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Abstract: This paper develops parametric accelerated life testing (ALT) as a systematic reliability
method to produce the reliability quantitative (RQ) specifications—mission cycle—for recognizing
missing design defects in mechanical products as applying the accelerated load, expressed as the
inverse of stress ratio, R. Parametric ALT is a way to enhance the prediction of fatigue failure for
mechanical systems subjected to repeated impact loading. It incorporates: (1) A parametric ALT plan
formed on the system BX lifetime, (2) a fatigue failure and design, (3) customized ALTs with design
alternatives, and (4) an assessment of whether the last design(s) of the system fulfills the objective
BX lifetime. A BX life concept with a generalized life-stress model and a sample size equation are
suggested. A domestic refrigerator hinge kit system (HKS), which was a newly designed mechanical
product, was used to illustrate the methodology. The HKS was subjected to repeated impact loading
resulting in failure of the HKS in the field. To conduct ALTs, a force and momentum balance was
utilized on the HKS. A straightforward impact loading of the HKS in closing the refrigerator door
was examined. At the first ALT, the housing of the HKS failed. As an action plan, the hinge kit
housing was modified by attaching inside supporting ribs to the HKS to provide sufficient mechanical
strength against its loading. At the second ALT, the torsional shaft in the HKS made with austenitic
ductile iron (18 wt% Ni) failed. The cracked torsional shaft for the 2nd ALTs came from its insufficient
rounding, which failed due to repeated stress. As an action plan, to have sufficient material strength
for the repetitive impact loads, the torsional shaft was reshaped to give it more rounding from
R0.5 mm to R2.0 mm. After these modifications, there were no problems at the third ALT. The lifetime
of the HKS in the domestic refrigerator was assured to be B1 life 10 years.

Keywords: fatigue failure; design flaws; mechanical system; parametric ALT; hinge kit system

1. Introduction

Because of the competitiveness in the global market, manufacturers must continually
innovate and improve their products. Often, this involves new technologies and design
features for the product that must be quickly delivered to the marketplace. However,
without sufficient testing or anticipation of how the features may be used or misused,
the introduction of these new features may increase failures of the product in the field
and negatively impact the company’s image. These added attributes are often requested
or desired by consumers, and companies strive to include these features in new design
specifications for the product. The features for the newly designed mechanical product may
not be evaluated entirely before being introduced into the market. Thus, any defects may
only show themselves as performance issues once the product is in the marketplace. Relia-
bility quantitative (RQ) specifications using proper methodology should be included and
evaluated in the product design that meets its expected life before it will be released [1–4].
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Mechanical systems such as automobiles, airplanes, and refrigerators [5] convert
forms of energy to achieve a specific function (movement of the automobile or airplane
and cooling for the refrigerator). The energy conversion requires forces and movement
of components, which eventually produce the desired functions with multiple system
mechanisms. In the process, mechanical systems are typically subjected to repeated loads.
Most mechanical products are made of multi-module structures. If the modules are properly
designed and assembled, mechanical systems can work properly and perform their planned
functions. For example, in utilizing the vapor-compression refrigeration cycle, a domestic
refrigerator is used to cool or freeze food. The refrigerator evaporator provides cooled air
to both the refrigerator and freezer sections. A refrigerator has multiple subsystems—Door,
cabinet, drawers and shelves, control system, compressor, motor, water supplying device,
heat exchangers, and other various components. The total number of parts might be as
high as 2000. The product lifetime is targeted to have no less than a B20 life 10 years.
As a refrigerator consists of 8 to 10 modules (see Figure 1a) and each module may contain
as many as 100 components, the lifetime target of each module needs to have a B1 life of
10 years. The product lifetime of the system is determined by the module with the shortest
life, which is module #3 in Figure 1b.
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Figure 1. Product lifetime with multi-modules decided by newly designed module (a) Classification of multi-module
refrigerator; (b) Product lifetime LB and failure rate λs.

To avoid the failure of a mechanical system in the field [6,7], it should be designed to
robustly endure or survive whatever usage conditions the customers subject the system.
Design faults should be recognized and altered by statistical methodology [8] or reliability
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testing [9] before a commercially manufactured goods is released. However, the statistical
methodology and subsequent testing may require large numbers of computations for an
optimum solution but may not identify the ultimate failures that may occur in the field
by consumers. If there are design faults that cause an inadequacy of strength (or stiffness)
when a system is subjected to repeat loading, the system will fail before its expected lifetime
due to fatigue failure. American Society for Testing and Materials (ASTM) procedures
typically require large samples, skilled personnel, testing apparatus arranged by data
acquisition systems, etc. Thus, discovering possible mechanical failures such as fatigue
can involve time-consuming and costly testing procedures [10–13]. To recognize these
limitations, there have been numerous attempts to systematically evolve fatigue testing [14].
It is difficult to estimate the lifetime cycles of problematic parts in multi-module products
where failures rarely occur in the field due to design flaws.

An alternative method, based on reliability block diagrams [15], is where the accel-
erated life testing (ALT) could be scrutinized [16–24]. It includes test planning for the
product, failure mechanics, accelerated procedures, sample size equation, etc. Elsayed [25]
categorized physics/statistics, statistical, and physics/experimental-based models for as-
sessment. Meeker [26] proposed numerous feasible recommendations to organize an ALT.
Carrying out an ALT [27,28] requires numerous concepts such as the BX life for the product
test plan based on reliability engineering, a life-stress model, sample size equation, and frac-
ture mechanics [29–32] because failure may occur suddenly from the frail components in a
system. Contemporary experimental methods may fail to reproduce the design defects.
These methods may evaluate insufficient part samples in multi-module products and may
not identify the failure(s) that actually happen in the marketplace.

To implement the optimal design of a mechanical system, engineers have relied
on traditional design approaches such as strength of materials [33]. A recent fracture
mechanics study proposed that the crucial elements might be fracture toughness as an
alternative of strength as an applicable material property. As quantum mechanics has been
used in electronic technology, designers have identified system failures from micro-void
coalescence (MVC) and noted a great number of metallic alloys or numerous engineering
plastics [34]. To determine the failure phenomena of a mechanical system, a better life-
stress model might be combined with the traditional design approaches and applicable
methodology of identifying the failure of electronic parts due to small cracks or pre-
existing defects. This approach would not be feasible to model using current finite element
methods (FEMs) [35].

To better identify product failures in the marketplace, there is another engineering
perspective that incorporates the FEM [36]. Many engineers believe that rare system failures
might be evaluated by: (1) Mathematical modeling utilizing Newtonian or Lagrangian
techniques; (2) obtaining the system stress/strain from the time response for (dynamic)
loads; (3) making use of the rain-flow counting method for von-Mises stress [37,38]; and (4)
approximating system damage by Palmgren–Miner’s rule [39]. Nevertheless, utilizing a
systematic method that can give closed-form, precise solutions would involve utilizing
numerous assumptions that might not identify multi-module system failures, due to
material defects such as micro-voids and contacts when subjected to loads.

This study introduces a parametric ALT as a systematic reliability method that can
generate the RQ specifications such as mission time for identifying and modifying the
design faults of newly designed mechanical systems. It incorporates: (1) An ALT plan
formed on system BX lifetime, (2) a load examination for ALT, (3) customized ALTs with
the alterations, and (4) an assessment of whether the last design(s) of the system fulfills the
objective BX lifetime. A newly designed hinge kit system (HKS) in a domestic refrigerator
subjected to repeated impact loading is provided as an example.
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2. Parametric ALT for Mechanical System
2.1. Definition of BX lifetime for Putting a Whole Parametric ALT Plan

To carry out a parametric ALT, the BX life as a measure of system lifetime is required.
The BX life, LB, can be explained as the elapsed time at which X percent of a collection of a
selected product might have failed. Otherwise, ‘BX life Y years’ is a good expression for
product lifetime that helps to satisfactorily decide the cumulative failure rate of a product
and respond to field circumstances. For instance, if the lifetime of a product has a B20 life
of 10 years, then 20% of the population might have been unsuccessful in achieving one’s
goal for 10 years of the working period.

Reliability might be explained as the system’s ability to work under specified con-
ditions for a stated period of time [40]. Product reliability, as shown in Figure 2, is often
illustrated with the “bathtub curve” that is composed of three sections [41]. First, there is
a declining failure rate in the earlier product life (β < 1). Secondly, there is a constant
failure rate (β = 1) in the middle of the product’s life. Lastly, there is a growing failure
rate at the end of the product life (β > 1). If a manufacturer produces a product whose
failure rate follows the bathtub curve, it might have difficulties achieving success in the
marketplace because of shorted lifetime and large failure rates due to design faults in the
early product life. Manufacturers need to enhance the product design by increasing its
reliability targets to (1) eliminate untimely failures, (2) lessen random failures over the
product lifetime, and (3) lengthen system lifetime. As the design of a mechanical product
improves, its failure rate in the marketplace should decease and the product lifetime should
be extended. For such circumstances, the conventional bathtub curve might be changed to
a straight line in Figure 2.
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The failure rate on the bathtub (or straight line) can be defined as

λ =
f
R

=
dF/dt

R
=

(1− R)′

R
=
−R′

R
(1)

where λ is the failure rate, f is the failure density function, R is reliability, and F is unrelia-
bility.

If Equation (1) is integrated over time, we can obtain the X% cumulative failure F(LB)
at BX life, LB. That is, ∫

λdt = − ln R (2)
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That is to say, it can be expressed as:

A = 〈λ〉 · LB =
∫ LB

0
λ(t) · dt = − ln R(LB) = − ln(1− F) ∼= F(LB) (3)

where LB is the BX life, A is the area that can be obtained from the multiplication of failure
rate, λ, and BX life, LB.

Consequently, if a product failure follows an exponential distribution, the reliability
of a mechanical product can be defined as:

R(LB) = 1− F(LB) = e−λLB ∼= 1− λLB (4)

Equation (4) is relevant for when there are less than approximately 20% of the cumula-
tive failures for the system [42]. The mechanical system could be improved by obtaining
the objective product lifetime, LB, and failure rate, λ, after optimally identifying the market
failure by parametric ALT and modifying the problematic design (or material) of structures
(Figure 3).
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Figure 3. Parameter diagram of hinge kit system (HKS) (example).

In seeking to improve the lifetime target of a mechanical system through an ALT
examination, there are three potential product modules: (1) An altered module, (2) a newly
designed module, and (3) an alike module to the previous design base on demand in the
marketplace. The newly designed HKS in the refrigerator examined here as a case study
was a new module that had design faults that had to be rectified because customers asked
for replacements with a new one because the product failed during its expected lifetime.

The new module B from the market data shown in Table 1 had a failure rate of 0.24%
per year and a B1 life of 4.2 years. To answer customer requests, a new lifetime target for
the HKS was set to have B1 life 10 years with a cumulative failure rate of one percent.

2.2. Failure Mechanics and Accelerated Testing for Design

Mechanical systems typically move energy and power from one location to another
through mechanical mechanisms. If there is a design fault in the structure that causes
an inadequate strength (or stiffness) when the loads are exerted, the mechanical system
may suddenly fail before its anticipated lifetime. Fatigue due to design flaws can be
characterized by two factors: (1) the stress due to loads on the structure and (2) the type of
materials (or shape) used in the product. In reproducing the system failure by a parametric
ALT, a designer could optimally design components with proper shapes and materials.
The product could sustain repetitive loads over its lifetime so that it could achieve the
targeted reliability (Figure 4).
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Table 1. Whole ALT plan of mechanical system such as modules in a refrigerator.

Modules

Market Data Expected Reliability Targeted Reliability

Yearly
Failure

Rate,
%/Year

BX Life,
Year Yearly Failure Rate, %/Year BX Life,

Year

Yearly
Failure

Rate,
%/Year

BX Life, Year

A 0.35 2.9 Similar ×1 0.35 2.9 0.10 10(BX = 1.0)
B 0.24 4.2 New ×5 1.20 0.83 0.10 10(BX = 1.0)
C 0.30 3.3 Similar ×1 0.30 3.33 0.10 10(BX = 1.0)
D 0.31 3.2 Modified ×2 0.62 1.61 0.10 10(BX = 1.0)
E 0.15 6.7 Modified ×2 0.30 3.33 0.10 10(BX = 1.0)

Others 0.50 10.0 Similar ×1 0.50 10.0 0.50 10(BX = 5.0)
Product 1.9 2.9 - - 3.27 0.83 1.00 10(BX = 10)
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The most important issue for a reliability test is how quickly the possible failure
mode might be obtained. A failure model must be derived and its associated coefficients
determined. The life-stress (LS) model also incorporates stresses and reaction parameters.
The generalized life-stress (LS) model [1,43,44] might thus be defined as

TF = A[sinh(aS)]−1 exp
(

Ea

kT

)
(5)

The sine hyperbolic expression [sinh(aS)]−1 in Equation (5) can be expressed as:

1. (S)−1 in Equation (5) has a little linear effect at first,
2. (S)−n in Equation (5) has what is regarded as a medium effect, and

3.
(
eaS)−1 in Equation (5) is big in the end.

An ALT is normally performed in the medium range, and Equation (5) might be
defined as

TF = A(S)−n exp
(

Ea

kT

)
(6)

As the stress of a mechanical system may not be easy to measure during testing,
Equation (6) must be redefined. When the power is defined as the multiplication of flows
and effort, stresses may come from effort in a multi-port system (Table 2) [45].
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Table 2. Power definition in a multi-port system.

System Effort, e(t) Flow, f(t)

Mechanical translation Force, F(t) Velocity, V(t)
Mechanical rotation Torque, τ(t) Angular velocity, ω(t)
Compressor, Pump Pressure difference, ∆P(t) Volume flow rate, Q(t)

Electric Voltage, V(t) Current, i(t)
Magnetic Magneto-motive force, em Magnetic flux, ϕ

Stress is a physical quantity that indicates the internal forces that adjacent particles of
a continual material apply on each other. For a mechanical system, because stress comes
from effort, Equation (6) might be redefined as

TF = A(S)−n exp
(

Ea

kT

)
= B(e)−λ exp

(
Ea

kT

)
(7)

where A and B are constants
To derive the acceleration factor (AF) that can mainly enfluence the assessment of

fatigue strength in product, expressed as the inverse of the stress ratio, R (=σmin/σmax),
from Equation (7), AF might be expressed as the proportion between the adequate elevated
stress amounts and normal working conditions. AF might be altered to incorporate the
effort ideas:

AF =

(
S1

S0

)n[Ea

k

(
1
T0
− 1

T1

)]
=

(
e1

e0

)λ[Ea

k

(
1
T0
− 1

T1

)]
(8)

2.3. Parametric ALT of Mechanical Systems

To obtain the mission cycle of ALTs from the objective BX lifetime on the experi-
ment scheme in Table 1, the sample size formulation integrated with the AF should be
obtained [1]. Until now, numerous methodologies have been suggested to decide sample
size. The Weibayes model for Weibull analysis is a popularly recognized method of ex-
amining reliability data. However, it is hard to directly use because of the mathematical
complication. The whole cases as failures (r≥ 1) and no failures (r = 0) need to be separated.
Consequently, it is possible to acquire a comprehensible sample size equation that might
provide the mission cycle after proper assumptions.

In choosing the model parameters to maximize the likelihood function, the maximum
likelihood estimation (MLE) statistic is a widespread way of approximating the parameters
of a model. The characteristic life ηMLE can be expressed as:

η
β
MLE =

n

∑
i=1

tβ
i
r

(9)

where ηMLE is the maximum likelihood estimate of the characteristic life, n is the total
number of samples, ti is the test duration for each sample, and r is the number of failures.

If the number of failures is r≥ 1 and the confidence level is 100(1− α), the characteristic
life, ηα, can be approximated from Equation (9),

η
β
α =

2r
χ2

α(2r + 2)
× η

β
MLE =

2
χ2

α(2r + 2)
×

n

∑
i=1

tβ
i forr ≥ 1 (10)

where χ2
α() is the chi-square distribution when the p-value is α.
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Assuming there are no number of failures, ln (1/α) is mathematically identical to the

chi-square value, χ2
α(2)
2 [46]. In other words,

p− value : α =
∫ ∝

χ2
α(2)

(
e−

x
2 x

ν
2−1

2
ν
2 Γ
(

ν
2
) )dx =

∫ ∝

2 ln α−1

(
e−

x
2 x

ν
2−1

2
ν
2 Γ
(

ν
2
) )dxforx ≥ 0 (11)

where Γ is the gamma function and ν is the shape parameter
For r = 0, the characteristic life ηα from Equation (10) can be defined as:

η
β
α =

2
χ2

α(2)
×

n

∑
i=1

tβ
i =

1
ln 1

α

×
n

∑
i=1

tβ
i (12)

As Equation (10) is proved for all cases r ≥ 0, characteristic life, ηα, can be expressed
as follows:

η
β
α =

2
χ2

α(2r + 2)
×

n

∑
i=1

tβ
i forr ≥ 0 (13)

If the logarithm in the Weilbull distribution is taken, the connection between charac-
teristic life and BX life, LB, can be defined as:

Lβ
B =

(
ln

1
1− x

)
× ηβ (14)

If the approximated characteristic life of the p-value α, ηα, in Equation (13), is changed
into Equation (17), we obtain the BX life formulation:

Lβ
B =

(
ln

1
1− x

)
× 2

χ2
α(2r + 2)

×
n

∑
i=1

tβ
i (15)

As nearly all life testing commonly has inadequate samples to approximate the lifetime
for the assigned number of failures that might be less than that of the sample size, the plan
testing time can begin as:

nhβ ≥∑ tβ
i ≥ (n− r)× hβ (16)

If Equation (16) is exchanged with Equation (15), the BX life equation can be rede-
fined as:

Lβ
B
∼=
(

ln
1

1− x

)
× 2

χ2
α(2r + 2)

· nhβ ≥
(

ln
1

1− x

)
× 2

χ2
α(2r + 2)

× (n− r)hβ ≥ L∗βB (17)

If Equation (17) is rearranged, the sample size formulation with the failure numbers
can be defined as:

n ≥ χχ2
α(2r + 2)

2
× 1(

ln 1
1−x

) ×( L∗B
h

)β

+ r (18)

Because χ2
α(2r+2)

2
∼= (r + 1) for α = 0.6 and ln(1− x)−1 = x + x2

2 + x3

3 + · · · ∼= x, the
sample size Equation (21) can be simply close to:

n ≥ (r + 1)× 1
x
×
(

L∗B
h

)β

+ r (19)

where the sample size equation can be restated as n ~ (failure numbers + 1)·(1/cumulative
failure rate)·((target lifetime/(plan testing time)) ˆ β + r.

If Equation (8) is attached to the plan testing time h, Equation (19) can replaced as:

n ≥ (r + 1)× 1
x
×
(

L∗B
AF · ha

)β

+ r (20)
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If the lifetime target of a mechanical system such as the HKS in a domestic refrigerator
is assigned to be B1 life 10 years, the mission cycles might be attained for an assigned set of
samples subjected to the food loading. In ALTs, the design flaws of the new product might
be recognized to fulfill the lifetime target [47–49].

2.4. Case Study—Reliability Design of a Newly Designed HKS in Domestic Refrigerator

When a consumer operates a refrigerator door, they want to comfortably close the
door. A new HKS was designed for the refrigerator (see Figure 5) to enhance the ease of
opening and closing the door for the consumer. When opening/closing the door, the HKS
was subjected to repeated impact loads over the lifetime of the domestic refrigerator.
To endure the loads of the HKS, new metals—standard austenitic ductile iron (18 wt%
Ni)—for the torsional shaft were a key metal component [50] used. Due to their cheap
cost as well as outstanding workability, ductile cast irons have been utilized for numerous
mechanical parts. They have fine monotonic strength and high ductility compared to
malleable cast irons and gray cast irons. The fatigue strength of ductile cast irons is
comparatively lower than those of the steels and alloys with the identical quantity of
monotonic strength because of their distinctive microstructure holding graphite particles
and casting defects [51]. The fatigue strength of a ductile cast iron in the current HKS
design was evaluated through parametric ALT.
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Figure 5. A domestic refrigerator (a) and HKS (b) and its parts: (1) kit cover, (3) support, (4) torsional shaft (cast iron),
(5) spring, and (6) kit housing (high-impact polystyrene, HIPS).

The HKS shown in Figure 5b consisted of a kit cover, torsional shaft (ductile iron),
spring, and kit housing. To suitably work its function for a product lifetime, the HKS
should be designed to endure the working circumstances subjected to it by the customers
who utilize the refrigerator. In the Korean domestic market, the representative customer
opened and closed the refrigerator door from three to ten times per day. Stocking food in
the refrigerator had some repeated working procedures: (1) Open the door of refrigerator,
(2) put the food into it, and then (3) close it. The HKS had different mechanical impact
loadings when the customer utilized it.

The HKS in the marketplace had been fracturing, causing customers to demand the
refrigerator be replaced. As subject to repeated impact stresses in using the refrigerator
door, it was determined that the problematic HKS originated from several design defects.
Market data also indicated that the returned products had crucial design problems on the
structure, including stress risers—sharp corner angles and thin ribs. These design defects
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prohibited the HKS from enduring the repeated impact loads during the openings/closings
and resulted in a crack that propagated to its end. The HKS was originally designed to
endure repeated impact loading under customer working conditions (Figure 6).

Metals 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

The HKS shown in Figure 5b consisted of a kit cover, torsional shaft (ductile iron), 
spring, and kit housing. To suitably work its function for a product lifetime, the HKS 
should be designed to endure the working circumstances subjected to it by the customers 
who utilize the refrigerator. In the Korean domestic market, the representative customer 
opened and closed the refrigerator door from three to ten times per day. Stocking food in 
the refrigerator had some repeated working procedures: (1) Open the door of refrigerator, 
(2) put the food into it, and then (3) close it. The HKS had different mechanical impact 
loadings when the customer utilized it. 

The HKS in the marketplace had been fracturing, causing customers to demand the 
refrigerator be replaced. As subject to repeated impact stresses in using the refrigerator 
door, it was determined that the problematic HKS originated from several design defects. 
Market data also indicated that the returned products had crucial design problems on the 
structure, including stress risers—sharp corner angles and thin ribs. These design defects 
prohibited the HKS from enduring the repeated impact loads during the openings/clos-
ings and resulted in a crack that propagated to its end. The HKS was originally designed 
to endure repeated impact loading under customer working conditions (Figure 6). 

 
Figure 6. Damaged HKS in field after use. 

When customers operated the refrigerator door, they could take out and put in food. 
Relying on the end-user working conditions, the HKS experienced repeated impact load-
ing in the process. To correctly work the HKS, many mechanical structural parts in the 
HKS assembly needed to be designed robustly. As the concentrated stress in the mechan-
ical system was revealed at stress raisers such as sharp corner angles, it was crucial to 
demonstrate these design flaws experimentally. As a result, engineers could then modify 
the design. 

As seen in Figure 7, from the functional design ideas of a mechanical HKS, we knew 
that the impact force on the HKS came from the door weight. That is, the moment balance 
around HKS can be stated as 

 (21)RWM door ×=0

Figure 6. Damaged HKS in field after use.

When customers operated the refrigerator door, they could take out and put in food.
Relying on the end-user working conditions, the HKS experienced repeated impact loading
in the process. To correctly work the HKS, many mechanical structural parts in the HKS
assembly needed to be designed robustly. As the concentrated stress in the mechanical sys-
tem was revealed at stress raisers such as sharp corner angles, it was crucial to demonstrate
these design flaws experimentally. As a result, engineers could then modify the design.

As seen in Figure 7, from the functional design ideas of a mechanical HKS, we knew
that the impact force on the HKS came from the door weight. That is, the moment balance
around HKS can be stated as

M0 = Wdoor × R (21)

(21) = T0 = F0 × R (22)

where b is distance from the HKS to the center of gravity (CG) of the door.
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Figure 7. Functional design ideas of a mechanical HKS.
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To increase the impact on the HKS, additional accelerated weight was added. The mo-
ment balance around the HKS with an accelerated weight can be stated as

M1 = M0 + MA = Wdoor × b + MA × a (23)

(23) = T1 = F1 × R (24)

where a is distance from the HKS to the accelerated weight
Because the time to failure depended on the impact force due to moment, the impact

was controlled during the accelerated life testing. Under the same working conditions,
the life-stress model (LS model) in Equation (7) can be restated as

TF = A(S)−n = AT−λ = A(F× R)−λ = B(F)−λ (25)

where A and B are constant
Therefore, the AF in Equation (8) can be restated as

AF =

(
S1

S0

)n
=

(
T1

T0

)λ

=

(
F1

F0

)λ

(26)

For a refrigerator including the HKS, the environmental (or working) customer condi-
tions were roughly 0–43 ◦C with a relative humidity varying from 0 to 95%, and 0.2–0.24 g
of acceleration. As previously mentioned, the number of openings/closings of the HKS
per day varied from 3 to 10 times. With a design criterion of a product lifetime for 10 years,
L∗B, the HKS has 36,500 usage cycles in the worst case.

Under a lifetime target—B1 life 10 years—if the number of lifetime cycles L∗B and
AF are computed for the assigned sample size, the actual mission cycles, ha, might be
acquired from Equation (20). Then, the ALT equipment can be made and performed in
accordance with the working course of the HKS. Through parameter ALTs, the design
missing parameters (or design flaws) for the new mechanical system can be identified.

The greatest impact force due to the door weight exerted by the customer in utilizing
the refrigerator, F1, was 1.1 kN. To determine the stress level for ALT, we used the step-stress
life test that can assess the lifetime under constant used-condition for various accelerated
weights [52]. As the stress level to a different level was changed, the failure times of the
HKS at a particular stress level was observed. Finally, for an ALT with an accelerated
weight, we determined that the exerted impact force, F2, was 2.76 kN. With a cumulative
damage exponent, λ, of 2, the AF was 6.3 from Equation (26). To obtain the missing design
parameters of a newly designed HKS, a lifetime target should be more than B1 life 10 years.
If the shape parameter β was 2.0, the number of test cycles computed from Equation (20)
would be 23,000 cycles for 6 sample units. If the parametric ALT failed less than once for
23,000 cycles, the lifetime for the HKS would be assured to be B1 life 10 years (Figure 8).

The control console was used to run the testing apparatus—the number of test cycles,
beginning or ending the equipment, etc. As the start knob on the controller console gave
the starting signal, the straight hand-shaped arms clasped and raised the refrigerator door.
When the door was shut, it was exerted to the HKS with the greatest mechanical impact
force due to the accelerated load (2.76 kN).
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Figure 8. ALT (a) equipment; (b) duty cycles of repeated impact load F.

3. Results and Discussion

In the 1st ALT, the housing of the HKS failed at 3000 cycles. Figure 9 shows the
failed product from the marketplace and the 1st ALT. Upon carefully observing the failure
locations from the marketplace and the first ALT, it was found that the failures were around
the housing and its support in the HKS structure as a consequence of high impact stress.

Figure 10 provides a graphical presentation of the 1st ALT results and the failure
data from the field shown on the Weibull plot. As the two patterns had similar slopes on
the plot, each loading state of the 1st ALT and the field over the product lifetime were
alike under the operational conditions of customers. Thus, it should be expected that
the test samples will fail like those in the field. For the shape parameter, β, the final
shape parameter from the chart was affirmed to be 2.0, compared with the estimated
value—2.0. Based on both test results in the Weibull plot, the parametric ALT was effective
because it identified the design flaws that were accountable for the field failures. In other
words, as substantiated by two items—the visual representation in the pictures and similar
slopes in the Weibull plot—these systematic methods were well-founded in identifying the
problematic designs that accounted for the failures from the field. These failures decided
the product (refrigerator’s) lifetime.
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Due to the design defect of no support in the high-stress areas, the repeated impact
loading in conjunction with this structural defect may have produced fracturing of the
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HKS housing. This design defect can be altered by adding the support ribs, C1 (Figure 11).
Stress analysis, which can be combined with fatigue analysis and parametric ALT, was car-
ried out by using a finite element analysis (FEA). When the HKS was fixed against the
wall (or surface) as the boundary conditions, the straightforward impact loads, as seen
in Figure 7, were applied. Using materials and processing conditions similar to those of
the finished HKS, the constitutive properties of the materials such as HIPS (HKS housing)
were determined. The maximum stresses for the old and new designs were estimated
separately. Based on these results, the appropriateness of the current designs for the HKS
housing was evaluated. After modifying the new designs to improve the design against
fatigue, the estimated stress concentrations in the HKS housing decreased from 21.2 to
15.0 MPa using the FEM analysis. It was expected that this new design should be effective
in reducing fatigue failure of the HKS housing when subjected to repeated load under the
consumer usage conditions.
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Figure 11. Failed HKS housing in the first ALT: (a) Its root cause; (b) design modifications.

With the confirmed shape parameter β of 2.0, the real mission cycles computed from
Equation (20) were 23,000 cycles for the six sample units. If the HKS failed at less than once
for 23,000 cycles, its lifetime would be assured to be B1 life 10 years. As seen in Figure 12,
in the second ALT, from the outside corner, the torsional shaft in the HKS that was made of
ductile iron failed at 12,000 cycles. Such ductile cast iron accounts for a major family of
metals that are extensively used for gears, automobile crankshafts, dies, and numerous
machine parts because of its good machinability, fatigue strength, and high modulus of
elasticity. They have a mass fraction (%) as follows: Carbon (3.0–3.7), silicon (1.2–2.3),
manganese (0.25), magnesium (0.07), phosphorus (0.03) [53].
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Figure 12. Root cause and design modification of cracked torsional shaft (cast iron) in the second ALT: (a) Root cause;
(b) design modification.

When closely examining the product failure in the 2nd ALT, the torsional shaft in the
HKS had insufficient strength to endure the repeated impact loading of the opening/closing
of the door. When subjected to repeated impact loads, the stress amplification of mechanical
components such as the torsional shaft in the HKS not only occurred at minute defects or
cracks on a microscopic level of material but could also happen in stress concentrations
such as in sharp corners, fillets, holes, and notches on the macroscopic range that are
normally explained as stress raisers. For example, the stress concentration at the sharp-
edged corners depended on fillet radius [54]. To improve the design, the torsional shaft
was altered by giving it more rounding from R0.5 mm to R2.0 mm, C2 (Figure 12).

For the HKS upgrade, the design basis of new samples was determined to be more
than the lifetime target—B1 life 10 years. To confirm the design of the HKS, a 3rd ALT was
performed. As the affirmed value, β, on the Weibull plot was 2.0, for the lifetime target—B1
life 10 years—the actual mission cycles in Equation (20) were 23,000 for the six-sample
size. In the third ALT, there were no design issues in the HKS until the experiment reached
23,000 cycles. It was therefore concluded that the altered design parameters obtained from
the 1st and 2nd ALTs were successful.

Table 3 provides a summary of the ALT results. With the alternative designs, the HKS
was assured to have a lifetime target—B1 life 10 years. That is, we knew that the product
would have 99% reliability (or 1% unreliability) for 10 years with a yearly failure rate
of 0.1%.
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Table 3. Results of ALTs.

Parametric ALT
1st ALT 2nd ALT 3rd ALT

Initial Design Second Design Last Design

In 23,000 cycles, there are no
problems in the HKS

3000 cycles: 2/6 Fracture
(HKS Housing)

12,000 cycles: 4/6 crack
(Torsional Shaft)

23,000 cycles:6/6 OK
41,000 cycles:6/6 OK

HKS Structure
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used in machine components. To improve its strength for impact loading, the torsional 
shaft was altered by increasing the corner roundness. 

With these altered design parameters, in the third ALT, there were no design issues. 
The altered design parameters were assured to satisfy the lifetime need of the HKS—B1 
life 10 years. With the examination of returned products from the marketplace, laboratory 
load evaluations and testing, and parametric ALTs with design modifications, the design 
flaws were identified and remedied to create a robust design with a remarkably lengthy 
lifetime. This parametric ALT is also recommended to be applied to other metals that can 
be used in the numerous machine parts such as cam, gears, automobile crankshafts, and 
dies [55–59]. 
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4. Conclusions

A systematic reliability method was proposed for a new mechanical system such as
an HKS in refrigerators. It incorporated: (1) A parametric ALT plan formed on product BX
lifetime, (2) a load examination for ALT, (3) customized ALTs with the design alterations,
and (4) an assessment of whether the last design(s) of the product fulfilled the objective BX
lifetime. Testing was conducted to subject the HKS in the domestic refrigerator to repeated
impact loading.

In the first ALT, the HKS housing had insufficient strength for repeated impact loading
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evaluations and testing, and parametric ALTs with design modifications, the design flaws
were identified and remedied to create a robust design with a remarkably lengthy lifetime.
This parametric ALT is also recommended to be applied to other metals that can be used in
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Author Contributions: S.W. conducted the conceptualization, methodology, analysis, and testing
and wrote the article. D.L.O. checked the analysis and writing for original draft. M.M.T. and S.M.A.
review and edit the paper. D.E.W. supervised the research and paper preparation. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors state no conflicts of interest.



Metals 2021, 11, 139 17 of 19

Abbreviations

BX time that is an accumulated failure rate of X%: durability index
Ea activation energy, eV
e effort
f flow
F impact force, kN
F(t) unreliability
h testing cycles (or cycles)
h*J nondimensional testing cycles, h∗ = h/LB ≥ 1junction equation
k Boltzmann’s constant, 8.62 × 10−5 eV/deg
LBM target BX life and x = 0.01X, on the condition that x ≤ 0.2 moment

around the hinge kit system, kN×m
N number of test samples
Q amount of energy absorbed or released during the reaction. For the

semiconductor total number of dopants per unit area
RRr radius of the hinge kit system, mratio for minmum stress to maximum stress

in stress cycle, σmin/σmaxfailed numbers
S stress
TTti torque around the hinge kit system, kN·mtemperature, Ktest time for each sample
TF time to failure
X accumulated failure rate, %
xWAWdoor x = 0.01X, on condition that x ≤ 0.2.accelerator weight, kgdoor weight, kg
Greek symbols
ξ electrical field applied
η characteristic life
λχ2α cumulative damage exponent in Palmgren–Miner’s rulechi-square

distribution confidence level
Superscripts
β shape parameter in Weibull distribution

n stress dependence, n = −
[

∂ ln(Tf )

∂ ln(S)

]
T

Subscripts
0 normal stress conditions
1 accelerated stress conditions
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