtain hardness of
50 HRC. The shoulder diameter was 25 mm, the pin (probe) diameter was 8 mm, and pin
height was 9.8 mm, which is slightly less than the material thickness (10 mm). The angle
between the edge of shoulder and the pin was 3◦. The configuration of the tool used in this
study is shown in Figure 1.

The hardness of the as-received tool steel was 25.3 HRC. After manufacturing the FSW
tool, it has been hardened by heating to 950 ◦C and holding for 30 min then oil quenched,
then tempered by heating to 550 ◦C and holding for one hour then air-cooled to room
temperature. The heat treatment process was carried out using an electric resistant furnace
of type Nabertherm-1200 ◦C. The hardness of the hardened tool steel was measured as 61
HRC. The tempering process has decreased the tool hardness to 54 HRC. Al alloy plates
were prepared to obtain the required dimensions of 200 mm length and 100 mm width. The
plates were clamped properly on the FSW machine table as shown in Figure 2a, b shows
the butt joint after completing the FSW process.

For the system AA5083/AA5754, the plate of the alloy AA5083 was positioned in the
AS, while the AA5754 plate was in the RS as illustrated in Figure 2a. Workpieces were
rigidly clamped, to prevent the plates from lifting apart during the welding process. For
the system AA5083/AA7020, the plate of the alloy AA5083 was positioned in the AS, while
the AA7020 plate was in the RS for a set of welding conditions. For the same set of the
welding conditions, the plate of the AA7020 was reversed to be positioned in the AS and
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the plate of the AA5083 was in the RS, as shown in Table 3. The welding process progressed
as follows: The tool was rotated and slowly plunged into the workpiece with speed of
0.1 mm/s until the shoulder of the tool forcibly contacts the upper surface of the material.
After that, the tool was traversed along the weld line for a single pass weld. The tool
was tilted by a constant angle of 3◦ against the vertical axis, so that the rear of the tool is
lower than the front. This has been found to assist the forging process and the material
flow during FSW. Table 3 summarizes the different combinations of operating conditions
parameters investigated in this work during FSW. The desired welding parameters are
based on the ongoing research at the authors laboratory in FSW of the different aluminum
alloys of 10 mm thick.

2.3. Macrostructural Investigation

Cross sections of welded joints were prepared for metallographic analysis using
standard metallographic procedure [32]. The samples were etched using Keller’s reagent
for a period of 40–50 s. at room temperature to reveal the macrostructure of the welded
samples and then washed with water and acetone, and then air-dried.
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Figure 2. (a) The clamping of the plates on the FSW machine table with the advancing side (AS) and
retreating side (RS) indicated and the tool rotation direction indicated also by the red arrow and (b)
Aluminum alloys butt joint on the table after FSW.

Table 3. FSW welding parameters and position of alloys at the AS and RS.

AA5083/AA5754 AA5083/AA7020

Rotation
Speed (rpm)

Travel Speed
(mm/min) Position Rotation

Speed (rpm)
Travel Speed

(mm/min) Position

400
20 AA5083 AS

500
20 AA5083 AS

40 AA5083 AS 40 AA5083 AS
60 AA5083 AS 80 AA5083 AS

600
20 AA5083 AS

500
20 AA7020 AS

40 AA5083 AS 40 AA7020 AS
60 AA5083 AS 80 AA7020 AS

2.4. Mechanical Properties

The materials were mechanically tested before and after FSW for comparison. To have
an insight into the mechanical properties, hardness measurements and tensile testing were
carried out. Vickers macro-hardness tests were performed on the transverse cross-sections
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perpendicular to the welding direction with an interspacing distance of 2 mm using a test
load of 1000 g force and dwell time of a 15 s. To evaluate the tensile properties of the
welded stir zone, transverse flat tensile specimens were used. Specimens were machined
perpendicular to the FSW direction to the dimensions: length of 80 mm, width of 15 mm,
and thickness of 8.5 mm. The specimen’s dimensions agree with the DIN EN10002-1
2001(D) standards. After machining, both surfaces of the samples were flushed to avoid
any dimensional irregularity. Figure 3 shows the dimensions of the tensile specimen
and an image of the sample after tensile testing. Tensile tests were carried out at room
temperature with an initial crosshead speed of 0.1 mm/s using the universal testing
machine Instron 4210, Norwood, MA, USA. The tensile data acquired were analyzed to
determine tensile properties and joint efficiency. The fracture surface of the tension tested
samples was examined using the Scanning Electron Microscope Type: Quanta 250 with a
Field Emission Gun, FEI company (Hillsboro, OR, USA) to determine the failure mode of
the welded samples.
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3. Results and Discussion
3.1. Effect of FSW Parameters on the Heat Input

Heat input is one of the important parameters associated with all welding processes
and affects the weld quality and properties. Although, FSW is characterized by low heat
input relative to the fusion welding processes, still heat input plays a significant role in
controlling the joints properties and quality [33]. In this work, the control system in the
FSW machine used allows the recording of the spindle torque T (N·m) that can be used
with the other FSW parameters such as rotational speedω (rpm) and the welding speed
v (mm/min) to calculate the heat input. Heat input is defined as the heat energy applied to
the workpiece per unit length in the unit of (J/mm). The source of heat generated during
FSW is mainly from the friction between the tool and the stirred material and the heat
input during FSW can be calculated using Equation (1) [33–35]:

Heat Input (J/mm) =
power
speed

= η

(
ωT

v

)
(1)

Whereω =

(
2πr
60

)
(2)
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where T is the torque (N·m),ω is the rotational speed (rpm), v is the linear speed (mm/min)
and η is the efficiency of heat transfer, (η = 0.9) [36,37]. The pseudo heat index is represented
by the ratio of the square of the rotational speed to travel speed (ω2/v). As a function of
FSW parameters, it can be considered a simple heat input metric and a well-known method
to predict the heat generated during FSW. The maximum temperature highly depends on
the rotation tool speed while the heating rate depends on the welding speed at a given
tool geometry and plunge depth. The rotation tool speed term is squared because of its
significant effect on the heat generated during the process [38]. The pseudo-steady-state
welding parameters, calculated heat input and heat index are presented in Table 4.

Table 4. Key pseudo-steady-state welding parameters.

Joint AS-RS ω (rpm) v (mm/min) ω/v Torque
(N·m) HI (J/mm) Heat Index

ω2/v

AA5083-
AA5754

400 20 20.0 91 171 8000
400 40 10.0 117 110 4000
400 60 6.7 116 73 2666

AA5083-
AA5754

600 20 30.0 73 206 18,000
600 40 15.0 87 123 9000
600 60 10.0 85 80 6000

AA5083-
AA7020

500 20 25.0 87 205 12,500
500 40 12.5 91 107 6250
500 80 6.3 65 39 3125

AA7020-
AA5083

500 20 25.0 101 238 12,500
500 40 12.5 85 100 6250
500 80 6.3 104 62 3125

For the joints AA5083/AA5754, Figure 4a shows that the relatively high travel speed
(60 mm/min) with low rotational speed (400 rpm) resulted in low ω/v value (6.66) and
consequently low heat input value. Decreasing the welding speed to 40 mm/min for the
same rotational speed of 400 rpm in Figure 4a increased theω/v value to 10, leading to an
increase in the heat input level. In Figure 4a, although the value of is the same (ω/v = 10)
for a travel speed of 60 mm/min and rotational speed of 600 rpm as that in Figure 4a,
the increased travel speed of 60 mm/min has showed a more dominant effect than the
rotational speed (600 rpm) and resulted in decreasing the HI level. For the other system of
joint (AA5083/AA7020; Figure 4b), the heat input can be interpreted in the same manner
as explained in Figure 4a. The increased level of ω/v value (25) in Figure 4b (500 rpm
and 20 mm/min) has resulted in obvious increase in the heat input level which reach the
value of 261 J/mm. Changing the arrangement of the plates from AA5083/AA7020 to
AA7020/AA5083 for the sameω/v value (6.25) has showed no difference in the power and
heat input values, as shown in Figure 4b.

3.2. Joint Appearance and Internal Quality

To investigate the joint appearance, the top surfaces of all joints have been visually in-
vestigated and pictured. Figures 5 and 6 show the top view of the FSWed AA5083/AA5754
and AA5083/AA7020, respectively. It should be mentioned here that the alloys position at
the AS and RS has been ignored in case of the alloys of the same series AA5083/AA5754,
while this parameter has been taken into consideration in case of the different series alloys
AA5083/AA7020. Figure 5 clearly shows top surfaces free of any surface defects almost at
all FSW conditions investigated for this group of alloys except the tool pin breakage at the
600-rpm rotation rate and both 40 and 60 mm/min traverse speeds. The position of the tool
breakage is indicated in each top surface by a black arrow. This breakage of the tool pin at
the high tool rotation rate and the high tool traverse speed can be attributed to the increase
in the applied pressure at the high welding speeds to keep the plunge depth constant. In
terms of the flash at the top surface, it is almost minimum under all conditions.
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Figure 6 shows the top surface of the FSWed AA5083/AA7020 and AA7020/AA5083
at the same welding conditions for each combination. The surfaces are clearly free of
any surface defects expect little flash at the AS especially in case of AA5083/AA7020 that
have reduced by reversing the alloys position. Moreover, the reversing alloys position has
resulted in tool pin breakage at the highest welding speed condition in the combination
AA7020/AA5083. This can be attributed to the resistance of the high strength alloy at the
AS especially at the high welding speed of 60 mm/min.

Similar surface features can be visualized in the FSWed joints AA5083/AA7020 and
AA7020/AA5083 shown in Figure 6. In some samples, the plasticized flash became clear
thick as shown in samples welded at low travel speed (20 and 40 mm/min) where the
heat input is higher, and the material is more ductile. This thick flash could be also related
to the high applied pressure by the shoulder which leads to excessive penetration of the
shoulder in the hot stirred material. At higher travel speed (80 mm/min, Figure 6) the
formed flash is thin, discontinuous, and easily dethatched from the FSWed samples. One
additional defect is the keyhole formed at the exit of the pin from the material at the end of
the welding pass, which is a characteristic defect in the FSWed samples. Finally, it can be
said that the welded surface showed a relatively minimum amount of flash which consider
as materials loss due to either a higher plunging force or a hotter condition, e.g., a higher
rotational speed and/or a lower traverse speed as it will be discussed in studying the FSW
heat input.
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Figure 4. Calculated heat input of friction stir welded joints at different rotation and traverse
speeds (i.e., at differentω/v ratios) versus the relative pass time (ti/ttotal) for FSW for the joints (a)
AA5083/AA5754 and (b) AA5754/AA7020.
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Figure 6. Surface appearance of friction stir welded joints AA5083/AA7020 at different rotation
and traverse speeds: (a) AA5083/AA7020, 500 rpm, 20 mm/min, (b) AA7020/AA5083, 500 rpm,
20 mm/min, (c) AA5083/AA7020, 500 rpm, 40 mm/min, (d) AA7020/AA5083, 500 rpm, 40 mm/min,
(e) AA5083/AA7020, 500 rpm, 80 mm/min and (f) AA7020/AA5083, 500 rpm, 80 mm/min.
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Figure 7 shows the transverse cross section macrographs of the polished and etched
FSW joints AA5083/AA5754 at rotational speeds of 400 and 600 rpm using traverse speeds
of 20, 40 and 60 mm/min. Although several Keller’s’ reagents have been used at different
concentrations to etch the polished sections; the boundaries separating the stirred zone
(SZ) and base material are difficult to identify due to the difficulties of etching the AA5XXX
Al-alloy group. However, the presented transverse cross section macrographs show defect
free joints in two joints out of six made for this combination. The two of the joints welded
at 400 rpm and traverse speeds of 40 mm/min and 60 mm/min are completely sound and
defect-free, while the joint made at welding speed of 20 mm/min contains a tiny tunnel
defect indicated by arrow on the macrograph. This implies that at 400 rpm increasing the
welding speed from 20 mm/min to 40 mm/min and 60 mm/min eliminates the tiny tunnel
defect. The calculated heat input data above indicates that increasing the welding speed
at constant rotation rate results in a decrease of the heat input. The three joints welded at
600 rpm for the same base materials with same arrangement (AS & RS) contain different
sizes of tunnel defect from tiny or small to medium size. This indicates that the high heat
input will result in tunnel defect, and this can be attributed to the change in the friction
condition during the FSW process. There are two friction conditions reported to occur
during FSW based on the FSW conditions or based on the heat input namely sticking friction
and sliding friction [38]. This would result in some frictional slippage at the shoulder.
There could also be instances where the FSW process may alternate between plastic flow
and frictional slippage or a stick-slip mode operating at the shoulder. Alternating boundary
conditions at the interface may act to destabilize the temperature, which may cause stick-
slip oscillations [38]. The AA5083 is reported display poor weldability during FSW due to
the strong influence of the plastic properties at high temperatures, on material flow during
welding, as well as on contact conditions at the tool workpiece interface [39].

Figure 8 shows the optical macrographs of the transverse cross sections of the FSW
joints AA5083/AA7020 and AA7020/AA5083 produced at rotational speed of 500 rpm
and traverse speeds of 20, 40 and 80 mm/min. Etching shows the deformation lines of the
alloy AA7020 (as it is well known in the AA7XXX Al-alloy series) and the welding zone
can be distinguished from the two base plates. The optical macrographs in Figure 8 clearly
show that the boundaries between the nugget zone (NG) and the base materials are well
defined through the whole thickness. The shape of the NG is wide conical near the top
surface due to the large shoulder diameter dominating the stirring and deformation at
the top surface. While it is narrow cylindrical near the lower surface due to the small pin
diameter dominating the stirring and deformation at the lower surface. A transition can be
noted with the conical shape narrowing towards the base. In this transition zone both the
shoulder and the pin are contributing to the stirring and deformation. It can be observed
that the interface near to the AA7020 is clearer and more distinguished regardless of the AS
or RS. This can be due to the effective etching in revealing the micro and macro-features for
this alloy in contrast to AA5083. In addition, it can be observed that the interface near to
the AA7020 is always free of any defects regardless of the position of the alloy in the AS or
RS. Having the AA5083 at the AS has resulted in defect free joint at the welding speed of
20 mm/min, while by increasing the welding speed a very small tunnel defect has occurred
at the AS at the welding speed of 40 mm/min and increased in size at 80 mm/min. These
tunnel defects can be formed due to the insufficient down force applied during the FSW.
This can be attributed to the high resistance of the AA7020 that does not allow the required
pressure for the complete consolidation at the applied constant plunge depth. The level of
the NG region at the top surface is slightly higher than the level of the base material which
supports the scenario of the lack in the applied pressure that causes the tunnel defects.
On the other hand, having the AA5083 at the RS has resulted in two defect free joints at
the welding speeds of 20 and 80 mm/min. At the welding speed of 40 mm/min, a tunnel
defect occurred at the center of the NG near the lower base. This can be attributed to the
low applied pressure during the FSW process.
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Figure 7. Polishing cross-sections of friction stir welded joints AA5083/AA5754 at different rotational
and traverse speeds. Arrows refer to the tunnel defects: (a) 400 rpm, 20 mm/min, (b) 400 rpm,
40 mm/min, (c) 400 rpm, 60 mm/min, (d) 600 rpm, 20 mm/min, (e) 600 rpm, 40 mm/min and (f)
600 rpm, 60 mm/min.
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Figure 8. Cross sections of friction stir welded joints at different rotational and traverse speeds for
AA5083/AA7020 and AA7020/AA5083 after etching: (a,d) 500 rpm, 20 mm/min, (b,e) 500 rpm,
40 mm/min and (c,f) 500 rpm, 80 mm/min.

Table 5 summarizes the defects formed in the produced FSWed joints and the welding
conditions. For instance, it is difficult to relate the formed defect to the welding conditions
such as the rotational speed (ω), travel speed (v) or their combination (ω/v). The general
observation is that the internal defects (pin hole or tunnel) are shifted to the side of the
softer plate (AA5083) and formed in the lower half of the joint away for the part of the SZ
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produced by the rotation of the shoulder. This reflects the positive effect of the pressure
excreted by the shoulder on the SZ.

Table 5. Visual inspection of the macrostructure of cross section of the FSWed joints and the welding
conditions (ω and v).

Joint ω (rpm) v (mm/min) ω/v Surface Thin Flash
and Track Lines Internal Defect

AA5083/AA5754

400 20 20 - -
400 40 10 thin flash -
400 60 6.66 - -
600 20 30 - pin hole
600 40 15 track lines, thin flash tunnel
600 60 10 thin flash -

AA5083/AA7020
500 20 25 thick flash -
500 40 12.5 thick flash -
500 80 6.25 thin flash tunnel

AA7020/AA5083
500 20 25 thin flash -
500 40 12.5 - pin hole
500 80 6.25 track lines, thin flash -

3.3. Mechanical Properties
3.3.1. Macro-Hardness Distribution

Figure 9 shows the hardness profile measured at the midsection of the transverse
cross sections of the FSWed joints AA5083/AA5754 at 400 rpm with the different welding
speeds in Figure 9a and at 600 rpm with the different welding speeds in Figure 9b. It
can be observed that the hardness is reduced in the weld zone with more reduction by
increasing the rotation rate from 400 rpm to 600 rpm at each welding speed, and this is
mainly due to the increase in the heat input. Moreover, the reduction in the NG hardness
is also affected by the increase in the welding speed at the constant rotation rate. It can
be noted that the NG hardness is reduced more by decreasing the welding speed from
60 mm/min up to 20 mm/min at the constant rotation rate. In terms of the width of the
heat affected zone at each rotation rate, it is reduced by increasing the welding speed.
Generally, this hardness reduction in the weld zone is mainly because of the thermal cycle
on the strain hardened alloys. The thermal cycle leads to softening of the strain hardened
material through the recovery and recrystallization processes that take place during FSW
of the aluminum alloys [40].

Figure 10 shows the hardness profile measured at the midsection of the transverse
cross sections of the FSWed joints AA7020/AA5083 at 500 rpm with AA5083 at the AS
and different welding speeds in Figure 10a and with the AA7020 at the AS and different
welding speeds in Figure 10b. It can be observed that both profiles show almost no
reduction in the base materials hardness in all the heat affected zone of the two alloys;
however, a slight increase in the hardness of the AA7020 alloy can be observed towards
the NG center regardless of its position at the AS or RS. This can be attributed to the solid
solution strengthening that can occur due to the stirring of the dissimilar alloys [41]. On
the other hand, there is a slight decrease in the hardness of the AA5083 towards the NG
center regardless of its position at the RS or the AS. This is mainly because of thermal cycle
on the softening of the FSWed alloy.

3.3.2. Tensile Properties Analysis

The tensile strength properties of the FSW joints are usually compared with those of
the alloy having lower tensile strength [41–43]; here AA5083. For design purposes, the
yield stress is used more frequently than the ultimate tensile strength so that the yield
stress is determined (σ0.2%) for the tested base materials and FSW joints. Relative ultimate
tensile strength (σUTS joint/σUTS 5083) and relative yield stress (σ0.2% joint/σ0.2% 5083) of
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the produced FSW joints were determined from the tensile stress–strain curves. These
relative values (ultimate tensile strength and yield stress) were presented as a function of
the welding speeds as shown in Figure 11. Figure 11a summarizes the tensile properties of
FSWed joints AA5083/AA5754 at different welding speeds of 20, 40 and 60 mm/min and
at rotational speeds of 400 and 600 rpm obtained from the tensile stress strain curves of the
FSW samples and related to the tensile properties of the base alloy.
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Figure 11. Relative tensile strength (σUTS joint/σUTS 5083) and relative yield stress (σ0.2% joint/σ0.2% 5083) of the
produced FSW joints against the welding speeds.

As a usual trend, the tensile strength increases with increasing the travel speed and
with decreasing the rotational speed, because of the lower generated heat input which
permits materials softening. This statement can be supported by the relative yield stress
presented in Figure 11a. The relative ultimate tensile strength of FSWed joints is greatly
affected by the internal defects in some samples causing early fracture. FSW of the joints
AA7020/AA5083 at rotational speed of 500 rpm and travel speed of 80 mm/min has
produced joint with ultimate tensile strength comparable with the base alloy AA5083,
while the yield stress is even higher than that of the base alloy Figure 11b. Regardless the
defect happened at a travel speed of 40 mm/min, clamping the higher strength plate as
an AS in friction stir welding of materials with high differences in strength increases the
joint strength.

Figure 12 shows macrographs for the fracture positions of the tensile samples of
AA5083/AA5754 joints at different welding parameters: (a) 400 rpm–20 mm/min, (b)
400 rpm–40 mm/min, (c) 400 rpm–60 mm/min. and fracture locations of AA5083/AA7020
joints at 500 rpm but different travel speeds and positions; (d) AA7020 AS-20 mm/min,
(e) AA7020 AS-40 mm/min and (f) AA7020 AS-80 mm/min. It can be observed that
the fracture occurred at the nugget zone in one joint of AA5083/AA5754 (Figure 12a)
mainly due to the defect while the fracture occurred away from the NG zone in two joints
(Figure 12b,c). In terms of the AA7020/AA5083 joints, it can be observed that the low-
speed joint fracture occurred away from the NG (Figure 12d) and the high-speed joints the
fracture occurred inside the NG (Figure 12e,f) mainly due to the defects noted. The fracture
surface of two samples indicated in Figure 12 are investigated using SEM and EDS analysis.
Clearly, it can be observed that from Figure 13 that the fracture mechanism of the dissimilar
AA AA5083/AA5754 is ductile mode with very clear dimple features as can be seen in
the enlarged micrographs of Figure 13b,c. The inclusions shown in Figure 13d are mostly
aluminum and magnesium oxides as detected by the EDX analysis. The lack of adherence
of such oxide inclusions with the matrix has accelerated the formation of pores around
the inclusions through decohesion between the inclusions and the surrounding material
which make the microcracks initiation by the coalescence of the neighboring pores possible.
With increasing the applied load, the microcracks grow faster and propagate until the
reaching the complete fracture. Figure 14a–d shows the fracture surface SEM micrographs
of the dissimilar joint AA5083/AA7020. Clearly the dimple features are dominating, which
confirms the ductile fracture mechanism.
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Figure 12. Fracture locations of tensile test specimens of AA5083/AA5754 joints at different welding
parameters: (a) 400 rpm–20 mm/min, (b) 400 rpm–40 mm/min and (c) 400 rpm–60 mm/min and
fracture locations of AA5083/AA7020 joints at 500 rpm but different travel speeds and positions; (d)
AA7020 AS-20 mm/min, (e) AA7020 AS-40 mm/min and (f) AA7020 AS-80 mm/min.
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Figure 13. SEM micrographs of the fracture surface of tensile test sample of AA5083/AA5754 joint
at 400 rpm–60 mm/min, (a) mixed fracture mode (b) brittle fracture features, (c) ductile fracture
features, (d) EDX spot analysis of the points 1 and 2.



Metals 2021, 11, 68 17 of 20Metals 2021, 11, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 14. (a,c) SEM images of the fracture surface of tensile test samples of AA7020/AA5083 joint 
of AA7020 AS, 500 rpm–20 mm/min; (b,d) show the shape deep dimples. 

4. Conclusions 
In the present study, dissimilar aluminum alloys (AA5083/AA5754 and 

AA5083/AA7020) were successfully joined by FSW at a wide range tool rotation speed of 
300-600 rpm, a traverse welding speed range of 20–80 mm/min and reversing the alloys 
between the AS and the RS. From the obtained results the following conclusions can be 
drawn: 
− Sound joints are obtained at the low heat input FSW parameters investigated while 

increasing the heat input results in tunnel defects. 
− The hardness profile obtained in the dissimilar AA5083/AA5754 joints is the typical 

FSW hardness profile of these alloys that reduced in the NG zone due to the loss of 
the cold deformation strengthening. However, the profile of the dissimilar 
AA5083/AA7020 showed increase in the hardness in the NG due to the intimate mix-
ing the high strength alloy with the low strength alloy. 

− The sound joints in both groups of the dissimilar joints showed very high joint 
strength with efficiency up to 97 and 98%. Having the high strength alloy at the ad-
vancing sides gives high joint strength and efficiency. 

− The sound joints showed ductile fracture mechanism with clear dimple features, and 
significant plastic deformation occurred before fracture. Moreover, the fracture in 
these joints occurred in the base materials. On the other hand, the joints with tunnel 
defect showed some features of brittle fracture due the acceleration of the existing 
crack propagation upon tensile loading. 

Author Contributions: Conceptualization, S.A., E.A. and M.M.Z.A.; methodology, A.M.A.M., E.A. 
and M.M.E.-S.S.; validation, S.A., N.A.A. and E.A.; formal analysis, S.A. and M.M.Z.A.; investiga-
tion, M.M.E.-S.S., S.A. and E.A.; writing—original draft preparation, S.A. and E.A.; writing—re-
view and editing, M.M.Z.A. and N.A.A.; project administration, M.M.Z.A. and M.M.E.-S.S. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable 

Informed Consent Statement: Not applicable 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. The data are not publicly available due to the extremely large size. 

Figure 14. (a,c) SEM images of the fracture surface of tensile test samples of AA7020/AA5083 joint
of AA7020 AS, 500 rpm–20 mm/min; (b,d) show the shape deep dimples.

4. Conclusions

In the present study, dissimilar aluminum alloys (AA5083/AA5754 and AA5083/AA7020)
were successfully joined by FSW at a wide range tool rotation speed of 300–600 rpm, a traverse
welding speed range of 20–80 mm/min and reversing the alloys between the AS and the
RS. From the obtained results the following conclusions can be drawn:

− Sound joints are obtained at the low heat input FSW parameters investigated while
increasing the heat input results in tunnel defects.

− The hardness profile obtained in the dissimilar AA5083/AA5754 joints is the typ-
ical FSW hardness profile of these alloys that reduced in the NG zone due to the
loss of the cold deformation strengthening. However, the profile of the dissimilar
AA5083/AA7020 showed increase in the hardness in the NG due to the intimate
mixing the high strength alloy with the low strength alloy.

− The sound joints in both groups of the dissimilar joints showed very high joint strength
with efficiency up to 97 and 98%. Having the high strength alloy at the advancing
sides gives high joint strength and efficiency.

− The sound joints showed ductile fracture mechanism with clear dimple features, and
significant plastic deformation occurred before fracture. Moreover, the fracture in
these joints occurred in the base materials. On the other hand, the joints with tunnel
defect showed some features of brittle fracture due the acceleration of the existing
crack propagation upon tensile loading.
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ω: rotational speed, rpm
η: efficiency of heat transfer, %
σ0.2%: 0.2 offset yield stress, MPa
σUTS: Ultimate tensile strength, MPa
AA: Aluminum alloy
AS: advancing side
BM: Base Material
EDX: Energy Dispersive X-Ray
FSW: Friction stir welding
FSWed: Friction Stir Welded
HAZ: Heat affected zone
HI: Heat Input, J/mm
HP: Horsepower
HRC: Hardness Rockwell C
HV: Hardness Vickers
NG: Nugget zone
Rpm: Revolution per minute
RS: retreating side
SEM: Scanning electron microscope
SZ: stirred zone
T: Torque, N·m
TMAZ: Thermomechanical affected zone
v: welding speed, mm/min
WN: Welding nugget

References
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