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Abstract: Good slow disturbances attenuation in a mold level control with stopper rod is very
important for avoiding several product defects and keeping down casting interruptions. The aim of
this work is to improve the accuracy of the diagnosis and compensation of an adaptive mold level
control method for slow disturbances related to changes of stopper rod. The advantages offered by
the architecture, called Adaptive-Network-based Fuzzy Inference System, were used for training
a previous model. This allowed learning based on the process data from a steel cast case study,
representing all intensity levels of valve erosion and clogging. The developed model has high
accuracy in its functional relationship between two compact input variables and the compensation
coefficient of the valve gain variations. The future implementation of this proposal will consider a
combined training of the model, which would be very convenient for maintaining good accuracy in
the Fuzzy Inference System using new data from the process.

Keywords: fuzzy neural networks; adaptive systems; disturbance rejection; continuous casting; mold
level fluctuation; stopper rod; steel manufacture

1. Introduction

Continuous casting is a process where molten metal is solidified into a semi-finished
billet, bloom, or slab for subsequent rolling in finishing mills; it is the most frequently
used process for steel casting. It allows lower-cost production of metal sections with better
quality, due to the inherently lower costs of continuous, standardized production of the
product, as well as providing increased control over the process through automation [1].
Complex control tasks such as the mold level control (MLC) are very important for avoiding
several product defects and keeping down casting interruptions [2]. The mold level
fluctuations may produce many quality problems [3]. Level fluctuations can be caused by
different types of disturbance: periodic, slow and sudden [4,5]. Among these, compensation
for MLC slow disturbances such as valve erosion and valve clogging are insufficiently
resolved problems.

From the metallurgical point of view, many investigations have studied the steel
defects caused by mold level fluctuations [3,4,6–13]. From the control point of view, the
proposed solutions have been designed to compensate for the typical characteristics of the
disturbances that cause mold level fluctuations in each case study. In practice, to eliminate
the defects caused by periodic, slow and sudden disturbances in an MLC, efficient inte-
gration of various control techniques is required. Particularly, slow disturbances, related
to valve erosion and clogging in an MLC with stopper rod (SR), have been considered by
some authors [2,4,14–16].
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Robin De Keyser indicated that the process characteristics for a MLC with SR, espe-
cially plant gain, can be expected to strongly vary during operation and a good control
design should take this into account. The author states that valve erosion or valve clogging
leads to changes in effective gain. When testing the robustness of the designed controllers
for one steel continuous casting machine, a total variation of as much as 400% in plant gain
was applied [14]. In [15], according to the authors’ estimations, the values of plant gain
usually vary by up to 300%, and they propose a robust control approach.

A figure with SR with typical characteristics, including the two types of disturbance,
valve clogging and valve erosion, was presented by Smutný et al. [16]. They also stated
that both disturbances are highly undesired because they generally create more sensitive
behavior of the stopper in the operational part of its characteristics, and a less sensitive
response in the limit cases.

K. Jabri presented the static characteristic of the SR and its relationship with the
dimensions and geometric shape of the two refractory pieces making up the stopper
rod valve [4]. This helps us to understand that, if SR geometric changes are undergone
during valve erosion and valve clogging, then these could cause uncertain variations in the
dynamic characteristic of the SR.

Yero and coauthors presented in [2] an MLC solution taking into account disturbance
rejection, robustness, control effort, and trade-offs in a first loop with feedback control,
tuned using multi-objective optimization. There is also an adaptive control including a
second loop for adjusting the controller parameters, so as to deal with changes in the
dynamics of the process caused by slow disturbances: tundish level variations, valve
clogging and valve erosion. Nevertheless, a method for diagnosing and compensating for
the change of stopper rod combining online identification and fuzzy logic could have better
accuracy. It transforms knowledge or experience of a MLC with SR into the rule base and
database of the fuzzy inference system, using heuristic tuning of membership functions.

Adaptive control has a strong relation with ideas on learning in the field of com-
puter science [17]. Therefore, the fuzzy inference system (FIS) presented in [2] can be
improved with the advantages offered by the architecture called Adaptive-Network-based
Fuzzy Inference System (ANFIS) [18,19]. By means of artificial neural networks the FIS
should be trained using data sets, with valve erosion and valve clogging corresponding
to steel casts in each case study. Learning from data is also an efficient statistical analysis
method to capture the linear or nonlinear internal relationships used for applications of
continuous casting [20–25].

This work proposes an ANFIS model for improving the accuracy of the diagnosis and
compensation of an adaptive MLC method for slow disturbances related to changes at
the stopper rod. The paper presents an overview of product defects caused by mold level
fluctuations and the different types of disturbances producing them. Later, focusing on
the slow disturbances caused by valve erosion and valve clogging, a statistical analysis
of data from steel casts is realized to be taken into account in adaptive mold level control.
The Neuro-fuzzy system for estimating valve gain was obtained following the basic steps of
the ANFIS model and with a careful analysis of the process data, the fuzzy model above and
the contribution of two input variables, especially one from closed-loop identification based
on the frequency response of the process signal. Finally, in the results section and discussion,
the efficiency of the approach and recommendations for the future implementation of a
combined training of the model for continuous actualization with new data from a real
process are presented.

2. Process Description

The quality of continuous-cast steel is greatly influenced by fluid flow in the mold, par-
ticularly at the meniscus [6]. Many quality problems originating during continuous casting
can be directly attributed to poor control of fluid flow conditions. In this section, the mold
level fluctuations caused by different types of disturbances are reviewed, emphasizing the
need for good disturbance rejection control. To reduce product defects [3,4,6–13] or casting



Metals 2021, 11, 56 3 of 21

interruption events such as breakouts and overflow [4], it is necessary to compensate for
the different types of disturbances producing mold level fluctuations.

In order to clarify the meaning of the symbols used through the paper, a list of
definitions is provided in Table 1.

Table 1. Symbol list.

Symbol Definition Symbol Definition

Am Cross section of the mold ∆K̂SR
Estimated multiplicative uncertainty of the

stopper gain

ASR Stopper flow area ∆K̂SR−max
Maximum of the estimated multiplicative

uncertainty of the stopper gain
C Output of the external controller l Value of the tundish level
C′ Output of the adaptive external controller l

◦
Nominal value of the tundish level

ChangesSR Input variable: changes of the stopper L Tundish level

ChangesSRmax
Maximum of the input variable: changes

of the stopper Lmin Minimum of the tundish level

ChangesSRn
Normalized input variable: changes of

the stopper Lmax Maximum of the tundish level

Cl Clogging M Medium
ClH High clogging MAPE Mean absolute percentage error

Coe f SR
Coefficient for compensating the stopper

gain variations mf Membership functions

Coe f Art
Coefficient for compensating the tundish

gain variations MH Medium High

Coe f adapt Adaptation coefficient Ms Robustness metric: maximum sensitivity
E Erosion N Normal

EH High Erosion Nom Nominal
g Acceleration of gravity n Total number of time instant

GainSR Input variable: gain of the stopper P′ Linear Time Invariant model

GainSRmin
Minimum of the input variable: gain of

the stopper PSR Stopper position

GainSRmax
Maximum of the input variable: gain of

the stopper ρ
Vector with two variable parameters (PSR, L)

within a region Ω

GainSRn
Normalized input variable: gain of

the stopper ∆pSR Variation of the stopper position

H High ∆pSR−disp
Trend of linear displacement of the stopper

operating area

Hm Mold level ∆pSR−gain
Displacement of the stopper operating area

by the valve gain increase
Hr Mold level setpoint QArt Tundish outflow

Hr−o f f set Offset of mold level setpoint Qin Inlet flow
HT Mold level measurement Qout Outflow

j Total number of data R Correlation coefficient
KArt Tundish gain RMSE Root mean squared error

Kp(ρ) Plant gain RMSE Mean average value of RMSE
Km Mold gain t Time
KSR Stopper gain ti Time instant
K
◦

SR Nominal stopper gain Tp Time constant
KSR Mean stopper gain τ Time delay

KSR−min Minimum of the stopper gain τSEN Nozzle delay
KSR−max Maximum of the stopper gain ∆t Relative time

K̂SR Estimated stopper gain V Casting speed
K̂SR−ident Last identification of the stopper gain ∆v Variation of the casting speed

∆KSR
Multiplicative uncertainty of the

stopper gain VH Very High
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In the metallurgical field, the disturbances of mold level are usually characterized
as periodic and non-periodic according to the behavior and frequency, and they occur
either in the production of any type of casting products or only in some. In the field of
process control, they are also classified as persistent and transient, and as slow and sudden
development, according to the time scale in which their effects are observed. The most
common disturbances classified as periodic, slow and sudden, as well as their occurrence
in a semi-finished billet, bloom, or slab produced by continuous casting, taken into account
by research [4,5,16,26,27] and based on the authors experience, are presented in Table 2.

Table 2. Disturbance type classification and occurrence in semi-finished products.

Disturbance Classification Slab Billet Bloom

Bulging Periodic x
Standing waves Periodic x

Biased flows Periodic x
Stopper oscillations Periodic x x x

Unbalanced rolls Periodic x x x
Mold oscillations Periodic x x x

Argon gas injection Periodic x x x
Recirculation in mold Periodic x x x

Level sensor noise Periodic x x x
Valve clogging Slow x x x
Valve erosion Slow x x x

Changes of tundish level Slow x x x
Unclogging Sudden x x x

Sudden changes of casting speed Sudden x x x

Some disturbance types are related to the nature of the control valve or how the flow
control is implemented: Sliding Gate (SG), Stopper Rods (SR) or Metering Nozzle (MN).
For example, biased flows may happen for slab casting when SG is used, while stopper
oscillations, valve clogging and valve erosion are disturbances more frequently studied
with a SR control valve. Control using SR is more difficult since the valve is submerged in
the molten steel inside the tundish. Moreover, the effective flow area is highly sensitive
to its displacement, preventing vortex formation above the tundish well and uniformly
distributing the flow to both nozzle ports. The MLC with SR has been used in 64.52% of
the consulted reports and 70.97% of these corresponds to slab production.

Periodic disturbances have always been observed in continuous casting, mainly for
slab. Many control solutions have been proposed, but their complete understanding and
compensation is still complex [26,28]. Unclogging and sudden changes of casting speed
are sudden disturbances with a damaging effect that can be compensated for with a control
approach of well sudden disturbance rejection [2,29]. Finally, slow disturbances, including
valve clogging, valve erosion and changes of tundish level, also need specific treatment
to compensate [2].

3. Control Structure

Here, a full model taking into account slow disturbances when using conventional
control and the justification for the adaptive mold level control is presented.

3.1. Conventional Control

In [2,5] a simple model of the plant is presented and explained. It must be taken into
account that SR and Tundish blocks in Figure 1 can slowly vary due to changes in the KSR
gain of the valve caused by erosion or clogging and due to changes of L.
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In this figure, the dynamics of the inlet flow Qin of the liquid steel to the mold is
affected by the delay τSEN that can be identified. This is due to the transfer of the fluid by
the Submerged Entry Nozzle (SEN) from the tundish to the liquid surface Hm in the mold.
The outflow Qout is determined by the product of V and the cross section area Am of the
casting product. Finally, the mold transfer function is an integrator whose gain is 1/Am.

In the continuous casting machine used in the case study in [2], the SR has a
K
◦
SR = 36 mm2/mm. The static characteristic of a new SR may vary during the cast-

ing, according to the physical–chemical conditions to which the valve is exposed [16].
Therefore, the SR gain uncertainty will be KSR(pSR) = K

◦
SR·∆KSR(pSR), where ∆KSR(pSR)

has proportional relationships with the signal PSR.
In the case study, to analyze the behavior of erosion and clogging, a total of 1127 carbon

steel casts were selected corresponding to a semester of production. Their analysis was
performed with the historical records of the Supervisory Control and Data Acquisition
(SCADA) system. To this end, by means of scientific observation, an approximate value of
the change in SR position in one hour was obtained for each steel cast. The relative time of
∆t = 3600 s was considered enough for diagnosing the slow disturbances in each cast and
for compensation with an adaptive control approach. After examining the steel casts to
determine the variation of the valve position from a reference instant, −1 ≤ ∆pSR ≤ 1 or
∆pSR < −1 or ∆pSR > 1, the following results were obtained: a population of 925 normal
casts, representing 82.07%; 160 casts with valve erosion, 14.2%; and 42 casts with valve
clogging, 3.73%.

The SR clogging in the case study occurs mainly in steels with a chemical composition
of higher aluminum content although other factors may influence this [4]. In such a
case, material adherence occurs at the nozzle and/or the SR, which is evidenced in a
trend of positive linear displacement ∆pSR−disp > 1 of the valve operating area, as shown
in the dashed straight line of Figure 2. From [16] and the analysis carried out in [5],
it follows that this event includes the superposition of an upward shift of the working
position ∆pSR−disp > 1, plus another ∆pSR−gain induced by a gain increase in the dynamic
characteristic of the SR.

For all the steel casts selected with valve clogging, corresponding to values of
∆pSR > 1, a similar procedure was carried out, corroborating that the tendency of
the valve position change is always linear, obtaining regression adjustments between
72.61% and 96.62%. Depending on the continuous casting conditions at each plant, clog-
ging/unclogging cycles also appeared, and the SR position signal could be a succession of
ramps whose periods are random [4].

The SR erosion in the case study mainly occurs with low carbon steels, being rare
when casting with higher oxygen content. The phenomenon is evidenced in a negative
displacement trend ∆pSR < −1 of the valve operating area, as illustrated by the dotted
straight line of Figure 3. From [16] and the analysis carried out in [5], it follows that this
event includes the superposition of a downward shift of the working position ∆pSR < −1,
plus another ∆pSR−gain induced by an increase in the dynamic characteristic of the SR.
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For all the steel casts selected with valve erosion, corresponding to values of
∆pSR < −1, a similar procedure was carried out, corroborating the tendency that the
valve position change is always linear, obtaining regression adjustments between 62.3%
and 97.6%.

By means of the sign of the ∆pSR measurements in the case study, it was demonstrated
that valve erosion and valve clogging are disturbances that do not occur in the same steel
cast. Slow development events are also clear, as illustrated in Figures 2 and 3. The variability
in valve position changes were in the range −23 ≤ ∆pSR ≤ 25 for ∆t = 3600 s, which from
a practical point of view was assumed to be related to the intensity levels of these events.
In qualitative terms this could be classified, for example, as: low erosion, medium erosion,
high erosion, low clogging, medium clogging and high clogging.

According to the above reasoning, during the valve erosion and valve clogging phe-
nomena, the measurement of ∆pSR reflects the superposition of two effects: as func-
tion ∆pSR−gain dependent of KSR(pSR), ∆v from a reference instant and l, plus another
∆pSR−disp. Therefore, in the model used in [5] for simulating purpose, it can be stated as:

∆pSR = ∆pSR−gain + ∆pSR−disp, (1)

∆pSR−gain =
Am·∆v(

K◦SR·∆KSR(pSR)
)
·
√

2g·l
. (2)

The sense of (2) is implicit in the plant model illustrated in Figure 1, where KSR and
L can be variable parameters, although they vary more slowly than the plant dynamics.
For all cases of valve erosion or valve clogging, it was assumed that l = l

◦
= 850 mm and

the value of ∆v is known from the measurements, which in the analyzed cases corresponds
to ∆t = 3600 s. So, it can be noted that the multiplicative uncertainty ∆KSR(pSR) is an
unknown parameter of (2).

However, empirical considerations were assumed from the determination of ∆KSR(pSR)
in [5], in a model used for simulation purposes. The maximum value of the uncertainty
∆K̂SR−max = 6.8 was obtained by increasing the parameter value until the MLC becomes
unstable. It was also taken into account that when a critical case of erosion and clogging
generates process shutdown, this occurs before the appearance of sustained level oscil-
lations. Therefore, after analyzing the process signals for critical erosion and clogging
cases, the upper values of ∆KSR(pSR) for ∆t = 3600 s were simulated with ∆K̂SR ≤ 6.
Other cases with lower intensity of either valve erosion or clogging, such as ∆K̂SR ∈ [1, 6],
were also simulated heuristically assuming a linear interpolation of ∆pSR versus ∆K̂SR,
in correspondence with the value for each critical event in the case study.

Precisely due to the importance of good online compensation for slow disturbances,
in the next section a solution for online identification of an estimated value of ∆K̂SR with a
greater precision than that achieved by the proposal made in [2,12] is presented.

3.2. Adaptive Mold Level Control

An adaptive controller is a controller that can modify its behaviour in response to
changes in the dynamics of the process and the character of the disturbances [17]. In this
section, the adaptive control strategy of Figure 4 for dealing with slow disturbances in a
MLC is described. It uses an adaptive controller that modifies the parameters of a Nonlinear
PI on Robust Region (NPI-RR) control law, considering some parameter variations of the
model used in its design [2].
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Variations in KSR caused by erosion or clogging events, and the variation of KArt due
to changes in L, produce slow changes in the value of the Kp parameter corresponding to
the Second Order Plus Delay Time (SOPTD) integrative model given in [2]. Focused on an
adaptive control design, the following should be considered.

Control problem:
The Linear Time Invariant (LTI) model given in [2], under the condition that the plant

gain varies much more slowly than the dynamics of the process, can be considered as a
Linear Parameter Varying (LPV) System, such that:

P′(s) =
Kp(ρ)

s
(
Tps + 1

) e−τs =
KSR(PSR)·KArt(L)·Km

s
(
Tps + 1

) e−τs. (3)

The plant gain Kp(ρ) varies as a function of KSR(PSR), while KSR(PSR) ∈
[KSR−min, KSR−max]. The parameter Kp(ρ) can also vary due to changes in
KArt(L) =

√
2g·L, which is determined by the variations of L ∈ [Lmin, Lmax].

Control law:
The selection of the control law and the design of the adaptive law can be carried out

separately, as for the Self-Tuning Regulator (STR).
The desired compensation can be achieved by multiplying the NPI-RR control law

in [2] by an adaptation coefficient Coe f adapt(ρ), inversely proportional to the change of
Kp(ρ). It follows that the adaptive control law can be considered as:

C′(s) = C(s)·Coe f adapt(ρ). (4)

Adaptive law:
The way to change controller gains, in correspondence with the parameter variations

in the plant model, determines differences in each application. In this case, this can be done
as follows:

Coe f adapt(ρ) = Coe f SR(PSR)·Coe f Art(L), (5)
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where the term Coe f SR(PSR) will allow the compensation of the changes of KSR(PSR),
while the term Coe f Art(L) has the purpose of modifying the controller gains following the
variation of KArt(L).

The use of the gain scheduling technique for calculating the term Coe f Art(L) is simple
and was presented in [2]. Below is a proposal that combines artificial neural network, fuzzy
logic and online identification for obtaining the term:

Coe f SR(pSR) =
K
◦
SR

K̂SR(pSR)
≈ 1

∆KSR(pSR)
. (6)

4. Neuro-Fuzzy System for Estimating Valve Gain

In this work the neuro-fuzzy system is used as a technique to fit a FIS from data
or to enrich it through learning. For the design of the neural application the following
basic steps were followed: (1) Problem statement; (2) System requirements; (3) selection of
Artificial Neural Network (ANN) model; (4) Data available and selection of relevant input
and output variables; (5) Selection of train, test and check data sets; (6) Data pre-processing;
(7) Training process; (8) Use the model and evaluate its results.

(1) Problem statement:

In [2] a fuzzy algorithm consisting of a zero-order Sugeno model for estimating the
valve gain variations caused by erosion or clogging events was proposed. The estimator is
as follows:

K̂SR(pSR) ≈ K
◦
SR·∆KSR(pSR). (7)

However, the accuracy of the inference system is based on, first, transforming human
knowledge or experience of MLC with SR into the rule base and database of the fuzzy
inference system; and, second, the heuristic tuning of membership functions so as to
minimize the estimation error of K̂SR(pSR).

(2) System requirements:

To establish the system requirements, the desired error bound, the type of formulation
to be applied, the available form of the data, the required time response, and the available
or necessary computer equipment were proposed.

The data corresponding to the variables of interest, sampled every 1 s during the
course of the steel casts with valve erosion and clogging events, were exported in csv
files from the SCADA of the continuous casting machine. This form is compatible with
the Microsoft Excel program and allows subsequent import from Matlab®. To obtain the
data ∆KSR, Coe f SR corresponding to the adaptive control system proposed in [2], it was
necessary to obtain them from the simulations carried out in Matlab® with the model used
in [5]. In this way, all the data of the process variables were completed in the form of
matrices and vectors, saved in files with the extension “mat”.

In this work, a type of functional adjustment formulation is required for obtaining
the function relationships among K̂SR(pSR) and the selected input variables. The goal is
to achieve training and test errors lower than 10% and deviations between process values
and estimated values (root mean square error) (RMSE) lower than the largest obtained
(for clogging: RMSE = 23.5 and for erosion RMSE = 19.75) with the FIS presented in [2].

In addition, for this application it is recommended to obtain initially an offline model
without response time restrictions and with the use of conventional computing means.
This will facilitate the implementation and updating of the model.
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(3) Selection of ANN model:

There are many types of network model [30]. The two aspects of the problem statement
above, causing inaccuracy in the inference system presented in [2], can be improved with
the advantages offered by the ANFIS architecture [18,19], with a relatively low effort.
The fuzzy inference system may approximate any nonlinearity, but the learning ability
and the relational structure of the artificial neural networks with the decision-making
mechanism of the fuzzy logic are combined in ANFIS.

ANFIS realizes learning with samples, using a training data set as in artificial neural
networks. When the learning with samples is completed, an appropriate ANN model is
obtained. In this way, the most ideal ANFIS structure for solving the related problem [19]
is obtained. In this paper the ANFIS structure consists of five layers, representing the
fuzzy algorithm. This consists of a zero-order Sugeno model with two inputs, each one
composed of five membership functions, and one output for the consequent of each rule.
The twenty-five established rules in [2] were analyzed for simplification, eliminating all
those lacking a physical sense.

To model the new FIS, the Fuzzy Logic toolbox of Matlab® (R2015a edition) on a PC,
with a compact structure tool to implement an ANFIS, was used. This has the ability to
support the FIS previously designed in [2], which is a way to start the training with the
previous knowledge of the application and of shortening the time needed to obtain the
model. Another advantage is that the ANFIS also generates a FIS after each training session,
which can be exported to facilitate simulations and implementation of the case study.

(4) Data available and selection of relevant inputs and output variables:

In this application, batch learning is proposed, starting from the possibility offered by
SCADA in a continuous casting machine for exporting data corresponding to sets of steel
casts with valve erosion and clogging events of different intensity levels.

The selection of the input variables of the ANFIS in the case study corresponds to
the same arguments of the proposals in [2]. Therefore, two input variables can be enough,
where the first compact variable is defined as:

ChangesSR = ∆pSR −
Am∆v

K̂SR−ident(pSR(ti))·
√

2g·l
≈ ∆pSR−disp, (8)

where K̂SR−ident(pSR(ti)) is made for KSR(pSR) corresponding to ti instant of or otherwise
the value K

◦
SR, equivalent to the initial instant of casting.

The second input variable is obtained from online identification based on the frequency
response of the process. With an SI-I algorithm [31], closed-loop identification as in [2]
is possible, but in this work a half step of Hr−o f f set = 3% from 0% to +3% around the
reference value Hr was used for obtaining similar results. However, to avoid unnecessary
disturbances of Hr, online identification will be enabled only during erosion and clogging
events with well-separated values of ∆pSR−disp. In [2], positive results are showed for
obtaining (7) and (6) with the use of:

GainSR =

{
K
◦
SR, ∀t, t < t1

K̂SR−ident(pSR(ti)), ∀t, ti ≤ t ≤ ti+1
, (9)

where i = 1, . . . , n.
To define the universes of discourse of the input variables, a deep analysis of the

process and the data, corresponding to numerous steel casts, was carried out. The em-
phasis was placed on including all possible real changes of the valve position and valve gain
caused by erosion and clogging of the stopper valve, being the following,
ChangesSR ∈ [−25, 25] mm/h and GainSR ∈ [36, 216] mm2/mm, in the case study.
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The output variable range Coe f SR(PSR) ∈ [0.1666, 1] is obtained from (6), assuming
∆KSR(pSR) = ∆K̂SR ∈ [1, 6] for the case study.

(5) Selection of training, test and check data sets:

The main condition to be taken into account for the selection of the data is that they
should be a sufficiently representative number of all the situations and events that may
occur [31]. Therefore, using an intentional sampling strategy as in [5], steel casts with
different intensity levels of valve erosion and clogging events were selected. For organizing
a process of linguistic classification of the intensity levels, subranges of the variable were
heuristically defined, based on the calculation and analysis of the data of ChangesSR,
as follows: Low erosion−1 < ChangesSR ≤ −7.92; Medium erosion−7.92 < ChangesSR ≤
−15.3; High erosion −15.3 < ChangesSR ≤ −25 and Low clogging 1 < ChangesSR ≤ 6.99;
Medium clogging 6.99 < ChangesSR ≤ 15.99; High clogging 15.99 < ChangesSR ≤ 25.
The range −1 ≤ ChangesSR ≤ 1 can be considered as a normal operating zone, free from
erosion or clogging events.

From the previous classification, all the steel casts with different levels of valve erosion
intensity were analyzed, selecting 24 steel casts (steel grades: FE500, SAE1039, SAE1018,
SAE 1026, SAE 1022, SAE 1021 and FeE500S). From these only two had high valve erosion
(7 and 24: FE500), seven were defined as being medium erosion (3, 6, 10, 13, 18, 20, 22)
and 15 as low erosion (1, 2, 4, 5, 8, 9, 11, 12, 14, 15, 16, 17, 19, 21, 23). This proportion is
representative of the incidence rate of each level of intensity of the event in the population
selected for the case study.

Valve clogging occurred less frequently: in this case 16 steel casts were selected (steel
grades: SAE 1026, SAE1018, SAE1023, SAE 1015, SAE 1022, FE 500 and SAE 1021); three
with high clogging (1, 5, 6), three with medium clogging (2, 10, 14) and 10 with low clogging
(3, 4, 7, 8, 9, 11, 12, 13, 15, 16), achieving similar rates to the real incidence in the case study.
This selection process also took into account the criterion of including representatives of all
the intensity levels of each event in the training, test and check sets.

After the selection process of all the patterns, they were divided into two groups: one
more numerous with 75% of the data to carry out the learning process, as a result of the
sum of 50% for the training set and 25% for testing. In this way, the ANFIS is trained
using 12 erosion and eight clogging examples as a learning set, while the error made
by the ANN model when applied to six erosion patterns and four clogging patterns is
verified. The information contained in both sets is similar, thus enabling the proper use
of the cross-validation technique [30]. 25% of the remaining data patterns (six erosion
patterns and four clogging patterns) were reserved for the check set, allowing measuring
the effectiveness of the new model in a completely objective way with representative events
of all the situations that may occur.

(6) Data pre-processing:

In this study, a set of input and output data has been prepared for developing the
ANN model. To improve the training process of the model, all data need to be scaled before
using them for modeling. The following scaling equations were used:

ChangesSRn =
ChangesSR∣∣ChangesSRmax

∣∣ , (10)

GainSRn =
GainSR − GainSRmin

GainSRmax − GainSR−min
, (11)

where ChangesSRn ∈ [−1, +1] and GainSRn ∈ [0, +1]. The output variable Coe f SR(PSR) ∈
[0.1666, 1] is within [0, +1] range.
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(7) Training process:

The training phase of the proposed model is implemented by means of the ANFIS
training algorithms for Fuzzy Logic Toolbox in Matlab® [32]. The selected data above of
steel casts for training and testing sets and the previous FIS [2] must be loaded from the
ANFIS Editor. The two available ANFIS parameter optimization method options must be
proved: hybrid and backpropagation.

Normally, the ANFIS case must be tested with different methods and epochs, mea-
suring the learning error and the generalization error, until the desired ones are reached.
In the case of not obtaining acceptable results, some of the previous phases will have to be
reviewed again: the training and test sets may not be representative, the variables may not
have been chosen well, or they may not have been preprocessed or appropriately scaled.

The training process is terminated when any of the following conditions is satisfied:
the maximum number of epochs is reached; the performance gradient falls below a min-
imum value; or the performance is minimized to the target value. As explained in the
cross-validation method, there is no interest in prolonging the training indefinitely, as there
comes a time when generalization is lost and the only data are memorized details (noise)
of the learning set. The usual decision is to keep the model in the iteration for which the
minimum error was obtained in the test set [30].

(8) Use the model and evaluate its results:

Once the training phase is finished and the ideal FIS parameters have been stored,
the ANFIS model is ready to be applied to new cases of steel casts for the checking set
(not used in training) to measure its effectiveness in a completely objective way. If the
results are obtained within the desired margin of error, then the new FIS can be used in
the real work environment [30]. In order to illustrate the ANFIS model selected more
intuitively, the adaptation subsystem applied for compensating slow disturbances of valve
clogging and erosion on the mold level control is showed in Figure 5.
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Figure 5. Block diagram of the subsystem applied for compensating the stopper gain variations.

Taking into account that the model will be used for a complex and rigorous process,
then it is also convenient to verify the accuracy of the established models for diagnosing
the change of stopper rod using goodness-of-fit statistical parameters such as: RMSE,
correlation coefficient (R) and the mean absolute percentage error (MAPE) [25,33].
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The RMSE can accurately measure the deviation between process values and esti-
mated ones, and the R is able to provide information on the strength of correlation between
them. They are calculated using the following equation:

RMSE =

√√√√1
j

j

∑
i=1

(K̂SR(i)− KSR(i))
2, (12)

R =
∑

j
i=1

(
K̂SR(i)− K̂SR

)(
KSR(i)− KSR

)√
∑

j
i=1

(
K̂SR(i)− K̂SR

)2√
∑

j
i=1

(
KSR(i)− KSR

)2
, (13)

where KSR = 1
j ∑

j
i=1 KSR(i) and K̂SR = 1

j ∑
j
i=1 K̂SR(i), respectively.

The MAPE is used to measure the error between the estimated and the process values,
and it particularly considers the ratio of error to the original values. The smaller the MAPE
value is, the higher the estimation accuracy is. The value of MAPE is calculated by using
the following equation:

MAPE =
1
j

j

∑
i=1

∣∣∣∣ K̂SR(i)− KSR(i)
KSR(i)

∣∣∣∣. (14)

5. Results and Discussion

In this section, the results obtained when applying the previous developments
are reported.

5.1. ANFIS Model Generation

The above steps for modeling the ANFIS were performed. The simplification of the
reported twenty-five rules in [2] yielded nineteen established rules. The final version of the
ANFIS model that will be presented resulted from several changes, training phases and
analysis, until the desired system requirements were reached. The model was obtained
using a computer with hardware Processor Intel® Xeon® CPU E5-2430 v2 @ 2.50 GHz (two
processors), a RAM Memory of 16.0 GB and Operative System of 64 bit.

The best training phase, comparing hybrid and backpropagation ANFIS parameter
optimization methods for FIS training, incrementing the epochs from 10 to 50 by steps of
10, are shown in Table 3.

Table 3. The best training phase for obtaining the final Adaptive-Network-based Fuzzy Inference System (ANFIS) model.

Model
Training Epochs Method

Simulation
Time

(hh:mm:ss)

Training Error
(%) Test Error (%) Check Error

(%) Observations

1 10 Hybrid 0:06:59 3.6 3.9 6.1 Consequents out of
ranges

2 10 Backpropagation 0:06:51 5.2 5.4 6.8 Well

3 20 Hybrid 0:13:52 3.5 3.7 6.3 Consequents out of
ranges

4 20 Backpropagation 0:13:42 4.2 4.4 5.9 Well

5 30 Hybrid 0:20:47 3.3 3.6 6.2 Consequents out of
ranges

6 30 Backpropagation 0:20:33 3.8 4 5.4 Well

7 40 Hybrid 0:27:24 2.9 3.8 7.2 Consequents out of
ranges

8 40 Backpropagation 0:27:23 3.2 3.5 5 Well

9 50 Hybrid 0:34:23 2.7 3.6 9 Consequents out of
ranges

10 50 Backpropagation 0:34:14 2.9 3.3 4.9 Well
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Several changes for achieving acceptable results were proved. For example, the uni-
verse of discourse of ChangesSR ∈ [−25, 25] provided better results than the previous
ChangesSR ∈ [−50, 50] used in [2]. This is reasonable because in the case study, ChangesSR
or ∆pSR−disp satisfy that −25 ≤ ∆pSR−disp ≤ 25 for ∆t = 3600 s. Also, the empirical
considerations assumed for upper values of ∆K̂SR ∈ [5, 6] versus ∆t = 3600 s with critical
erosion and clogging cases were proved. At this point a careful analysis of the process
signals for these critical events and their physical interpretation, taking into account the
typical behavior [16] of the relationship between ∆pSR−disp versus ∆K̂SR, was realized.
Finally, good results were obtained assuming ∆K̂SR = 5 for the critical valve erosion case
of steel cast number seven and ∆K̂SR = 6 for the critical valve clogging case of steel cast
number five. The cases with lower intensity of valve erosion or clogging were assumed
by a linear interpolation of ∆pSR−disp versus ∆K̂SR, proportionally to the value for each
critical event.

The backpropagation ANFIS parameter optimization method with 50 epochs in 34 min
and 14 s satisfied the system requirements of training and test errors lower than 10%
and obtaining the best FIS training with the rules base shown in Table 4. In this table,
the symbols and respective membership functions (mf) are: Nom, with z mf; M, with pi
mf; MH, with pi mf; H, with pi mf; VH, with s mf; N, with gauss mf; E, with pi mf; EH,
with z mf; Cl, with pi mf; ClH, with s mf; Gain-SR is GainSR; Changes-SR is ChangesSR and
Coef-SR is Coe f SR.

Table 4. Rules base of the ANFIS model.

Coef-SR
Changes-SR

EH E N Cl ClH

Gain-SR

Nominal - 0.5494 0.9664 0.4821 -
M 0.265 0.4185 0.746 0.4089 0.2877

MH 0.2553 0.2739 0.956 0.2832 0.2779
H 0.2091 0.2209 - 0.22 0.2271

VH 0.1655 - - - 0.1737

The time consumed in the training phase indicates the possibility of considering a
combined training of the model in a future implementation. This would be very convenient
to keep the FIS updated with new real data from the process. The new data could be
selected from the historic data base using a subroutine program in the SCADA. Besides,
an interpolation of the identified values of the GainSR, as well as an analysis of the trade-off
between the disturbing effects of a greater number of identification steps and the obtained
accuracy, could be also considered.

5.2. Use of the ANFIS Model

The obtained ANFIS model and the previous FIS were used to compare the diagnostic
accuracy of the change of stopper rod. This was realized at simulation scale with all selected
data of valve erosion (24 steel casts) and valve clogging (16 steel casts), the same steel casts
of the training, testing and checking sets.

The RMSE, R and MAPE obtained when using ANFIS and FIS models with all the
steel casts in valve clogging are shown in Figure 6. The system requirement of RMSE < 23.5
for the case of valve clogging using the ANFIS model was verified.
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The ANFIS model allows a maximum value of RMSE = 13.66 while the FIS gives
RMSE = 23.5 for the valve clogging cases. The mean average values of RMSE = 4.29 for
ANFIS and RMSE = 14.135 for FIS were also obtained. Besides, for ANFIS, the values of
MAPE ≤ 0.13 indicated a higher predictive accuracy and strong correlation, evident for all
cases of R close to 1.
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Figure 7 shows the statistical parameters using ANFIS and FIS models with all steel
casts in valve erosion. The system requirement of RMSE < 19.75 for valve erosion using
the ANFIS model was verified.
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The maximum value of RMSE = 12.19 for ANFIS, while it was RMSE = 19.75 for
FIS, and the mean average value of RMSE = 3.31 for ANFIS, while it was RMSE = 13.68
for FIS, obtained for the valve erosion cases. Besides, for ANFIS, the values of MAPE ≤ 0.1
indicates a higher predictive accuracy and strong correlation, evident for all cases of
R ≥ 0.93.

The above results mean that the ANFIS model presents smaller deviation between
process values and estimated ones for valve clogging and valve erosion cases. Therefore,
it is a good solution for improving the accuracy of the diagnostic and compensation of an
adaptive MLC method for slow disturbances related to changes of stopper rod.

5.3. Neuro-Fuzzy Adaptive Mold Level Control Simulation

Here, in order to illustrate the performance of the adaptive mold level control of
Figure 4 using the neuro-fuzzy model, four simulation experiments were realized. The good
predictive accuracy of the ANFIS model and its impact for compensating for slow distur-
bances allowed a better tuning of the NPI-RR controller [2]. The goal was to achieve greater
disturbance rejection with a robustness Ms ∈ [2.0, 4.4], analyzing its trade off with the
control effort to take care of the useful lifetime of the expensive SR mechanism, and the
noise sensitivity.

The operation of the MLC of Figure 4 for steel cast number six with high valve
clogging was simulated for a time t = 3600 s. At times t = 250, 1700, 3200 s strong
disturbances of casting speed increasing 8, 1.66 and decreasing 8 mm/s, were introduced,
respectively. Also, an unclogging event was added at time t = 3400 s. Figures 8 and 9 show
the mold level performance with both neuro-fuzzy adaptive MLC and conventional MLC,
in that order.
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Figure 9. Simulation of conventional mold level control for a cast with SR high clogging.

The operation of the MLC for steel cast number twenty with medium valve erosion
was simulated for a time t = 3600 s, shown in Figure 4. At times t = 250, 1700, 3200 s strong
disturbances of casting speed increasing 8, 1.66 and decreasing 8 mm/s, were introduced,
respectively. The mold level performance with neuro-fuzzy adaptive MLC and not adaptive
MLC, are shown in Figures 10 and 11.
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Figure 11. Simulation of conventional mold level control for a cast with medium SR erosion.

The conventional mold level control shown in Figures 9 and 11 has not diagnosed
and compensated for slow disturbances related to SR changes. Those are the reasons
for the unacceptable observed level fluctuations that could cause a high cost of casting
interruptions, or several defects.

6. Conclusions

In this paper, an ANFIS model for improving the accuracy of the diagnosis, and com-
pensation of an adaptive MLC method for slow disturbances related to changes of the
stopper rod, is presented. In steel continuous casting several product defects are caused
by mold level fluctuations. Level fluctuations are difficult to avoid in this complicated
and multi disturbance process. The proposal presented here focuses on level fluctuations
caused by erosion and valve clogging in mold level control systems using a stopper rod.
The experiences of working in a steel plant for more than 20 years and the results of
this work, which is part of ongoing research on the subject for almost the last decade,
have provided evidence that this problem demands an adaptive control approach.

The ANFIS model for diagnosing and compensating for erosion and valve clogging
is an effective solution as part of a second loop for adjusting the controller parameters in
an adaptive MLC strategy. Two compact input variables, and their functional relationship
with a compensation coefficient of the valve gain variations, could allow batch learning
from historic data of the SCADA to be carried out. The results indicate that the model has
high accuracy with the training, testing and checking sets. Additional evaluations using
the statistical parameters: RMSE, R and MAPE with data from 40 steel casts perturbed
by valve erosion and clogging of different intensity levels show very low deviations
between process values and estimated values, as well as a strong correlation and a higher
estimation accuracy.

In the future implementation of the proposed solution, a combined training of the
model, which would be very convenient to keep the FIS updated with new data from the
process, could be considered. Besides, an interpolation of the identified values of the SR
gain could also be considered, as well as an analysis of the trade-off between the disturbing
effects of a greater number of identification steps and the obtained accuracy.
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16. Smutný, L.; Farana, R.; Víteĉek, A.; Kaĉmář, D. Mould Level Control for the Continuous Steel Casting. IFAC Proc. Vol. 2005,

38, 163–168. [CrossRef]
17. Åström, K.J.; Wittenmark, B. Adaptive Control, 2nd ed.; Dover Publications Inc.: Mineola, NY, USA, 2013.
18. Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
19. Karaboga, D.; Kaya, E. Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey.

Artif. Intell. Rev. 2019, 52, 2263–2293. [CrossRef]
20. Ghosh, I.; Chakraborty, N. An Artificial Neural Network Model for the Comprehensive Study of the Solidification Defects During

the Continuous Casting of Steel. Comput. Commun. Collab. 2018, 6, 1–14.
21. He, F.; Zhang, L. Mold breakout prediction in slab continuous casting based on combined method of GA-BP neural network and

logic rules. Int. J. Adv. Manuf. Technol. 2018, 95, 4081–4089. [CrossRef]
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