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Abstract: Aiming at existing methods unable to reveal the definition of dilution in welding accurately,
such as the limited formula’s range of 0~1 mathematically, a new way which can be widely applied
to various welds alloying either one or more compositions was proposed. Dilution values obtained
using different methods through chemical composition analysis were compared and the effect of heat
inputs on dilution was researched. The results show that the proposed method fabricated mathemati-
cally agrees well with the definition of dilution in welding. Especially, by dilution increasing to a
level higher than the critical value, it reveals the fact that a weld can be concentrated as well when the
filler wire is rich in the same composition as the substrate does. Besides, the method demonstrates
that the gross dilution for a bead is a combined result that is affected by each individual composi-
tion. However, whether a composition is diluted or concentrated, composition’s concentrations are
propelled by the increase of heat input toward that of the original substrate. During the process, the
dilution value changes sharply before the heat input reaches the transition point (TP) of 0.18 kJ/mm,
while once the heat input is beyond TP, the dilution becomes stable.

Keywords: dilution; gas metal arc welding; chemical composition; aluminum alloys; concentration

1. Introduction

Dilution is a significant factor affecting the mechanical property of bead in gas metal
arc welding (GMAW) [1–5]. For example, the microhardness increases with the aluminium
ratio in the steel-on-aluminium weld [1,2], and the welded joint with a lower dilution
ratio of copper in the fusion zone exhibits higher tensile strength [3]. Besides, several
researchers [6,7] found that microhardness is very sensitive to the change of dilution
ratio in spot welding of steel, and a small change of dilution ratio will cause significant
microhardness difference. The experimental investigation of residual stresses in multipass
steel welds indicates that dilution significantly affects the stress state of the welds, and
higher dilution reduces tensile stress or promotes compressive stress in the as-deposited
and reheated weld metals [8,9]. Moreover, it is also found that for the weld joint with a
lower dilution ratio, no cracking phenomenon is observed during a bending test. For the
weld joint with a higher dilution ratio, cracking phenomenon initiated at the 309 L cladding
layer is present, and a significant reduction from 634 MPa to 521 MPa in tensile test is
observed [10]. There are mainly two ways to calculate the dilution of weld bead: chemical
analysis and geometric calculations [11–16]. Considering that the dilution values obtained
from the two techniques are quite close [11], most researchers adopted the geometric
calculations method to calculate the dilution in various processes owing to its simplicity
and efficiency compared with the chemical analysis [12,14,17,18]. These two methods,
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however, cannot reflect the definition of dilution in welding well and accurately. Dilution
is defined as the level at which the composition(s) in substrate mixes with that in the
filler wire [17]. Although in welding the substrate is undoubtedly diluted by the filler
wire, the dilution ratio cannot be simply expressed as Equation (1) [12], which irrationally
correlates the original concentration of the substrate and the filler wire just to make it
easier for the dilution calculation. Moreover, it can be only employed to assess the weld
alloying one element but not able to measure the gross dilution for a weld containing more
compositions [13,16], for which case its only value cannot be used to represent different
dilution ratios.

D =
Cw − C f w

Cs − C f w
(1)

where D is the dilution level, and Cw, C f w, Cs are the elemental compositions of the fusion
zone, filler wire, and substrate, respectively. Moreover, the geometric method expressed
as Equation (2) [12,19] is more popular because of its simplicity in calculation, while this
method is even further from the truth than Equation (1) owing to its lack of integrat-
ing the element composition into its formula. Furthermore, for a weld alloying more
than one composition, it is hard for researchers to decide which composition dilution it
reveals exactly.

D = Ap/
(

Ap + Ar
)

(2)

where Ap, Ar are the areas of weld penetration and reinforcement, respectively. The differ-
ence in the dilution value for different compositions is also displayed in References [11,13]
by Gualco and Silva, respectively. According to their study, the composition of Cr and Nb
shows quite different dilution values as well.

Based on the above analysis of the used methods of dilution ratio, it can be found
that the results of dilution ratio calculated by the existing two methods are quite different.
Moreover, according to the definition of dilution ratio, it is a concept set up to investigate
the change of composition concentration of a weld. Therefore, the calculation of the
dilution ratio cannot be carried out simply by dividing the area of a weld into two parts
and calculating their area ratio (namely, the geometric method), although the melting
of base metal and the filler wire does change the profile of a weld bead. Therefore, the
calculation of dilution ratio should be based on the analysis of chemical composition.
Meanwhile, it should be recognized that the dilution ratio is different for various weld
compositions in one bead. Thus, how to calculate the dilution ratio of all major alloying
compositions and how to determine the relationship between the element dilution ratios
need further study.

Hence, to calculate the dilution precisely and widely for various welds alloying one
or more compositions, a new way is proposed, which is well fabricated mathematically
and loyal to the dilution definition in welding. Besides, the effect of different heat inputs
on dilution is researched as well using the new method.

2. Materials and Methods

A bead-on-plate welding experiment was conducted on aluminum alloy AA6061
base metal (250 mm × 60 mm × 3 mm) using ER4047 filler wire of ϕ1.2 mm, and the
experimental setup is displayed in Figure 1a. The welding process is automatized with
a torch attached vertically to the fixture on the guide rail. The respective compositions
of each material used in this study are provided in Table 1. Pulsed GMAW with good
stability was employed to obtain different average current which changes within a wide
range by adjusting the base current as displayed in Figure 1b [20,21], and the collected
signals show that there is no arc extinction and both the pulsed current and voltage have
good repetitiveness (Figure 1c). The parameters for welding are presented in Table 2. Pure
argon was coaxially supplied as a shielding gas at a flow rate of 18 L/min. The specimens
were cut along the transverse cross-sections of the middle part of a weld, then ground
and polished with colloidal silica and subsequently etched for 30 s using the standard
Keller agent (95 mL H2O, 1 mL HCl, 1.5 mL HF, and 2.5 mL HNO3). Chemical composition
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is tested using energy-dispersive X-ray spectroscopy (EDS) NOVA NANOSEM 430 (FEI,
Hillsboro, OR, USA), and the EDS parameters used in our study are 15.3 keV and 9.8 mm.
To improve the accuracy of dilution, three specimens were tested for each case.

Figure 1. Schematic of (a) experimental setup, (b) the adjustment of average current, and (c) the collected signal of current
and voltage.

Table 1. Chemical compositions of base metal AA6061 and filler wire ER4047 (wt%).

Material Mg Si Fe Cu Mn Cr Ti Al

AA6061 0.87 0.66 0.42 0.29 0.09 0.27 0.08 Bal.
ER4047 0.05 11.06 0.30 0.13 0.12 0.04 0.07 Bal.

Table 2. Welding process parameters for pulsed gas metal arc welding (P-GMAW).

Process Parameters Value

Mean voltage (V) 24.3
Mean current (A) A:72 B:88 C:104 D:120 E:36

Welding speed (mm/s) 10
Heat input (kJ/mm) A:0.12 B:0.15 C:0.180.18 D:0.20 E:0.0.23

3. Results and Discussion
3.1. Sampled Areas and Alloying Compositions

Dilution is defined as the level at which the composition(s) in substrate mixes with
that in the filler wire [17], therefore, it can be determined as a ratio of the compositions
concentration in fusion zone to that in original substrate, which can be expressed mathe-
matically as Equation (3). Owing to the dilution in the welding means the diluted extent of
the substrate compositions; therefore, both the top/back reinforcement and the sunken area
cannot be selected as sampled areas. Besides, the profile of weld beads changes significantly
with heat input [22,23], the reason for which has been discussed in our previous work [24].
Hence, the sampled areas used for the element analysis and calculation for various weld
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profiles are displayed as the red region in Figure 2. Moreover, to avoid any deviations that
may be encountered due to micro-segregation [12], the three sampled areas for each heat
input were at least 10,000 µm2.

D (%) = Cw/Cs (3)

Figure 2. Sampled areas for various weld profiles. Heat input of (a) 0.12 kJ/mm; (b) 0.18 kJ/mm; (c) 0.23 kJ/mm.

In our study, Mg and Si are taken as the targeted compositions to analyze the dilution
due to the fact that they are the main alloying elements for the substrate. According to
Equation (3), the dilution for Mg and Si can be expressed as the ratio of their concentrations
after welding (namely, the weld concentration) to that before welding (namely, the substrate
concentration), respectively.

3.2. Comparison of Dilutions from Different Equations

Figure 3 represents the energy-dispersive X-ray spectroscopy (EDS) analyses of the
substrate, filler wire, and the three various beads mentioned above. Table 3 lists the result
of the main alloying compositions analysis of Mg and Si using EDS for different samples
and heat inputs. Then, the dilution results calculated using Equations (1)–(3) are displayed
in Figure 4 and Table 4 based on the EDS results. As we can see, the dilution ratios are
quite different. All the results derived from Equations (1) and (2) fluctuates mathematically
in the range of 0~1 (the dashed lines in Figure 4), which is not consistent with the fact in
welding that the weld is not always diluted at any case but can be concentrated as well
in the cases when the filler wires are greatly rich in the same alloying elements as the
substrate do. In these cases, due to the substantial addition of melted filler wire, the forced
limited dilution range derived from the existing mathematical formula loses the ability to
indicate the real condition that happened in welding. The reason for the limited dilution
range gained from Equation (2) is obvious, because Ap will never be greater than the sum
of Ap + Ar, while it is a little complicated for Equation (1). As is known, a certain element
concentration always fluctuates between that of the filler wire and the substrate, which
means either C f wN ≤ CwN ≤ CsN or CsN ≤ CwN ≤ C f wN , where CsN , CwN and C f wN
are concentrations of a certain element in substrate, weld, and filler wire. Nevertheless,
whichever case the situation is, the absolute difference value of CwN − C f wN will never
exceed that of CsN − C f wN , which means that the dilution result obtained according to
Equation (1) will be neither greater than 1, nor less than 0. Therefore, owing to the irrational
restriction mathematically on the dilution range imposed by Equations (1) and (2), neither is
a rational method to illustrate the definition of dilution in welding, despite their simplicity
in the calculation.

The difference of the dilution value for different compositions by existing methods
also found in References [11,13] by Gualco and Silva, respectively, as we can see from
Table 5, the value varies from geometric dilution to Chemical analysis. Moreover, even for
the Chemical analysis, the dilution values also display an evident difference for different
heat inputs, such as the different values between the element Cr to the element Nb.
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Figure 3. EDS analyses of (a) substrate, (b) filler wire and the three various beads: heat input of (c) 0.12 kJ/mm;
(d) 0.18 kJ/mm; (e) 0.23 kJ/mm.

Table 3. Concentration of Mg and Si in different beads (wt%).

Heat Input (kJ/mm) 0.12 0.15 0.18 0.20 0.23

Mg 0.24 0.42 0.42 0.46 0.43
Si 5.87 3.87 2.43 2.62 2.65

Figure 4. Comparison of dilutions calculated using three different methods.

Table 4. Comparison of dilutions calculated using three different methods.

Heat Input kJ/mm Dgeo DcMg DcSi DwMg DwSi DwAll

0.12 0.25 0.23 0.5 0.27 8.85 5.94
0.15 0.53 0.45 0.69 0.48 5.83 4.11
0.18 0.66 0.45 0.83 0.48 3.66 2.69
0.20 0.66 0.5 0.81 0.53 3.95 2.92
0.23 0.73 0.46 0.81 0.5 4 2.93
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Table 5. Data of dilution determined by both geometric measurements and chemical analysis.

Heat Input, kJ/mm 0.5 0.7 1 1.5 1.7 2.1

Geometric Dilution 30 32 34 36 35 36
Chemical Analysis of Cr 31.93 33.13 36.14 37.35 36.75 38.55
Chemical Analysis of Nb 16.09 22.99 25.29 25.29 27.59 25.29

However, the dilution calculated using Equation (3) displays an obvious higher value
than that using the other two ways for heat inputs at any level either for the gross weld
dilution DwAll or for the Si dilution DwSi. This dilution value derived from the new formula
agrees well with the essential meaning of dilution in welding. For example, the filler wire
used in our study is rich in Si composition, which is 11.06 wt%, far more than that of
0.66 wt% in the substrate. Hence, after welding, it is evident that the Si concentrations
in all weld beads are going to be higher than that in the substrate. For the 0.12 kJ/mm
bead, the concentration of composition Si is 5.87 wt%, which is far beyond 0.66 wt% in
substrate. That is to say, after welding the element Si is concentrated but not diluted.
However, the dilution obtained from Equations (1) and (2) is only 49.87% and 25.30%,
respectively, which means that the element concentration decreases compared with the
original substrate composition. While the truth is that it sharply increases almost 9 times,
the dilution from either Equation (1) or Equation (2) is obviously contradictive with the
chemical analysis by EDS. However, this phenomenon can be perfectly indicated by the
dilution result from Equation (3) with its value soaring to 885.43%. Moreover, different
compositions have their own concentrations, thus have separate dilution; yet Equation (2),
the geometric calculation method, can produce only one value in total for every individual
composition in a weld. It is hard for researchers to decide which composition dilution it
reveals exactly. Therefore, Equation (3), instead of Equations (1) and (2), is a more rational
method to calculate composition dilution.

The dilution result is affected by several factors, the possible sources of error are the
non-uniform distribution of composition and the effect of processing parameters. Take
the distribution of Si composition as an example, the Si dilution value is high where the
concentration of Si in filler wire or base metal is higher according to Equation (3). Besides,
the dilution is also determined by the unstable processing parameters. The Si dilution value
is high when the traveling speed is at a low level, for which there are more molten filler wire
deposited into the weld, whose concentration of Si is higher than the base metal.Different
current levels result in different bead profiles. Figure 5 displays the corresponding profiles
of each heat input. From the profiles, we can find that the height of the front reinforcement
decreases and the height of the back reinforcement increases with the heat input increasing.

Figure 5. Corresponding bead profile for each heat input: (a) 0.12 kJ/mm; (b) 0.15 kJ/mm; (c) 0.18 kJ/mm; (d) 0. 20 kJ/mm;
(e) 0.23 kJ/mm.
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In addition, to evaluate the gross dilution for welds consisting of more than one
major alloying composition, the proposed method can be modified as Equation (4) to
integrate all the targeted major compositions by introducing a weight coefficient. In
Equation (4), the subscript A, X, . . . , N are represented as the major compositions, and CwX
and CsX are the concentrations of a certain composition in bead and substrate, respectively.
Therefore, CwX/CsX is the dilution for a certain element, while CsX

CsA + CsX +···+ CsN
is the

weight coefficient of the corresponding element, and the product of them is the dilution
share that a certain element occupies. Adding all these individual dilution products up, we
will get the gross weld dilution ratio formula Equation (4), which can be further simplified
as Equation (5). In our study, for the major compositions of Mg and Si, the gross weld
dilution DwAll can be expressed simply as Equation (6) according to Equation (5), where
CwMg and CwSi are the concentrations of Mg and Si in bead after welding, while CsMg and
CsSi the concentrations of Mg and Si in substrate before welding. In fact, Equation (3) is
also a simplified form of Equation (5) but for the bead consisting of only one major alloying
composition. From this aspect, Equation (5) exhibits great superiority over the existing
two methods for its widespread application to various welds alloying either one or more
compositions. The gross weld dilution calculated using Equations (5) and (2) is represented
in Figure 4 and Table 4, from which Equation (5) results in a higher dilution value than
that using Equation (2) even if Equation (2) can be regarded as a way to calculate the gross
dilution. The higher dilution from Equation (5) is attributed to the addition of Si-enriched
filler wire in which the Si concentration is about 16.76 times of that in the substrate. Hence,
although the Mg dilution is at a lower value of 27.48% using Equation (3) for 0.12 kJ/mm
bead, the significant excess of Si in filler wire than that in substrate still has the ability to not
only compensate for the decrease in Mg dilution but also to elevate the whole weld dilution
up to as high as 594.08%. Namely, the gross dilution value DwAll is much closer to the
individual dilution value, which has a higher weight coefficient. The geometric calculation
method using Equation (2); however, has no ability to reveal the complicated effect of how
individual dilution affects the gross dilution for a multiple compositions bead.

Dw (%) =
N

∑
A

(
CwX
CsX

× CsX
CsA + CsX + · · · + CsN

)
(4)

Dw (%) =
CwA + CwX + · · · + CwN
CsA + CsX + · · · + CsN

(5)

DwAll (%) =
CwMg + CwSi

CsMg + CsSi
(6)

3.3. Effect of Heat Input on Dilution

Figure 4 and Table 4 demonstrates the effect of heat input on dilution as well. As
the dashed lines show, the dilution values calculated using Equations (1) and (2) for all
levels of heat inputs are restricted in a narrow range of 0~1, which is consistent with
the conclusion deduced from the mathematical formula. All the dashed lines show a
similar tendency that the dilution increases sharply with the heat input when the current
is at a low level. However, all the dilutions remain stable after the heat input reaches
0.18 kJ/mm. The geometric method Equation (2) yields the dilutions DGeo which are
between the compositions of Si and Mg across much of the investigated range. The Mg
dilution DwMg using our method is always slightly higher than that from Equation (1),
which is attributed to the trace amount of composition Mg in filler wire. According
to Equation (1), if the concentration of composition in filler wire comes to zero, then
Equation (1) becomes no different from Equation (3). The lesser a composition is in
filler wire, the closer the corresponding dilutions are after welding because under these
conditions, the concentrations are mainly determined by the original substrate due to the
weak involvement of filler wire.
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The solid lines of Si dilution DwSi and the gross weld dilution DwAll using Equation (5)
display a quite different result from the other ways. Unlike the Mg dilution DwMg which
increases with heat input, both Si dilution and the gross weld dilution decreases with heat
input at first and then is stable with slight fluctuation after 0.18 kJ/mm, which can be
regard as the transition point (TP) for both dilutions and the profiles of beads. Before TP,
the substrate is partially penetrated and dilutions change violently with the increase of
heat input. However, once heat input is higher than TP, the substrate is fully penetrated
and dilutions changes in a fairly narrow range. This is also true for Equation (2), although
the specific values are different because its dilutions derive from the chemical composition
analysis as Equation (5) does. In fact, for a certain composition, as long as the absolute
difference value in concentration between a bead and the original substrate increases, the
weld becomes either more diluted or more concentrated. In mathematics, the dilution value
for the former becomes increasingly less than 1, and the latter increasingly greater than 1, as
represented by the arrows in Figure 4. This means that critical value 1 is the transformation
point. When the dilution is greater than 1, the weld is concentrated, otherwise, the weld
is diluted. When the dilution equals to 1, the line of the original compositions, it means
that the composition CwX after welding equals to CsX before welding. Nevertheless,
Figure 4 and Table 4 display that although a certain composition is diluted (such as Mg)
or concentrated (for example Si) at a level of heat input, the compositions’ concentration
always approaches to that of the original substrate as long as the heat input increases. This
is attributed to the intenser convection in a weld pool from a higher heat input than that
from a lower heat input [19]. The convection in the weld pool is determined by many
factors including droplet impingement, heat input [25], etc. The higher the heat input
is, the intenser the convection is, which produces a more uniform mixture between the
filler wire and the base metal. Thus, the compositions of beads come to that of the original
substrate with the increase of heat input, and in Figure 4 this phenomenon is displayed
as the values higher or lower than 1 approaching to the critical value line. Moreover, the
butt weld with the same parameters of 0.18 kJ/mm as bead on plate weld is investigated
as well; it, however, shows no evident difference in dilution value. This indicates when
there is no gap between base metal parts, the bead on plate weld and the butt weld has the
same dilution value.

4. Conclusions

In this paper, a new method for weld dilution calculation was proposed and the effect
of heat inputs on the dilution was discussed. The main conclusions are as follows:

(1) Compared with the existing method, the proposed method in our paper agrees better
with the definition of dilution in welding, which has a widespread application to
welds alloying either one or more compositions. For the beads alloying two or more
compositions, the dilution values vary widely according to the relative composition
concentration between the filler metal and the substrate.

(2) The new method removes the mathematical restriction of forcing the dilution variation
into a limited range of 0~1 by the existing methods, by which it reveals more clearly
the phenomenon that when a bead dilution is greater than the critical value 1, the
composition is concentrated, such as the Si dilution soaring to 885.43% from 49.87%
(chemical method) and 25.30% (geometric method), while when the value falls into
0~1, the bead is diluted. However, the gross weld dilution value DwAll is much closer
to the individual dilution value which has a higher weight coefficient.

(3) Whether a certain composition is diluted or concentrated under a low level of heat
input, the increase of the heat input propels the compositions’ concentration toward
that of the original substrate. However, the dilution becomes stable once the heat
input is beyond the transition point 0.18 kJ/mm in our case, which may result from
the adequate convection of molten pool caused by the high-level heat input.
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